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1. Introduction

Let Gk denote the set of all k-dimensional subspaces of an n-dimensional vector
space. We recall that two elements of Gk are called adjacent if their intersection
has dimension k − 1. The set Gk is point set of a partial linear space, namely a
Grassmann space for 1 < k < n − 1 (see Section 5) and a projective space for
k ∈ {1, n − 1}. Two adjacent subspaces are—in the language of partial linear
spaces—two distinct collinear points.
W.L. Chow [4] determined all bijections of Gk that preserve adjacency in both
directions in the year 1949. In this paper we call such a mapping, for short, an
A-transformation. Disregarding the trivial cases k = 1 and k = n − 1, every A-
transformation of Gk is induced by a semilinear transformation V → V or (only
when k = 2n) by a semilinear transformation of V onto its dual space V ∗. There
is a wealth of related results, and we refer to [2], [6], and [9] for further references.
In the present note, we aim at generalizing Chow’s result to products of Grassmann
spaces. However, we consider only products of the form Gk × Gn−k, where Gk and
Gn−k stem from the same vector space V . Furthermore, for a fixed k we restrict
our attention to a certain subset of Gk ×Gn−k. This subset, say G, is formed by all
pairs of complementary subspaces. Our definition of an adjacency on G in formula
(3) is motivated by the definition of lines in a product of partial linear spaces; cf.
e.g. [7].
One of our main results (Theorem 2) states that Chow’s theorem remains true,
mutatis mutandis, for the A-transformations of G. However, in Theorem 1 we can
show even more: Let us say that two elements (S, U) and (S′, U ′) of G are close
to each other, if their Hamming distance is 1 or, said differently, if they coincide
in precisely one of their components. Then the bijections of G onto itself which
preserve this closeness relation in both directions—we call them C-transformations
of G—are precisely the A-transformations of G. In this way, we obtain for 1 < k <
n − 1 two characterizations of the semilinear bijections V → V and V → V ∗ via
their action on the set G.
Finally, we turn to the following question: What happens to our results if we replace
the set G with the entire cartesian product Gk × Gn−k? Clearly, the basic notions
of adjacency and closeness remain meaningful. We describe all C-transformations
of Gk × Gn−k in Theorem 3. However, in sharp contrast to Theorem 1, this is a
rather trivial task, and the transformations of this kind do not deserve any interest.
Then, using a result of A. Naumowicz and K. Prażmowski [7], we also determine all
A-transformations of Gk × Gn−k in Theorem 4. Such mappings are closely related
with collineations of the underlying partial linear space, and in general they can
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be described in terms of two semilinear bijections, but not in terms of a single
semilinear bijection.
Before we close this section, it is worthwhile to mention that the results from [7]
could be used to describe the A-transformations of arbitrary finite products of
Grassmann spaces, but this is not the topic of the present article.

2. A-transformations and C-transformations

First, we collect our basic assumptions and definitions. Throughout this paper, let
V be a n-dimensional left vector space over a division ring, 2 ≤ n < ∞. Suppose
that P, T ⊂ V are subspaces. They are said to be incident (in symbols: P I T ) if
P ⊂ T or if T ⊂ P . Note that according to this definition every subspace of V is
incident with 0 (the zero subspace) and with V . Furthermore, we define

(1) P ∼ T :⇔ dim P = dim T = dim(P ∩ T ) + 1,

where “∼” is to be read as adjacent.
We put Gi, for the set i-dimensional subspaces of V , i = 0, 1, . . . , n. In what follows
we fix a natural number k ∈ {1, 2, . . . , n− 1} and adopt the notation

(2) G := {(S, U) ∈ Gk × Gn−k | S + U = V }.
Hence (S, U) ∈ G means that S and U are complementary subspaces. On the set
G we define two binary relations: Elements (S, U) and (S′, U ′) of G are said to be
adjacent if

(3) (S = S′ and U ∼ U ′) or (S ∼ S′ and U = U ′).

By abuse of notation, this relation on G will also be denoted by the symbol “∼”.
Our elements are said to be close to each other (in symbols: (S, U) ≈ (S′, U ′)) if

(4) (S = S′ and U 6= U ′) or (S 6= S′ and U = U ′).

