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ABSTRACT. By following ideas of synthetic real projective
geometry rather than classical algebraic geometry, maps in a
finite-dimensional desarguesian projective space are used to
- generate normal curves. We ‘aim at solving the problems of
classification, automorphic collineations and generating
maps of arbitrary non-~degenerate normal curves and
degenerate normal curves in desarguesian projective planes
(also called degenerate conics). Properties of normal curves
are shown, on one hand, by using methods of projective geo-
metry as well as linear algebra and, on the other hand, by
applying results on the non-existence of certain types of
ordinary and generalized polynomial identities with
coefficients in a not necessarily commutative field.

1. INTRODUCTION
1.1. Preface

It is well known that special curves and surfaces in a real
(or complex) projective space of finite dimension permit
definitions in a purely geometrical way by using generzsing
" maps such as projectivities, polarities, etc. Some of taese
definitions may be taken over word for word to more general
classes of projective spaces. However, most of the classical
results will no longer hold in the general case.

Normal (razional) curves in an n-dimensional real (or
complex}) projective space allow geometrical definitions in-
cluding those of a conie (n=2) and a twisted cubie (n=3)
given by J. Steiner (1832) and F. Seydewitz (1847), respec-
tively. First results for arbitrary finite dimension are
due to W.K. Clifford [11] and G. Veronese [37]. Cf. also
(5,270]), [6,318), [10,166], [21], [34,894] for further
details and historical remarks.

By transferring one of these definitions in an even



generalized way, normal curves have been introduced in finite
dimensional desarguesian projective spaces by R. Riesinger
[28]. Previous publications by E. Berz [7], B. Segre [33,
325], L.A. Rosati [30], [31], R. Artzy [3], W. Kriiger [23]
and R. Riesinger [27] are concerned with examples of these
normal curves, especially conics. Recent articles [29], [15],
[16], [17], [18], all but one by, the author; are also dealing
with normal curves. Finally, we mention some papers which
contain results on (certain) normal curves in pappian pro-
jective spaces and on conic-like figures in non-pappian
projective planes [8,55], [9,195], [20], [25], [35], [36].

A theorem by S.A. Amitsur [1] states that a field!l
satisfies a generalized polynomial identity if and only if
it is of finite degree over its centre. Cf. also [13;141,
162]. This result is frequently applied in Riesinger's
papers, because some geometrical problems, for example the
coincidence of two degenerate conics, are equivalent to the
fact that a generalized polynomial in a non-commutative
indeterminant x with coefficients in a field K vanishes for
all values of x in K. Hence the given polynomial either is
the zero-polynomial or it yields a generalized polynomial
identity. By Amitsur's theorem, the latter possibility can
be excluded if K is of infinite degree over its centre. In
this way geometrical problems have been solved completely
under the assumption that the field K has infinite degree
over its centre, but not necessarily complete solutions have
been given for finite degree [27], [28]. However, as will
be shown in this paper by a different approach, complete
solutions of these problems can be found irrespective of
whether the field K has infinite degree over its centre or
not.

Interpretations of generalized polynomial identities in
terms of geometry are included in [2].

1.2. Basic concepts

1.2.1. Suppose that I is an n-dimensional desarguesian pro-
jective space (2sn<«) which is regarded as a set of points
P, say, and a collection of subsets of P which are called
lines (cf. e.g. [8]). The subspaces of N form the lattice
(ull,v,Nn) with v and N denoting the operation signs for
"join" and "intersection", respectively. Any M€ull determines
projective spaces N (M), n/M, with lattices of subspaces

l see 1.2.2.



w(n(M)) = un(M) = {XEun|XcM},

u(n/M) = un/M = {Xeun|xoM},
respectively. We shall not distinguish a point MeP from the
'subSpace {M}eunl and ull/M will be called a bundle (of sub-
spaces). The same symbol will denote a collineation (being
a point-to-point map) and the associated Zsomorpiism (which

maps subspaces to subspaces).

1.2.2. The term field will be used for a not necessarily
commuatative field, but skewfield always means a non-commut-
ative field. We shall assume throughout this paper that I
is a projective space (V) on a right vector space V over
a field K. The set of points of (V) is the set P(V) of all
one-dimensional subspaces of V. If UcV is a subspace of Vv,
then P(U) denotes the subspace of the projective space I (V)
given as {XEP(V)|X=xK and x€U}. The centre of K will be writ-
ten as Z, and we set Lx:=L\{O} for any subfield L of K.

Let U be an (m+1)-dimensional subspace of V with m21.
A vector u€U is called central with respect to a given basis
{po,...,pm} of U if u=3§gpjzj with szZ, and a subspace of U
is named «central if it can be spanned by central vectors.
The central subspaces of U determine central subspaces of
I(u) with respectmto the frame F={PO=pOK,...,Pm=me,E=eK}
of 1(U) where e=;z Py - Those projective collineations of
n(u) which.are fg;gng the frame F pointwise are induced by

linear automorphisms of U such that



pj - pjc (=0, ...,m) and ceK”.
A subspace P(S) of nm(U) is central with respect to F if and
only if it is invariant under all projective ccllineations
fixing the frame F pointwise. The "if"-part of this asser-
tién is streightfofward by using induction on the dimension
of § , the "only if"-part is trivial. Assume, finally, that
P(U) is a projective line. Then the set of all points which
are central with respect to the frame {PO,P1,E} is called a
Z-chain and will be denoted by [PO’P1'E]Z' See 4,326]. In
terms of cross-ratios (CR) a Z-chain [PO,P1,E]Z is the set

of all points X in the line P :=P_vP

of1:=FovPy
Po) € 2 U {=}.

satisfving

CR(X,E,P1,

The dual vector space of V is written as v* and
<h*,v> stands for the image of v€V under the linear form
h €V'. In order to simplify notation, we shall frequently

write 1, ull, P instead of Ini(v), un(v), P(v), respectively.

1.2.3. We shall need the following

LEMMA 1.1.Let so,...,smEK be linearly indepenzZznt over the

centre 7 of K. Given elements r -+ s T EK then

0’
(1.1) rotsO + ... + rmtsm = 0 for all t€K

i1f and only <1f all ri’s vanish simultaneously.

Proof. The dual vector space of the right vector space

Km+1 will be identified (as usual) with the lest veétor

space iy, 1f (1.1) holds with r,#0, say, then (r

Em+1K is a non-trivial linear form such that

O,...,rm]e



<[r ..,rm],(tso,...,tsm)> = 0 for all te€k.

m+1

o'’

In terms of the projective space @ (K ) this means that the

hyperplane P (ker| .,rm]) contains the subspace spanned

1

Eore-

.by the points(tsg,...,ts )K = (tsot— ,...,tsmt_1)K with te€K™.

o'’
But this subspace is central with respect to the standard

m+1

frame of N(K )} according to 1.2.2. This implies the exist-

m+1zcm+1

ence of a non trivial linear form [zo,...,z e K with

m

<[zo,...,zm],(tso,...,tsm)> = O for all teX

and yields the contradiction zoso+...+zmsm=0.