According to this definition, any two adjacent elements of G are close; the converse
holds only for k = 1 and k = n− 1.
We shall establish in Lemma 6 that any two elements (S, U) and (S′, U ′) of G can
be connected by a finite sequence

(5) (S, U) = (S0, U0) ∼ (S1, U1) ∼ · · · ∼ (Si, Ui) = (S′, U ′).

Consequently, we also have

(6) (S, U) = (S0, U0) ≈ (S1, U1) ≈ · · · ≈ (Si, Ui) = (S′, U ′).

We refer to the definition of a Plücker space in [2, p. 199], and we point out the
(inessential) difference that our relations ∼ and ≈ are anti-reflexive.
A bijection f : G → G is said to be an adjacency preserving transformation (shortly:
an A-transformation) if f and f−1 transfer adjacent elements of G to adjacent
elements; if f and f−1 map close elements of G to close elements then we say that
f is a closeness preserving transformation (shortly: a C-transformation).

Example 1. For any two mappings f ′ : Gk → Gk and f ′′ : Gn−k → Gn−k we put

(7) f ′ × f ′′ : Gk × Gn−k → Gk × Gn−k : (S,U) 7→ (
f ′(S), f ′′(U)

)
.

Each semilinear isomorphism l : V → V induces, for i = 1, 2, . . . , n− 1, bijections

(8) Gi(l) : Gi → Gi : S 7→ l(S).
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Obviously, the restriction of

(9) Gk(l)×Gn−k(l)

to G is an A-transformation and a C-transformation.

Example 2. For any two mappings g′ : Gk → Gn−k and g′′ : Gn−k → Gk we put

(10) g′ ×̇ g′′ : Gk × Gn−k → Gk × Gn−k : (S,U) 7→ (
g′′(U), g′(S)

)
.

Let V ∗ denote the dual space of V . Each semilinear isomorphism s : V → V ∗

induces, for i = 1, 2, . . . , n− 1, the bijections

(11) Di(s) : Gi → Gn−i : S 7→ (
s(S)

)◦
,

where
(
s(S)

)◦ denotes the annihilator of s(S). The restriction of

(12) Dk(s) ×̇Dn−k(s)

to G is an A-transformation and a C-transformation. Observe that a necessary and
sufficient condition for the existence of such an isomorphism s is that the underlying
division ring admits an anti-automorphism.

Example 3. Now suppose that n = 2k. We assume that l : V → V and s : V → V ∗

are semilinear isomorphisms. The restrictions of

(13) Gk(l) ×̇Gk(l) and Dk(s)×Dk(s)

to G both are A-transformations and C-transformations.

Example 4. Let n = 2 and k = 1. Choose an arbitrary bijection f : G1 → G1.
Then the restrictions of f × f and f ×̇ f to G both are A-transformations and C-
transformations.

We are now in a position to state our main results:

Theorem 1. Every closeness preserving transformation of G is one of the mappings
considered in Examples 1–4. Hence it is an adjacency preserving transformation.

It is trivial that each A-transformation is a C-transformation if k = 1 or if k = n−1.
In Section 4 we shall prove this statement for the general case. Thus the following
statement holds true.

Theorem 2. Every adjacency preserving transformation of G is one of the map-
pings considered in Examples 1–4. Hence it is a closeness preserving transforma-
tion.

It is clear that our definitions of adjacency and closeness remain meaningful on the
entire cartesian product Gk × Gn−k. Also the notions of C- and A-transformation
and Examples 1–4 can be carried over accordingly. However, Theorems 1 and 2 do
not remain unaltered when G is replaced with Gk × Gn−k:

Example 5. Let f ′ : Gk → Gk and f ′′ : Gn−k → Gn−k be bijections. Then f ′ × f ′′

is a C-transformation. Also, if g′ : Gk → Gn−k and g′′ : Gn−k → Gk are bijections
then g′ ×̇ g′′ is a C-transformation.

For the sake of completeness, let us state the following rather trivial result:

Theorem 3. Every closeness preserving transformation of Gk×Gn−k is one of the
mappings considered in Example 5.



4 HANS HAVLICEK AND MARK PANKOV

Example 6. If f ′ : Gk → Gk and f ′′ : Gn−k → Gn−k are bijections which preserve
adjacency in both directions then f ′×f ′′ is an A-transformation. Also, if g′ : Gk →
Gn−k and g′′ : Gn−k → Gk are bijections which preserve adjacency in both directions
then g′ ×̇ g′′ is an A-transformation.
Suppose that k = 1 or k = n− 1. Then it suffices to require that the mappings f ′,
f ′′, g′ and g′′ from above are bijections in order to obtain an A-transformation of
Gk × Gn−k.
Provided that 1 < k < n − 1, we can apply Chow’s theorem ([4, p. 38], [5, p. 81])
to describe explicitly the mappings from above.
In the first case we have f ′ = Gk(l′) or f ′ = Dk(s′) (only when n = 2k), and
f ′′ = Gn−k(l′′) or f ′′ = Dk(s′′) (only when n = 2k).
In the second case we have g′ = Dk(s′) or g′ = Gk(l′) (only when n = 2k), and
g′′ = Dn−k(s′′) or g′′ = Gk(l′′) (only when n = 2k).
Here l′, l′′ : V → V and s′, s′′ : V → V ∗ denote semilinear isomorphisms.

We shall see that the following result is a consequence of [7, Theorem 1.14]:

Theorem 4. Every adjacency preserving transformation of Gk × Gn−k is one of
the mappings considered in Example 6.

Remark 1. Suppose that the underlying division ring of V is not of characteristic
2. Let u ∈ GL(V ) be an involution. Then there exist two invariant subspaces U+(u)
and U−(u) with V = U+(u) ⊕ U−(u) such that u(x) = ±x for each x ∈ U±(u). If
dim U+(u) = r then dimU−(u) = n− r, and u is called an (r, n− r)-involution.
For our fixed k let J be the set of all (k, n−k)-involutions. There exists a bijection

(14) γ : J → G : u 7→ (
U+(u), U−(u)

)
.

Two (k, n − k)-involutions u and v are said to be adjacent if the corresponding
elements of G are adjacent. This holds if, and only if, the product of u and v (in
any order) is a transvection 6= 1V .
Now let f : J → J be a bijection which preserves adjacency in both directions. We
apply Theorem 2 to the A-transformation γfγ−1 : G → G. If n > 2 and n 6= 2k
then this last mapping is given as in Example 1 or 2. This means that f can be
extended to an automorphism of the group GL(V ) as follows: To each u ∈ GL(V )
we assign lul−1 or the contragredient of sus−1, respectively.

3. Proof of Theorem 1

Our proof of Theorem 1 will be based on several lemmas and the subsequent char-
acterization. In the case n = 2k this statement is a particular case of a result in [3].
The direct analogue of Theorem 5 for buildings can be found in [1, Proposition 4.2].

Theorem 5. Let 1 ≤ k ≤ n−1. Then for any two distinct S1, S2 ∈ Gk the following
two conditions are equivalent:

(a) S1 and S2 are adjacent,
(b) There exists an S ∈ Gk −{S1, S2} such that for all U ∈ Gn−k the condition

(S, U) ∈ G implies that (S1, U) or (S2, U) belongs to G.
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Proof. (a)⇒ (b). If S1 and S2 are adjacent then S1∩S2 ∈ Gk−1 and S1+S2 ∈ Gk+1.
Every S ∈ Gk − {S1, S2} satisfying the condition

(15) S1 ∩ S2 ⊂ S ⊂ S1 + S2

has the required property, and at least one such S exists.
(b) ⇒ (a). The proof of this implication will be given in several steps. First we
show that

(16) 0 6= W1 ⊂ S1 and 0 6= W2 ⊂ S2 ⇒ (W1 + W2) ∩ S 6= 0.

Assume, contrary to (16), that (W1 +W2)∩S = 0. Then there exists a complement
U ∈ Gn−k of S containing W1 + W2. By our hypothesis, U is a complement of S1

or S2. This contradicts W1 ⊂ S1 and W2 ⊂ S2.
Our second assertion is

(17) S1 ∩ S2 ⊂ S.

This inclusion is trivial if S1∩S2 is zero. Otherwise, let P ⊂ S1∩S2 be an arbitrarily
chosen 1-dimensional subspace. We apply (16) to W1 = W2 = P . This shows that
P ∩ S 6= 0. Hence P ⊂ S, as required.
The third step is to show that

(18) dim(S ∩ S1) = dim(S ∩ S2) = k − 1.