The converse is trivial.O

In view of this, all remarks [27;247,249], [28,445]
concerning skewfields which satisfy a generalized polynomial
identity (1.1) are false.
1.2.4. In I=n(V) we choose two different points P and Q. Let
(1.2) £ : ull/P -ull/Q
be a projective i<somorphism. Then we refer to
(1.3)  T(g) := {X€P|X€l and X€l1® for some line 1P}
as being the_point set generated by tr. We shall also say
that ¢ is a generating map of T(g). Obviously P,Qer(:), be-
cause P,QePQ and PE(PQ)C—l, QE(PQ)C. The fundamentc. sub-
space of t is defined as the intersection of all g-invariant
subspaces and is denoted by G(z).
| If ¢':un/pP'-ul/Q' is any generating map of I (:), then
{P',Q'} is called a fundamental pair of the point sz* T(g)

and we shall use the term fundamental point of T (g) for P'

as well as Q'. The intersection of r(cg)=r(z') with the fun-



damental subspace of ¢' is called the <mproper part of T (t)
with respect to t'. All other points of T (z) form the proper
part of T(t) with respect to ¢'. These two point sets are
denoted by I’ (z') and r°(z"), respectively.

Suppose that H is a hyperplane of I which contains
neither P nor Q. Then, by (1.2),

(1.4) : X (eH) » (PX)% n H

*H
is a projective collineation H—-H which is called the trace
map ¢f t in H. A point is invariant under Ly if and only if
it is an element of I (z)nH.

The next result is trivial, but important.

PROPOSITION 1.1. If g:ull/P — ull/Q is a projective isomor-
phisr, then any line which is different from PQ and passing
through P contains at most one point of T () other than P.

A simple example of a projective isomorphism (1.2) is
a perspectivity. Here the generated point set I'(z) is the
union of the line PQ and a hyperplane H not passing through
P as well as Q. The trace map g, is the identity map in H.
The fundamental subspace of ¢ eguals the line PQ.

The following defintions are subject to the assumption
that ¢ is no perspectivity: The point set I (g) given by
(1.3) is called a normal curve. The map ¢ as well as the
normal curve T (z) are named degenerate if P equals the fun-
damental subspace G(z) and non-degenerate otherwise. If T
is a projective plane, then a normal curve is also called
a conic and the map (1.2) is a projectivity.

To illustrate these definitions, we recall the situ-
ation in a 3~-dimensional real projective space [24,135]:

(1) If ¢ is non-degenerate, then I'(z) is a twisted
cubic.



(2) Let G(z) be a plane Now T (z)cG(z) is a conic (in
the usual sense) and r° (z) equals an affine line RS\{R},
where RET” (z), R#P,Q and SEP\G(z).

(3) Assume that G(z)=PQ. Then, since ¢ is no perspec-
tivity, there are two f-invariant planes at most. In every
¢-invariant plane one line other than PQ belongs to T ().

Any two such lines are skew and do not pass through P or Q-

We deduce from (3) that r(z)=r(z') does not imply r* (z)

(g ), as is shown by a normal curve which is the union of
two different lines with a common point. Hence we are not
always able to speak unambigously of the proper and the im-
proper part of a degenerate normal curve. We shall see in
4.2.1 that there are even normal curves which are degenerate
as well as non-degenerate.

The preceding definitions are wvery close to the ones
given in [28] and they still will make sense if we drop
the convention about the finite dimensionality of I.

2. NON-DEGENERATE NORMAL CURVES
2.1. Classification
2.1.1. In order to show that non-degenerate normal curves

do exist in n=n(Vv), we have to give an example of a non-
degenerate projective isomorphism [15], [23].

Let (py,...,p ) be an ordered basis of V and write?
e= Z pj Then
F = (PO=pOK,...,Pn=an,E=eK)

is an ordered frame of I. For any two consecutive points
Pj_1,PjEF (j=1,...,n) there is a unique involutory perspec-
tive collineation yj:P~P whose axis is spanned by all points

of F except Pj-1’Pj with Pj_1Yj=Pj. The product map

Y = Y]"°Yn
is a projective collineation satisfyinag

Y Y Y
1 .2 n
PO — P1 — .. — Pn'
n

2We shall use » as a shorthand for . .
J j=0



Y Y. Y. Y. Y
p. Lt ... Al p dp AL e
3 -1 j=1
Y Y. _ Y
P r—]'o .o n b——n—-lb P r—n»P ’
n-1
Yl Y2 Yn

E—E+— ... — E.
Any of the perspective collineations y. can be induced by
a linear automorphism of V, and it is easy to see that ¥y
is induced by the automorphism g€GL (V) with

g - g = j=

(2.1) pO pn’ pj pj—1 (j 1,-..,1'1).
We consider the restricted map
(2.2) o := Y|(uH/PO) : ul/Py - ull/P .

(Figure 1 illustrates the case dimll=n=2.) Our next task is

to show that v is non-degenerate. The fundamental subspace

G(p) is invariant under ¢ and y as well. But PneG(w), and
3

so Pn_jeG(w)Y =G (¢) for all j=1,...,n, whence G(¢)=P. We

shall refer to this non-degenerate projective isomorphism ¢



as the normal isomofphism determined by the ordered basisw
(po,...,pn) of V, and we shall also say that ¢ is determined
by the ordered frame F of I.

Consequently, the point set T'(¢) is a non-degenerate

normal curve.

2.1.2. We need some more definitions [15]. Assume that

¢ : ul/P - un/Q (P#Q)
is a non-degenerate projective isomorphism. A non-empty sub-
space M of 1 is called a chordal subspace of ¢ if, either
M is a hyperplane, or M=LnL® with Leun/P and dimm (M) =dimn (L) -
-1. Frequently we shall use the term chord instead of chor-
dal subspace and a k-dimensional chord will also be called
a k-chord.

If M is a k-chord of ¢, where k21 and P,Q¢M, then the
trace map of ¢ in M is defined by formula (1.4), with H to
be replaced by M, and this trace map will be denoted by Sy
A non-empty subspace of I(M) is invariant under Ty if and
only if it is a chord of t.

The O-chords of ¢ are the points of the normal curve
r(z). If we draw a line m joining two different points of
Fr(z), then m is a chord in the usual sense and a 1-chord
according to the definition given above. However, a 1-chord
m, say, of the map ¢ will not contain any point of T(g) at
all if the trace map tn has no invariant points.

The subspaces

(k=1) ¢!

: F @

(0) )y .o (k =
2.3) ;% @) =, 550 = (s

(k=1,...,n-1)

are called osculating subspaces of ¢ in P. The osculating



subspaces of ¢ in Q are given, by (2.3), as the osculating
subspaces of c_1 in Q. We shall use the term osculating k-
subspace for any k-dimensional osculating subspace. In ad-
dition the words tangent and osculating hyperplane will

be used if k=1,k=n~-1, respectively,

Clearly, we would prefer to speak of osculating sub-
spaces of a non-degenerate normal curve rather than of oscu-
lating subspaces of a non-degenerate projective isomorphism.
However, as will be shown in 2.4.2, this is not always pos-
sible if we want osculating subspaces to be uniquely deter-
mined by a non-degenerate normal curve. Recall that, by (1.3)
a normal curve is merely a set of points and not, for:
example, a pair formed by the map ¢ and the set T(z).