By symmetry, it suffices to establish that

(19) W1 ∩ (S ∩ S1) 6= 0

for all 2-dimensional subspaces W1 ⊂ S1: Let us take a 1-dimensional subspace
P2 ⊂ S2 such that P2 ∩ S = 0. Then (17) implies that P2 is not contained in
S1, and for every 2-dimensional subspace W1 ⊂ S1 the subspace W1 + P2 is 3-
dimensional. Let P1 and Q1 be distinct 1-dimensional subspaces contained in W1.
It follows from (16) that P1 + P2 and Q1 + P2 meet S in 1-dimensional subspaces
(6= P2) which will be denoted by P and Q, respectively. As P1 and Q1 are distinct,
so are P and Q. Therefore P + Q is a 2-dimensional subspace of S. Since W1 and
P +Q lie in the 3-dimensional subspace W1+P2, they have a common 1-dimensional
subspace contained in W1 ∩ S = W1 ∩ (S ∩ S1). This proves (18).
Finally, we read off from (17) that

(20) S1 ∩ S2 = (S ∩ S1) ∩ (S ∩ S2),

and we shall finish the proof by showing that this subspace has dimension k − 1.
By (18) and because of S1 6= S2, the dimension of S1 ∩ S2 is either k − 2 or k − 1.
Suppose, to the contrary, that

(21) dim S1 ∩ S2 = k − 2.

Then S ∩ S1 and S ∩ S2 are distinct (k − 1)-dimensional subspaces spanning S.
There exist 1-dimensional subspaces P1, P2 such that

(22) Si = (S ∩ Si) + Pi

for i = 1, 2. We have P1 6= P2 (otherwise (17) would give P1 = P2 ⊂ S1 ∩ S2 ⊂ S
which is impossible), and (16) guarantees that (P1 + P2) ∩ S is a 1-dimensional
subspace. Then S1 + S2 is contained in the (k + 1)-dimensional subspace S + P1

which, by the dimension formula for subspaces, contradicts (21). ¤
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Lemma 1. If l : V → V is a semilinear isomorphism such that Gj(l) is the identity
for at least one j ∈ {1, 2, . . . , n− 1} then the same holds for all i = 1, 2 . . . , n− 1.

Proof. This is well known. ¤

Lemma 2. Let li : V → V and si : V → V ∗ be semilinear isomorphisms, i = 1, 2.
Then the following assertions hold.

(a) If one of the mappings Gk(l1)×Gn−k(l2) or Gk(l1)×̇Gk(l2), when restricted
to G, is a C-transformation then Gi(l1) = Gi(l2) for all i = 1, 2, . . . , n− 1.

(b) If one of the mappings Dk(s1) ×̇ Dn−k(s2) or Dk(s1) × Dk(s2), when re-
stricted to G, is a C-transformation then Di(s1) = Di(s2) for all i =
1, 2, . . . , n− 1.

(c) If n = 2k > 2 then none of the mappings Gk(l1)×Dk(s2), Dk(s1)×Gk(l2),
Gk(l1) ×̇ Dk(s2), and Dk(s1) ×̇ Gk(l2) is a C-transformation, when it is
restricted to G.

Proof. (a) Let the restriction of Gk(l1) × Gn−k(l2) to G be a C-transformation.
Then Gk(1V ) × Gn−k(l−1

1 l2) gives also a C-transformation. This means that for
each U ∈ Gn−k the mapping Gk(1V ) transfers the set of all k-dimensional subspaces
having a non-zero intersection with U onto the set of all k-dimensional subspaces
having a non-zero intersection with l−1

1 l2(U). However, Gk(1V ) is the identity.
Thus

(23) l−1
1 l2(U) = U,

and Gn−k(l2l−1
1 ) is the identity. Hence we can apply Lemma 1 to show the assertion

in this particular case.
Next, let the restriction of Gk(l1)×̇Gk(l2) to G be a C-transformation. Thus n = 2k
and the assertion follows from the previous case and

(24) Gk(l1) ×̇Gk(l2) =
(
Gk(1V ) ×̇Gk(1V )

)(
Gk(l1)×Gk(l2)

)
.