In the special case of a conic TI'(z), say, the tangents
of t in P and Q can as well be defined in terms of the set
r(z) as follows from
PROPOSITION 2.1. If r:ull/P -ull/Q Zs a non-degenerate projec-
tive isomorphism, then Sék)(c) 18 the only k-chord of ¢
whieh passes through Sék_1)(c) (k=1,...,n=1) and meets the
non~degenerate normal curve T(r) in P only.

Proof. Clearly, we have Sé1)(§)nF(C)=P. If 1 is a pro-
jective plane (n=2), then every line m, say, passing through
P is a 1-chord of ¢, and m#3é1)(c) implies P#mNmeT ().

If n23, then

-1 -1 -1 -1
siy = e)® = (e0)® vt vart =

s$ ()% nsf (o,

from which it follows that 351)(C) is a 1-chord of . On the
other hand, assume that m=LnLC is any 1-chord of ¢, where L
denotes a plane passing through P. Then m,chL implies,
firstly, mﬂmCEF(g) and, secondly, mnmC#P if and only if m#

;eslﬁ” (z) .



Still assuming nz3, the restricted map
(2.4) T o= o an/sfV ) ¢ unys{M () - un/eg
is a non-degenerate projective isomorphism in the (n-1)-
dimensional quotient space N/P. The set of k-chords of ¢
(k=O,...,p72 as viewed from N/P) coincides with the set of

(k+1) -chords of ¢ which pass through P, and so the osculat-

(1) (k+1)

ing k-subspace of ¢ in $ (z) is identical with S
The proof is completed by induction on n.QO
We remark that a normal isomorphism ¢, as given by for-

mula (2.2), has osculating subspaces (k=0,...,n-1)

(2.5 s (o)

o POV...ka,
(k) _ ‘
SPn (o) = PV ...V Pn-k'
For nz23 the restricted map m](uH/POP1) (cf.(2.4)) is a nor-
mal isomorphism in N/P determined by (POP1"'f’POPn’POE)'

2.1.3. We are now in a position to solve the classification
problem [15], [23], [28].
THEOREM 2.1. Every non-degenerate projective isomorphism is
normal.

Proof. (1) 1f an ordered frame (PO,...,Pn,E) is to de-
termine a given non-degenerate projective isomorphism

g:ull/P - ull/Q, then necessarily P. =P and Pn=Q. We shall use

0

induction on dimli=n to prove the assertion.
(2) Suppose n=2. Now ¢ 1s a non-degenerate projectivity.
c < ~
We shall adopt the notations AAB, a”b, say, for perspectiv-

ities ul/A-ull/B with axis ¢ (A,Bg¢c), ul(a)-ull(b) with centre



C (Ce¢a,b), respectively,where A,B,C are points and a,b,c are
lines. By a well known result on the decomposition of pro-
jectivities into a product of perspectivities [8,31], we

have a factorization

with P?QPQ, because ¢t is non-degenerate (Fig. 2). If E:=

Fig. 2
P B Pi
= p'ng' and g:=EQ, then g\q'Ap' is a perspectivity gNp',
say, since q,p',qg' are concurrent [8,31]. Hence
4' j ol g
P A pt A P!=pADP!
1 1 1
and
gw pt @ P B qa B
;=P/\P"7VQ=P'/\P'1'/\P;/\Q=P/\P%/\Q.

Similarly, we can replace p' by the line p:=EP and P% by P1.
Write PO=P, P2=Q; then (PO,P1,P2,E) determines .
(3) For nz3 -we may assume, by induction hypothesis,

that the restricted map ¢, as given by formula (2.4), is a



normal isomorphism in NI/P determined by an ordered frame

17 én_1)(c).Since

PE is a 1-chord of ¢, there exists (PE)n(PE)C=:EeP(c), and

(PP1,...,PPn,PE), say, with P -« P _1,P =QES

(P=:PO,...,Pn,E) is an ordered frame of I, because E¢
¢S(n-1)(c). Let ¢ denote the normal isomorphism determined

Q

by this ordered frame. The restrictions of ¢ and ¢, respec-

tively, on uH/Sé1)(C) coincide. Furthermore (PE)I;=(PE)(p and
_1 -1
(eQ)® = (53 vy n P @t =
= 3" (v s P (o)
- (n-1) _ _ ®
= (Poanan,1)ﬂSQ (¢) = P P4 = (PQ)

which is sufficient for c=¢ [8,126].0

THEOREM 2.2. There is a unique non—degengrate projective

isomorphism and a unique non—-degenerate normal curve to

within transformation under projective collineations of 1.
Proof. By Theorem 2.1, we may restrict ourselves to

normal isomorphisms. The group of projective collineations

of I, i.e. PGL(I), operates transitively on the set of or-

dered frames of NI. This completes the proof.Od

2.2. Conjugate points

2.2.1 It follows from Theorems 2.1 and 2.2 that we can re-
strict ourselves to non-degenerate normal curves generated
by normal isomorphisms. We shall investigate a normal iso-
morphism ¢ as defined by formula (2.2) and we shall use all
the other notétioné introduced in 2.1.1.

For any point Xe€r:=r (¢) we set



x T Fov

HX = POV PP VPn_1 le=PO.

The subspace HX is a hyperplane by Proposition 2.1 and

(2.6) H cee vP__, v XIf X # Py,

formula (2.5). Conversely, let HDPOV...an_2 be a hyperplane.

Since {Pi} is a basis of @, there is a point X such that
-1
Yn

(2.7) X=HnH n...0nH .

If H=Pov...an_1, then X=PO€F. Otherwise X#PO, (POX)=Hﬂ...ﬂ
Yn--2 Y Yn—l

nH and (P_X)=H n...nH force X€r. Now, suppose H=

=P(ker(tp:_1—p;)) with t€K, where {pz}cv* denotes the dual
basis of {pi}. Then X equals the one-dimensional subspace

. 3 _ j *_ % - ‘o
xtK of v with xt— %:pjt , because <tpj pj+1’xt> 0 for j=0,
...,n=-1. As t varies in K, we obtain all points of r\{Pn},

hence

J

The map X(EF)»HX(EuH/(POV...an_z)) is a bijection. Its
inverse map may be regarded as being a Veronese map P(K2) -
P(V), where we have to identify the projective line P(K2)
with a pencil of hyperplanes. We remark that (2.7) yields
another way of generating a non-degenerate normal curve: it
" involves n projectively related pencils of hyperplanes. See
(5,275] or [6,323] and the introduction of [28].

(2.8)  T(e) = {x,K[x.= %:p.tj, t€K} U (P }.

2.2.2. Let M=P(M) be a k-chord of ¢ (kz1) with PO,PﬁiM
and write DM:an$M~leor the projection with kernel an. It

follows immediately that gM:=(glM)pM:M~N1(c.f.(2.1)) in-
duces the trace map e

Clearly, x,ernM if and only if x,_ is an eigenvector of

t t

Im- Since

3Upper indices are always in brackets in order to distin-
guish them from exponents.



(2.9) x. M = (3 p.tH)%Pm = (3 p.tI 7T 4p )Pu = . t,
t 3 3 5=0 J n t
the vector Xe is belonging to the eigenvalue4 t#0 of Im-

Thus the problems to determine the eigenvectors of In’ the
eigenvalues of I the intersection InM, respectively, are
equivalent. In the special case of a hyperplane M=P(H)=

P(ker Z:hjp;), say, x,KernM if and only if

J

t
* = n =

< z:hjpj,xt> hnt + ... + hO 0,

where hohn#o. cf [17], [29].

A theorem by G. Gordon and T.S. Motzkin [14,220] tells
us that at most n conjugacy classes of K contain zeros of
the equation hptf+...+hp=0. On the other hand, we might as
well infer from results by P.M. Cohn [13,207] that the
spectrum of the linear automorphism gy consists of n con-
jugacy classes of K at most. It is our task to give a trans-
lation into the language of geometry.

Two points U,VET are called conjugate if, either U=V,
or U#V and the lihe UV meets T in at least three different
points. A point of T is named regular if no other point of
I is conjugate to it [7], [17].

The definition of regularity in [28]is different, but
equivalent. In [33,346] the term "points of first kind" has
been introduced for regular points of a non-degenerate
conic.

By Proposition 1.1. points Po’Pn are regular. Suppose
that U=qu and V=xVK are distinct. The line UV carries any
point W=(xu+wi)KEF (w#0) if and only if W (#U,V) is invari-
ant under the trace map @y This is equivalent to X Fx W,
xuu+xvvw being linearly dependent by (2.9) or, in other

4Using matrices instead of linear maps would force to speak
of right eigenvalues; cf. [13,205].



words

(2.10) u = w lvw.

Hence U and V are conjugate points of T if and only if u and
v are conjugate elements of the ground field K. If U and V
are conjugate and distinct, then, by (2.10),

(2.11)  {( xu+xvvws)K} U {xvK},

where s is in the centralizer of u, equals the set of in-

variant points of Oy This set (2.11) is always infinite

[14,221), [22,409].

2.2.3. Given a point Xe€r (=T (¢)) all points conjugate to X
form the conjugacy class of X in T'. By definition, this con-
jugacy class does not depend on the normal isomorphism ¢
which has been used as generating map of T.

PROPOSITION 2.2. Let M be a k-dimensional subspace of 1
(1sk&n-1) and let {QO,...,Qk} be a basis of N(M) which is
contained in the non-degnerate normal curve T=T (p) as given
in 2.1.1. The points Q; are patrwise conjugate i1f and only
1f there is an additional point Qk+1EP such that {Qo,...,Qk,
Qk+1} 18 a frame of T(M).

Proof. (1) Suppose POEM. Then every point of T'nM, other

than P has to be an element of Mw#M as well. Hence PO=QO,

ol
say, and none of the assertions of the criterion holds in M.
Substituting ¢ by w-1 shows PnEM to be impossible in any

event.

(2)Assume that neither PO nor Pn is in M. The result is



established, by definition, if M is a line. We use induction

on k: If Q ..,Qk are pairwise conjugate (2sksgn~1), then

o’
there is a frame {Qo"“"Qk—1'Qk} of H(Qov-.-va_1) which is
contained in TI'. The line joining the conjugate points Qk and
. . . .

Qk carries the point Qk+1' as required.

Conversely, if {QO,...,Qk+1}cr is a frame of n (M), then
M is a chord of ¢. Let Qp:=0Q, 0,  1n(Qyv...vQ _4); this Qg is
wM—invariant, hence it is in the normal curve T and Q

Q ,0, ,0! are pairwise conjugate.O
k-1">k"*k

O,oo-,

By Proposition 2.2, any msn+1 pairwise inconjugate
points of I' are independent and msn implies that the proper
subspace spanned by them meets T' in no other points. Con-
sequently, any k-dimensional subspace of I (1sksn-1) has
non-empty intersection with at most k+1 conjugacy classes
of a non-degenerate normal curve in 1I. (Cf. the Gordon-
Motzkin theorem.)

Regular points are important when transferring class-
ical theorems on conics (e.g. Pascal's theorem [7,75]) to
the general case.

2.3. Generating maps
2.3.1. We are still persuing the discussion of the normal

isomorphism ¢ given by an ordered basis (p ..,pn) of Vv

or-
according to 2.1.1, and we shall use all the other notations
introduced there.
PROPOSITION 2.3. Two ordered bases (pj), (pﬁ) of v determine
the same normal isomorphism if and only if
(2.12) pﬁ = pazj (j=0, ...,nJ),
where a€k’ and z€Z .

Proof. I1If o=¢', then pl=p.c. with chKx, as follows

J 3]
from (2.5). The bundle uII/PO is fixed elementwise under the



projective automorphism Yy'-1, hence there is an element z€
‘-1
x gg ~'_ L o -
€Z such that p. =p.C.C._,=p.z2 (j=1,...,n). Now c_=:a
yields pazpjazJ by induction on j=0,...,n. Reversing the
above arguments completes the proof.O

Observe that E'==(2§ pﬁ)K is a regular point of T (yp).
j

2.3.2. Now, in several steps, all normal isomorphisms yield-
ing the same non-degenerate normal curve will be determined
[17].
THEOREM 2.3. Assume that w:uH/PoauH/Pn £8 & normal isomor-—
phism. There emists‘a normal isoﬁorphism w‘:un/PoauH/Pn
different from ¢, but also generating the non-degenerate
normal curve T (@), Zf and only <if F(w)\{PO,Pn} 18 contained
in a ayperplane and dimll=nz23.

Proof. (1) If T'(¢)\{P4,P_l}is in a hyperplane and n23,
then write N for the subspace spanned by F(c)\{PO,Pn}. By

Proposition 2.2, neither P, nor Pn is an element of N, and we

0
choose a hyperplane HON that meets PoP in a point other

than PO,Pn. Let o denote the involutory perspective colline-

ation® which has axis H and maps P, to Pn.Then r () °=r(o);

0

under ¢ the tangent of ¢ in Pn is not mappec to the tangent

of ¢ in P because these two lines are skew by formula

-1

OI

(2.5). Now w':=aw“1c generates T (¢) too, however the tan-

0 is not the tangent of ¢ in PO, whence o#o¢'.