(b) can be verified similarly to (a).
(c) Assume, contrary to our hypothesis, that Gk(l1) × Dk(s2) gives a C-transfor-
mation. Hence Gk(1V ) × Dk(s2l

−1
1 ) is also a C-transformation and, as above, we

infer that

(25) Dk(s2l
−1
1 )(U) =

(
(s2l

−1
1 )(U)

)◦ = U

for all U ∈ Gk. Let W ∈ Gk−1. Then there are subspaces U1, U2, . . . Uk+1 ∈ Gk such
that V =

∑k+1
i=1 Ui and W =

⋂k+1
i=1 Ui. Consequently,

(26) 0 =
(
s2l

−1
1 (V )

)◦ =
k+1⋂

i=1

(
(s2l

−1
1 )(Ui)

)◦ =
k+1⋂

i=1

Ui = W

which implies k = 1, an absurdity.
The remaining cases can be shown in the same way. ¤

Let us remark that in general the assumption n > 2 in part (c) of this lemma
cannot be dropped. Indeed, if n = 2k = 2 and if K is a commutative field then
there exists a non-degenerate alternating bilinear form b : V × V → K. Hence
s : V → V ∗ : v 7→ b(v, ·) is a linear bijection, and G1(1V )×D1(s) is the identity on
G1 × G1.
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Lemma 3. Let n = 2, whence k = 1. Suppose that g′ : G1 → G1 and g′′ : G1 → G1

are bijections such that one of the mappings g′ × g′′ or g′ ×̇ g′′, when restricted to
G, is a C-transformation. Then g′ = g′′.

Proof. It suffices to discuss the first case, since 1G ×̇ 1G yields a C-transformation.
Now we can proceed as in the proof of Lemma 2 (a) in order to establish that the
restriction of g′−1g′′ to G equals 1G . ¤

We say that X ⊂ G is a C-subset if any two distinct elements of X are close. (If we
consider the graph of the closeness relation on G then a C-subset is just a clique,
i.e. a complete subgraph.) A C-subset is said to be maximal if it is not properly
contained in any C-subset. In order to describe the maximal C-subsets the following
notation will be useful. If P and T are subspaces of V then we put

(27) G(P, T ) := {(S, U) ∈ G | S I P and U I T};
here we use the incidence relation from the beginning of Section 2.

Lemma 4. The maximal C-subsets of G are precisely the sets G(S, V ) with S ∈ Gk,
and G(V, U) with U ∈ Gn−k.

Proof. Easy verification. ¤

We refer to the sets described in the lemma as maximal C-subsets of first kind and
second kind, respectively.

Proof of Theorem 1. (a) Let f be a C-transformation of G. Then f and f−1 map
maximal C-subsets to maximal C-subsets. Observe that two maximal C-subsets
have a unique common element if, and only if, one of them is of first kind, say
G(S, V ), the other is of second kind, say G(V, U), and (S, U) ∈ G.
Given S, S′ ∈ Gk there exists a subspace U ∈ Gn−k such that S + U = S′ + U = V .
We conclude from

(28) f
(G(S, V )

) ∩ f
(G(V, U)

)
= {f(

(S,U)
)}

that f
(G(S, V )

)
and f

(G(V, U)
)

are maximal C-subspaces of different kind. Like-
wise, f

(G(S′, V )
)

and f
(G(V, U)

)
are of different kind, so that f

(G(S, V )
)

and
f
(G(S′, V )

)
are of the same kind.

A similar argument holds for maximal C-subsets of second kind; altogether the
action of the C-transformation f on the set of maximal C-subsets is either type
preserving or type interchanging .
(b) Suppose that f is type preserving. Then there exist bijections

g′ : Gk → Gk such that f
(G(S, V )

)
= G(

g′(S), V
)

for all S ∈ Gk,

g′′ : Gn−k → Gn−k such that f
(G(V, U)

)
= G(

V, g′′(U)
)

for all U ∈ Gn−k;