(2) It follows from n=2 that every line through PO has

gent of ¢' in P

SThis collineation o is not given correctly in my paper
[17].



non~empty intersection with its image under ¢, whence op=¢'.
(3) Suppose {QO,...,Qn}c(r(w)\{Po,Pn})to be a basis of
. Without loss of generality let QO=E. By Proposition 2.2,

the points P are not lying in any face of the basis

0'Fn
{Qi}. Write M:=Qov...in_1=:P(M), QnO:=POQnﬂM and an:=PnQnﬂ
nM.

Any normal isomorphism w':uH/PO~uH/Pn that generates
I'(¢) has a trace map wa in M that takes the ordered frame
) .

(Q "’Qn—1’Qno) to the ordered frame (QO,...,Q

or - n-1'%nn

In terms of the notations introduced in 2.2.2, the trace map
w& is induced by gh and formula (2.9),together with the re-
gularity of QO=E=eK, implies that e belongs to a central
eigenvalue of g&. Hence comparing ¢ and ¢' yields that
gMgl\'ﬂ_1 has e as an eigenvector belonging to a central eigen-
value. Furthermore, {Qo""’Qn—1’QnO} is elementwise invari-
ant under waﬁ~1. Thus g'Mgl,\'l‘“1 is a central dilatation on M
and ¢M=¢Q. This in turn is equivalent to ¢=¢', as required.OdO

There is a close connection between the decomposition
of a projective collineation x in a product of perspective
collineations and the existence of x-invariant points fK
such that f is belonging to a central eigenvalue of any
inducing linear automorphism for k. See [32] with remarks
given in [17].

The next theorem links geometry with algebra.
THEOREM 2.4. I7 w:uH/PoquH/Pn 1s a normal isomorphism, then
F(w)\{PO,Pn} 15 contained in a hyperplane <f and only <if

the ground fie.:d K has ut most diml+1=n+1 elements.

Proof. (1) If the centre Z of K has cardinality 2n+2,



then F(w)\{PO,Pn} includes at least n+1 regular poinis which
span all of P by Proposition 2.2.

(2) Let K be a skewfield with finite centre. Thzs "only-
if" result will be established if we are able to show the
existence of an element ueK which is transcendental over 2
[22].

Suppose that all elements of K are algebraic over 2.
Take a€K\Z, whence Z(a), the commutative subfield of K span-
neé by 2 and a, is a Galois-field. There is a non-trivial
automorphism of Z(a) that fixes Z elementwise and takes a
to aq#a, say, where g is a power of a prime number. 3y the
Skolem-Noether theorem (cf. e.g. [13,46] or [26,45] for an
elementary proof), this automorphism can be extended o an
inner automorphism of K. Hence there is scome u€K such that
u_1yu=yq for all y€Z(a). According to our assumption this u
is algebraic over Z. Therefore the minimal polynomizls of u,
a, respectively, and uyq=yu imply that the subfield gener-
ated by Z,a,u has finite degree over Z, so that it is a
finite field. But, by Wedderburn's theorem, any finite field
is commutative and this contradicts uafau. |

It follows from the existence of a hyperplane which con-
tains F(w)\{PO,Pn} that there is a central hyperplane H

(with respect to {P .,Pn,E}) having the same proparty,

or--
because the subspace spanned by F(w)\{PO,Pn} is central

*
by 1.2.2. Let H—P(ker'%kjpj), z.€7, zozn¢0, then

3
(2.13) zntn+ ... + 2y =0 for all t € K



which is not possible, because of u€K being transcendental
over 2.

(3) The proof is completed by the trivial remark that
|F(w)\{PO,Pn}]sn follows from |K|sn+1.0O

There is no unigque way from I (e) back to ¢ if and only
if K satisfies a polynomial identity (2.13) (cf.[13,162])
and nz3 which in turn is equivalent to |K|sn+1 and nz3.

We add, for the sake of completeness, that only if this
"case of small ground field" is excluded "Lemma 6" and
"Folgerung 2" in [28] are correct results.

As will be shown in 2.4.2, the group of automorphic
collineations of a non-degenerate normal curve operates 3-
fold transitively on the set of its regulaf.points. Since a
non-regular point cannot be fundamental by Proposition 1,
we have the following.

THEOREM 2.5. Two different points of a non-degenerate normal

curve form a fundamental pair if and only <f they are

regular.

2.4. Automorphic collineations

2.4.1. Every automorphic collineation of T (¢) (cf.2.1.1)
takes (non-) regular points of r=r (¢) to (non-) regular
points of I'. Those linear automorphisms of V such that‘

.

(2.14) p. = p.z7,

J J
(2.15) pj — pn_j, with j=0,...,n, z€%
n-j +ky _k
(2.16) p. = > p.. (F.5)z
j K=o j+kt k

induce automorphic collineations of T': this follows immedi-
ately from formula (2.12), I (0)=T (o) and, by the binomial

theorem,



n n-j . .
e jgo kz;opj*“k(];k)zktj = Xtz
respectively.

It is easily seen that these automorphic collineations
generate a group which, regarded as transformation group on
the set of regular points of ', is isomorphic to the group
of projectivities of the projective line P(Zz) over the
centre 2 of K. Thus this group of automorphic collineations
of ' is sharply 3-fold transitive on the set of regular
points of I'. In view of this, we have to discuss only the
stabilizer of any three regular points of T within the
group G of all automorphic collineations of T.

If o€G fixes PO'Pn'E’ then c—1wc generates T'. There are
two cases:

(1) Let n=2 or |K|zn+2. Then, by Theorem 2.3 and
Theorem 2.4, c“1mc=w , and therefore the frame {P,,...,P_,E}
is fixed elementwise under o. Conversely, every collineation
which fixes this frame elementwise is in the group G.

(2) Suppose nz3 and |K|£n+1. The non-degenerate normal
curve T has |K|+1 distinct points and either is a frame of
T or is a basis of the subspace spanned by ©I' (|I'|<n+1).

Hence every permutation of I' which fixes P Ph,E can be ex-

O’
tended to at least one automorphic projective ccllineation
of I'. See [18], [20].

To sum up, we have shown:

THEOREM 2.5. The group G of automorphic collineations of a



non-degenerate normal curve T has a subgroup of projective
collineations which 1s sharply three-fold transitive on the
set of regular points of I'. If dimll=n=2 or |I'|zn+3, then the
stabilizer of any three different regular points of T co-
inecides with a group of collineations fixing a frame of 1
pointwise. If n23 and |T'|sn+2, then every permutation of T
18 the restriction of at least one projective collineation
of .

A different way to determine the group G of all auto-
morphic collineations of I', working only for [K:Z]==, can
be found in [28] and involves Amitsur's theorem on general-
ized polynomial identities. However, as pointed out in [17],
" the original proof [28,440] is correct only under certain
additional assumptions.

2.4.2. We finish this chapter with remarks on osculating
subspaces. It is possible to associate with every point Xe€
er(0) a flag (x=5{ (0),5" (0),...,5{" " (4)) the elements
of which are called osculating subspaces of ¢ in X. See [7]
(n=2) and [15] (nz23) for details.

The definition of tangent of a conic used in [3]is
different from the one in [7]. The definition of osculating
subspaces in [28] does not make sense for |I|sn+2 and n23,
because they are not determined uniquely, and fails to work
in non-regular points if the characteristic of the ground
field is #0 and <n.

We see that a normal isomorphism ¢ does generate not
only the non-degenerate normal curve T (¢) but also the set
of flags

(n=-1)

r (o) i= (%380 (01, 0,507 () [xer (0)).

The linear automorphisms of V given by formulae (2.14),



(2.15), (2.16) induce collineations of the group G(n~1),

i.e. the group of automorphic collineations of P(n_1).
Clearly, demanding T(¢)=T (') is é coarser rélation than

(n—1)(¢)=r(n—1)(®'), where ¢,¢' are normal iso-

demanding T

(n-1)

morphisms. Hence G is a subgroup of G. These two groups

coincide if and only if T (9)=T (¢') does always imply
F(n—1)(¢)=r(n_1)(w'). This in turn is equivalent to |I|zn+3
or n=2. In the latter cases the term osculacting subspaces
of a non-degenerate normal curve does make sense [7], [17].
Most properties of osculating subspaces depend on the
characteristic of the ground field K irrespective of whether
K is commutative or not. We mention, without proof, one re-
sult: If the characteristic of K is a prime number which
divides the dimension n of I, then all osculating hyper-

planes of a normal isomorphism belong to a pencil of hyper-
planes. See [18], [20], [35], [36].

3. DEGENERATE CONICS

3.1. Degenerate projectivities

3.1.1. Let T=N(V) be a projective plane. The existence of
a degenerate projectivity implies that I is nén—pappian or,
equivalently, that K is a skewfield. We assume (in this
chapter only) that K is a skewfield.

An ordered basis (p,q;a) of V and a non-central element
a€K\Z give rise to linear automorphisms go,g1EGL(v) such
that
(3.1 p90 =p, q90 = q, a9° = aa,

(3.2) pdl = q, q91 = P, a9l = 4.

The collineation induced by gp is a homology vyp, say, with



centre A:=aK, axis PQ (P:=pK, Q:=qK) and characteristic
cross-ratio CR(XYO,X,XAnPQ,A)=&, where 8cK denotes the con-
jugacy class of a and X is any point of P\({A}UPQ). The map
94 induces an involutory perspective collination denoted by
Y4 with axis AU (U:=uK, u=p+qa) and P'1=0. Put g9=:9494 and
YESYgY - This y is a projective collineation which inter-
changes P with Q and fixes A. Hence the restricted map
(3.3) ¢ := y|(un/pP) : un/p - un/Q

is a projectivity which has PQ as invariant line. Setting

M:=aKe@uK the trace map g in AU=P(M) is induced by the

AU
linear automorphism gM:=(g|M)pM, where p,:V-M is the projec-

tion with kernel gqK. Consequently, agM=aa, uIM=ya and

(3.4) {(a+us)K} U {uK},
where s is in the centralizer of a, is the set of invariant

points of Cay: The trace map ¢ is non-identical, because

AU

a is a non-central element of K. Thus, firstly, ;AU has in-

finitely many fixed points (cf. 2.2.2), secondly, ¢ is a de-
generate projectivity and, thirdly, T (z) is a degenerate
conic. We shall say that ¢z (as well as I (z)) 1s determined
by.the ordered basis (p,q;a) of Vv and the element acK\Z.
Letting a€z” the above construction yields a perspec-
tivity ¢ and T (z)=PQUAU is no conic in the sense of our
definition. However, sometimes it would be more conveniant
to use the term "degenerate conic" in this case as well
(cf. 4.1.2); but we shall stick to our previous definitions
as given in 1.2.4.

3.1.2. The following propeosition illustrates that those

examples of degenerate projectivities as introduced in 3.1.1



are, in fact, all degenerate projectivities.
PROPOSITION 3.1. 4Any degenerate projectivity g:ull/P-ull/Q
18 determined'byAanvordered basis of V and an‘eiemeﬁt of K\Z,
Proof. Let 1,1#PQ be two different lines passing

through P..Then A:=1n1%, A:=1nI° are different points of the
degenerate conic T (z). By Proposition 1.1, the line AA meets
PQ 1in a point U other than P,Q. The trace map CAU is fix-
ing A,A,U but is not an identity-map, because ¢ is no pers-
pectivity. Suppose A=aK, U=ukK, A=(a+u)K and M=aK@uK. If ImE
€GL (M) induces the trace map Sy’ then a and u are eigenvec-
tors of Im belonging to the same eigenvalue acK\Z, say.
Choose p,q€V such that P=pK, Q=qK, U=(p+qa)K. Then (p,q;a)
and a determine the degenerate projectivity ¢.O
PROPOSITION 3.2. Two ordered bases (p,9:;a), (pP',q';a') of V
and elements a,a'€K\Z, respectively, such that

P = PCyo

q' = qc44 (cjkEK)

a' = PCqp * Acy, + ac,,
determine the same degenerate projectivity if and only i1f

there exists z€2" with

P — 1 —
00 = ©11%» Cq2 T Cp2Can @Cpps @ T Cyy aCyyZ

Proof. In terms of the notation of 3.1.1, we have z=g'

(3.4) c

if and only if the trace maps Lau and CAU coincide or, equi-

valently,

Im - . -1_ -1 -1
a P(coza Cyy C50%11 1222 ) +a(x) +

-1
1 —
+ ac22a C22 =



agMz = aaz

and

! -
uIm = 1a + q(x%) = uIMz = yaz

PCo0%11
with z€2 .0

our way of dealing with degenerate projectivities is
different from the one used in [27]. We have been aiming at
finding natural extensions of a given degenerate projectivity
to a collineation of . As is shown by Proposition 3.2,
our method yields no unique extending collineation, but all
such collineations are still closely related.

Degenerate conics are also called C-configurations and
can be obtained as certain planar sections of a regulus in
a three dimensional non-pappian projective space [33,325].
Examples of degenerate conics in translation planes are
given in [30].

3.1.3. Using the notation introduced in 3.1.1, we lcok at
the degenerate conic T (z)=:T. The improper part of T with
respect to ¢ is the line Fx(c)=PQ. This is the only line
contained in I', because ¢ is no perspectivity. Furthermore,
Fx(c)=G(c) is the fundamental line of . So it makes sense
to call r*(z), r°(z), G(z) the improper part, proper part,
fundamental line, respectively, of the degenerate conic T.

We deduce the parametric representation
(3.5) r°%(g) = {y, K|y, =pt+qtata, tex},
since r°%(z)=:7° equals the set of all points a'kK with a'
satisfying the conditions in Proposition 3.2.