thus f equals the restriction of g′ × g′′ to G. We distinguish four cases:
Case 1: n = 2. Hence k = 1; we deduce from Lemma 3 (a) that g′ = g′′, whence f
is given as in Example 4.
Case 2: n > 2 and k = 1. Then for each U ∈ Gn−1 the mapping g′ transfers the set
of all 1-dimensional subspaces contained in U to the set of all 1-dimensional sub-
spaces contained in g′′(U). This means, by the fundamental theorem of projective
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geometry, that there exists a semilinear isomorphism l′ : V → V with g′ = G1(l′).
Similarly, g′′ is induced by a semilinear isomorphism l′′ : V → V .
Case 3: n > 2 and k = n− 1. By symmetry, this coincides with the previous case.
Case 4: n > 2 and 1 < k < n− 1. Then Theorem 5 guarantees that g′ and g′′ are
adjacency preserving in both directions; Chow’s theorem ([4, p. 38], [5, p. 81]) says
that g′ and g′′ are induced by semilinear isomorphisms. More precisely, we have
g′ = Gk(l′) with a semilinear bijection l′ : V → V , or g′ = Dk(s′) with a semilinear
bijection s′ : V → V ∗ (only when n = 2k). A similar description holds for g′′.
In cases 2–4 we infer from Lemma 2 (c) that there are only two possibilities:
Case A. g′ = Gk(l′) and g′′ = Gn−k(l′′). Now Lemma 2 (a) yields that Gi(l′) =
Gi(l′′) for all i = 1, 2 . . . , n−1, whence f is the restriction to G of Gk(l′)×Gn−k(l′);
cf. Example 1.
Case B. n = 2k, g′ = Dk(s′), and g′′ = Dk(s′′). Now Lemma 2 (b) yields that
Di(s′) = Di(s′′) for all i = 1, 2 . . . , n − 1, whence f is the restriction to G of
Dk(s′)×Dk(s′); cf. Example 3.
(c) If f is type interchanging then there exist bijections

g′ : Gk → Gn−k such that f
(G(S, V )

)
= G(

V, g′(S)
)

for all S ∈ Gk,

g′′ : Gn−k → Gk such that f
(G(V,U)

)
= G(g′′(U), V ) for all U ∈ Gn−k;

thus f is the restriction to G of g′ ×̇ g′′. Now we can proceed, mutatis mutandis,
as in (b). So f is given as in Example 4, 2, or 3.
This completes the proof. ¤

4. Proof of Theorem 2

First, let us introduce the following notion: We say that X ⊂ G is an A-subset if
any two distinct elements of X are adjacent. (As before, such a set is just a clique of
the graph given by the adjacency relation on G.) An A-subset is said to be maximal
if it is not properly contained in any A-subset.
If k = 1 or if k = n− 1 then an A-subset is the same as a C-subset, and Lemma 4
can be applied.

Lemma 5. Let 1 < k < n− 1. Then the maximal A-subsets of G are precisely the
following sets:

G(S, T ) with S ∈ Gk, T ∈ Gn−k+1, and S + T = V.(29)
G(S, T ) with S ∈ Gk, T ∈ Gn−k−1, and S ∩ T = 0.(30)
G(T, U) with T ∈ Gk+1, U ∈ Gn−k, and T + U = V.(31)
G(T, U) with T ∈ Gk−1, U ∈ Gn−k, and T ∩ U = 0.(32)

Proof. From [4, p. 36] we recall the following: Let Y ⊂ Gi, 1 < i < n − 1, be a
maximal set of mutually adjacent i-dimensional subspaces of V . Then there exists
a subspace T ∈ Gi±1 such that Y = {Y ∈ Gi | Y I T}.
Suppose now that X ⊂ G is a maximal A-subset. Clearly, there exists an element
(S,U) ∈ X . Since X is also a C-subset, we obtain that X ⊂ G(S, V ) or that
X ⊂ G(V, U).
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Let X ⊂ G(S, V ). Then the second components of the elements of X are mutually
adjacent elements of Gn−k. Hence, by the above, they all are incident with a subset
T ∈ Gn−k±1. So, due to its maximality, the set X is given as in (29) or (30).
Similarly, if X ⊂ G(V, U) then X can be written as in (31) or (32).
Conversely, it is obvious that (29)–(32) define maximal A-subsets. ¤

We shall also make use of the following result:

Lemma 6. Any two elements (S, U) and (S′, U ′) of G can be connected by a finite
sequence which is given as in formula (5). In particular, if S = S′ (or U = U ′)
then this sequence can be chosen in such a way that S = S0 = S1 = · · · = Si (or
U = U0 = U1 = · · · = Ui).

Proof. (a) First, we show the particular case when (S, U), (S,U ′) ∈ G(S, V ) with
S ∈ Gk. We proceed by induction on d := (n − k) − dim(U ∩ U ′), the case d = 0
being trivial.
Let d > 0. There exists an (n− k− 1)-dimensional subspace W such that U ∩U ′ ⊂
W ⊂ U . So H := W ⊕ S is a hyperplane of V . It cannot contain U ′ because
of (S, U ′) ∈ G. Thus W ′ := H ∩ U ′ has dimension n − k − 1, and there exists a
1-dimensional subspace P ′ ⊂ U ′ with U ′ = P ′ ⊕W ′. Consequently, P ′ 6⊂ H and
we obtain

(33) V = P ′ ⊕H = P ′ ⊕W ⊕ S.