Consider the projection #:P-PQ through any point yuK,
Say. We obtain

(3.6)  n := (PO\{y kD" = {(p+a(t-w)a(t-u) )K|ter\{u} } =

= {XEPQ|CR(X,E,P,Q)=4},



where E=(p+q)K. This set n is infinite [19]. By the proof
.of Proposition 3.1, every point of n is the image of in-
finitely many points of r° and , by the last equality in
(3.6), n does not depend on the choice of u€K. Therefore
every line joining two different points of r° meets PQ in

a point belonging to n and, conversely, any line which joins
a point of n and a point of r° can be spanned by two distinct
ppint of r° as well. Clearly, a point of n never is a fund-
amental point of T.

Next we take any line l=P(ker(hOp*+h q*+h2a*)) different

1
from PQ, i.e. (ho,h1)#(0,0), where {p*,q*,a*} is the dual
basis of {p,q,a}. The intersection 1nT° is the set of all
points ytKEFO with t€K and

(3.7) hot + h ta + h2 = 0.

1
For hO=O or h1=O a unique point ytK exists in accordance
with Proposition 1.1. If hoh1#0, then we may assume h1=1,
hence

(3.8) hot + ta + h2 = 0.

See [13,222] for results on the solutions of equation (3.8).

Cf. also [33,331].

3.2. Generating maps
3.2.1. The crucial result on degenerate conics is
THEOREM 3.1. Any two degenerate projectivities g,r' yteld

. the same degenerate conic if and only if there are ordered

bases (p,q;a), (pP',q';a) of V and elements a,a'€K\Z, re-



spectively, which determine t¢,t' such that, either
1

. ! = -
(3.10) [a:z] # 2, a (zo+z1a)(22+z3a)
' -
p Pz W + qzZ W,
] —
q = pzyw + qz,w,

with ziEZ, z 22—2023#0, wEKX, or

1
(3.11) [a:Z2] = 2, a' = z_ + z

o’ B
| - - - -
p' = pl-vz t(w-m,v)zy) + qf Wz tmavz,),
q'" = pv + qw,

with a2=mo+m1a, zi,miEZ, v, weEK, (v,w)#(0,0), v—1w¢a (when

v#0), where &CK denotes the conjugacy class of a.

Proof;1(1) Sﬁppose r{z)=r(z'). We read off from Pro-
position 3.1 that z,g' are determined, respectively, by
ordered bases (p,49;a), (pP',q9';a) of V and elements a,a'ekK\Z,
say. Since pKvgqK=p'Kvq'K, we obtain

(3.12) p' = + qc

PCo0 10
. .
9" = PCoq * ACqq
where (cjk) is an invertible matrix with entries in K. From

formulae (3.5) and (3.12) we deduce

o ry — ' - ' 1
r°(z'") {ytKIyt P(coot+cy ta’)+alc st+e ta')+a,
tE€K}.
Hence, by F(C)=F(C')r

(c.t+c. .ta')a = (c,t+c,.ta')

00 01 10 11
for all t€X or, equivalently,

(3.13) cot - ¢ ta + c, ta’ ta'a = O for all te€K.

00 = o1
The left-side coefficients of this identity (3.13) cannot

vanish simultaneously, because (cjk) is a regular matrix.



Then, by Lemma 1.1, there exists a non-trivial linear com-

. . - ' I
bination zo+z1a z,a zja'a 0 (ziEZ). Thus
-1
'=
(3.14) a (zo+z1a)(22+23a)
is an element of the commutative subfield Z(a)zK and substi-

tution in (3.13) implies

(3.15) Yt + (c +c Yta +

10237 00%27%11%21"%01%0
z1)ta2 = 0 for all t€K.

(c1022%C1124
+ (=C50%37 %01
If 1,a,a2 are linearly independent over Z, i.e.[a:Z2]>2,

then all left-side coefficients in (3.15) have to vanish

simultaneously by Lemma 1.1. Therefore

z1 —z3 w (0]

-2 22

0
. X
with weK  and z1zz—zoz3¢o.

(3.16) (cjk) =

0] w

— 2_
If [a:2]=2, then a —mo+m1a where mo,m1EZ, mo#o. We

may assume z,=1, z,=0 in (3.14). Substituting in (3.15)

we have

(cy07€11207 %0121 t + (=CpptCq4
= 0 for all t€K.

(3.17) z (zo+z1m1))ta =

1701

The same arguments as before yield
| W=, v V)
myVv \ “Z4 1

with v,weK. Since (cjk) is invertible, its right column rank

equals 2. Thus v=0 forces w#0 and w=0 implies v#0. Suppose,

z1 0]
(3.18) (cjk) =

finally, that vw#0. Then v_1w~m1¢mow—1v and consequently

(3.19) (V—1w)2 # My + m1(v—1w).

By [12,302] or [13,54], the inequality (3.19) is equivalent



to (v—1w) not conjugate to a. (Another proof of this can
be given by discussing the intersection of a line and a
non-degenerate conic; cf. 2.2.2.)

(2) By reversing the above arguments, it is clear that
(3.15) or (3.17) implies T(z')cr(z) and the reader will
easily show that T (z')=r(z), as required.O

The proof of Theorem 3.1 follows the same pattern as
that of "Satz2" in [27]. In contrast to [27], where most of
this chapter's material has been taken from, nearly all of
our results will turn out to be immediate consequences of
Theorem 3.1. Thus it is possible to omit some lengthy cal-
culations including another application of results on
generalized polynomial identities [27,248-249].

3.2.3. A subset ¢ of the fundamental line of a degenerate
conic T is called a fundamental chain of T if ¢ is a maximal
set with the following property: Any two different points
P',Q'€c form a fundamental pair of T.

COROLLARY 3.1. Let T'(t) be a degenerate conic given by (3.3).
If [a:2]#2 , then
(3.20) [p,Q,E],
where E=(p+q)K Zs the only fundamental chain of T(g). If
[a:Z]=2,‘£hen any point Q'=q'KEPQ\n, q'=pv+qw, lies in a
fundamental cha<in cQ. of T(z) given by

(3.21) ¢y = [P',Q",E'],
where P'=p'K, '=p(w—m1v)+qmov, E'=(p'+q')K, and any two
different fundamental chains of T (r) have empty intersection.

Proof. Theorem 3.1 immediately establishes the result,

Since {XEPQI{X,Q'} is a fundamental pair of T'(z)}) is a



is a Z~chain (cf. 1.2.2) as well as a fundamental chain of
r(g).o0

We remark that for [a:Z2]=2 the line PQ is covered
(disjointly) by the fundamental chains of T'(:) and the set
n. The concept of "ordinary fundamental point" ("gewShnli-
cher Grundpunkt"), as has been introduced in _27], will not
be used in this article, because "fundamental chain" seems
more appropriate.

The following result may be regarded as "Pascal's the-~
orem" for degenerate conics [27].
PROPOSITION 3.3. Let T be a degenerate conic. Given three
patrwise different points P

P2,P in the sarz fundamental

1° 3
chain of T and three pairwise different poinzs BysBy, R, in
the proper part of T, then
P1A20P2A1, P1A3ﬂP3A1, P2A3ﬂP3A2
are taree collinear points.

Zroof. By calculation.D

3.4. Automorphic collineations and classification
3.4.1. Suppose that, as before, a degenerate conic r=r(z) is
given by formula (3.3). We shall frequently adopt notions
of affine geometry by regarding PQ as line at infinity. The
term é—automorphism of V will be used as a saorthand fof any
bijective semi—linear‘map V-V with respect to an automorph-
ism f of the skewfield K.
If a collineation xePTL(N) fixes the line PQ, then x is in-
duced by one and only one é—automofphism feL(V) such that

f

(3.22) a = pc02 + ac,, + a.

This collineation k is projective if and only if £ is an



inner automorphism of K, whereas f=idk yields the normal sub-
group of those projective collineations which preserve all
affine ratios in P\PQ. Since K—1CK is a generating map of r®

which is determined by (a®,pf

;qf) and af, Proposition 3.1
and Theorem 3.1 give necessary and sufficient conditions for
f to induce an automorphic collineation of T:
THEOREM 3.2. Let T'(z) be determined by an ordered basis
(p,q;a) of V and an element a€K\Z. Any é—automorphism
fETL(V) satisfying (3.22) induces an automorphic collineation
of T(zg) ©2f and only if, firstly, the conditions stqted in
" Theorem 3.1. far a'sp'sq' hold wh;n substituting af,pf,qf,
respectively, and, secondly, there extsts Uu€K such that

af = pu + qua + a.

Those linear maps f€GL(V) whose matrices with respect

to (p,q;a) equal

1 0 u
O 1 ua with u€k
O 0 1

induce a normal subgroup of automorphic translations of T'=
=I'(z) which operates regularly on the proper part of F; The
stabilizer of A=aK within the group of all automorphic col-
lineations of I is induced by é—automorphisms with matrices
(written as a product)

w O O z,
O w O|-]|-2 Z, 0

O o0 1 0 0 1



-1
for [a:2]1#2, ar=(zo+z1a)(22+z3a) and

w~m1v v O z1 O O
mov w Of- —zo 1 O
0 o 1 0 o 1
for la:2]=2, af= zo+z1a. Here u,v,w are subject to the con-

ditions stated in Theorem 3.1. If [a:Z]# 2, then the orbit
of Q=qK under this stabilizer is a subset ¢ of_the only
fundamental chain of T'. The "size" of this subset ¢ depends
on the existence of "suitable” automorphisms of K. If [a:K]=
=2, then the orbit of Q under this stabilizer equals PQ\n;
the orbit of Q under the stabilizer of A within the sub-
group of automorphic collineations of T' which preserve all
affine ratios (f=idK) is also PQO\n for [a:Z]=2.

The matrices

w O O
0O w O with wEZx
O 0 1

yield linear maps inducing a subgroup of automorphic homo-

logies of T whose common centre is A.

3.4.2. We turn to the problem of classification [27]. If we
are given two degenerate conics, then (possibly after apply-
ing a projective collineation on one‘of them) we may assume
that these conics are determined by the'same ordered basis

of V and two elements of K\Z. From Theorem 3.2 we deduce

immediately



THEOREM 3.3. Given two degenerate conics T(r),T(c') which
are determined by the same ordered basis of V and elements
a,a'€R\Z, respectively, there is a (projective) collineation
mapping T(¢') onto T(r) <Zf and only <if there is an (inner)
automorphism é of K such that, either

£

(3.23) [a:2] # 2, a 1

= (zo+z1a)(22+z3a)
with z1z2—zoz3#0, ziéz, or
(3.24) [a:2] =2, af € z(a).

This brings to an end our discussion of degenerate
conics.

4. DEGENERATE NORMAL CURVES
4.1. A few results
4.1.1. Suppose that N(v) is an n-dimensional projective
space. Let

¢ : ul/P - ul/Q (P#Q)
be a degenerate projective isomorphism whose fundamental
subspace G(g) is k~dimensional (1sksn-1).

If k=1, then the improper part rx(g) of the normal
curve r(z) with respect to ¢ is the 1line PQ, whereas kz2
implies that Fx(g) is a non-degenerate normal curve in the
projective space N(G) (G:=G(t)), because the restricted map
‘al(uH(G))/P is non-degenerate.

Next let G be no hyperplane. Then ¢|{ull/G is a projec-
tive automorphism of un/G. If xer®(z), i.e. the proper part

of T(g) with respect to ¢, then (XVvG) *=XvG and () (XvG)



is the point set generated by ¢| (ull (XvG))/P. This makes
clear that FO(;) is empty if ¢ has no invariant (k+1)-

dimensional subspaces.

4.1.2. The preceding discussion tells us that at first pro-
jective isomorphisms ; with a fundamental hyperplane have to
be studied. Here the generated point set I (z) is either
the union of two distinct lines (n=2; cf. 3.1.1) or a de-
generate normal curve (nz3).

According to [28,445] there exists always a basis

{po,.,.,pn_1,a} of V such that

(4.1)  r1(g) = {xtxlxt:g;pjtj, t€x} U {p__,K}
and )
o _ ~n-1 3
(4.2) T () = {ytKlyt—'Zopjtani-‘la, tEK}
with a€k™. A hyperplane H=P(ker:§£hjp§+ha*), where {pé,...,
* 1=

*
P _q1r2 } is the dual basis of { ’pn—T’a}’ contains

Por---
r°(z) if and only if

(4.3) hot + h1ta + ... +h _,ta + h = 0 for all tekK

or, equivalently, h=0 and [a:Z]£n-1 by Lemma 1.1. On the
other hand, it is easily seen that the dimension of the sub-
space spanned by r°(z) equals min{[a:2z],n}. (Uéé "Satz 1" in
[17] and "9.3" in [28].) Hence a€Z” if and only if r°(z) is

an affine line. Some examples of automorphic collineations

of r(r) are included in [28].

4.1.3. Returning to the general case and ‘assuming ksn-2 it

follows that every t¢-invariant (k+1)-dimensional subspace



has non-empty intersection with r"(z). Results concerning

the case k=n-2 can be found in [28].

4.2. Final remarks

4.2.1. Let N(v) be a 4-dimensional projective space and let
K be the Galois-field of order 2. A non-degenerate normal
curve in T is just a triangle by (2.8). On the other hand,
it is easy to see that there exists a degenerate projective
isomorphism ¢, say, the generated point set of which is a
triangle as well: We have to ensure only that the fundamen-
tal subspace G(g) is a plane and that none of the seven
hyperplanes passing through G(z) is g-invariant. This forces
r*(g) to be a triangle in G(z) and TI°(z)=@, as required.

This example shows that a normal curve may be degenerate
as well as non-degenerate, but all normal curves with this

property are not known to the author. Cf. however [28,436].

4.2.2. In general, the problems of classification, auto-
morphic collineations and generating maps seem to be unsolved
for degenerate normal curves. It should also be interesting
to discuss, for example, the group of collineations fixing
the point set ro(z) given by (4.2) irrespective of what
happens to I'*(gz) given by (4.1).
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