This means that U ′′ := P ′ ⊕W is a complement of S. We have (S, U) ∼ (S, U ′′)
and (n − k) − dim(U ′′ ∩ U ′) = d − 1. So the assertion follows from the induction
hypothesis, applied to (S,U ′′) and (S, U ′).
Similarly, any two elements of G(V, U) with U ∈ Gn−k can be connected.
(b) Now we consider the general case. Let (S, U) and (S′, U ′) be elements of G.
There exists U ′′ ∈ Gn−k which is complementary to both S and S′. Then, by (a),
there exists a sequence

(34) (S, U) ∼ · · · ∼ (S, U ′′) ∼ · · · ∼ (S′, U ′′) ∼ · · · ∼ (S′, U ′)

which completes the proof. ¤

The statement in (a) from the above is just a particular case of a more general
result on the connectedness of a spine space; cf. [8, Proposition 2.9].

Proof of Theorem 2. (a) We shall accomplish our task by showing that every A-
transformation is a C-transformation. As has been noticed in Section 2, this is
trivial if k = 1 or if k = n − 1. So let f be an A-transformation of G and assume
that 1 < k < n− 1.
(b) We claim that

(35) f
(G(S, V )) is a maximal C-subset for all S ∈ Gk.

Let us take T ∈ Gn−k+1 such that G(S, T ) is a maximal A-subset. Then f
(G(S, T )

)
is also a maximal A-subset. According to Lemma 5 there are four possible cases.
Case 1: f

(G(S, T )
)

is given according to (29). This means f
(G(S, T )

)
= G(W,Z)

with W ∈ Gk, Z ∈ Gn−k+1, and W + Z = V . We assert that in this case

(36) f
(
(S, U ′)

) ∈ G(W,V ) for all (S, U ′) ∈ G(S, V ).
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In order to show this we choose an element (S, U) ∈ G(S, T ). Clearly, f
(
(S, U)

) ∈
G(W,Z) ⊂ G(W,V ).
First, we suppose that (S, U) and (S,U ′) are adjacent. Then P := U∩U ′ ∈ Gn−k−1.
We consider the pencil given by P and T , i.e. the set

(37) {X ∈ Gn−k | P ⊂ X ⊂ T}.
It contains at least three elements; precisely one them is not complementary to
S. Consequently, the intersection of the maximal A-subsets G(S, T ) and G(S, P )
contains more than one element. The same property holds for the intersection of the
maximal A-subsets f

(G(S, T )
)

= G(W,Z) and f
(G(S, P )

)
. But this means that W

is the first component of every element of f
(G(S, P )

)
so that f

(
(S, U ′)

) ∈ G(W,V ).
Next, we suppose that (S, U) and (S, U ′) are arbitrary. By Lemma 6, (S,U) and
(S,U ′) can be connected by a finite sequence

(38) (S, U) = (S,U0) ∼ (S,U1) ∼ · · · ∼ (S, Ui) = (S, U ′),

and the arguments considered above yield that (36) holds.
Since f−1 is adjacency preserving, we can repeat our previous proof, with G(W,Z)
taking over the role of G(S, T ). Altogether, this proves

(39) f
(G(S, V )

)
= G(W,V ).

The remaining cases, i.e., when f
(G(S, T )

)
is given according to (30), (31), or (32),

can be treated similarly, whence (35) holds true.
(c) Dual to (b), it can be shown that f

(G(V, U)
)

is a maximal C-subset for all
U ∈ Gn−k. Thus f is a C-transformation. ¤

5. Proofs of Theorem 3 and Theorem 4

In the following proof we use the term maximal C-subset just like in Section 3.

Proof of Theorem 3. Obviously, each maximal C-subset of Gk×Gn−k has either the
form {S}×Gn−k with S ∈ Gk (first kind) or Gk×{U} with U ∈ Gn−k (second kind).
Distinct maximal C-subsets of the same kind have empty intersection, whereas
maximal C-subsets of different kind have a unique common element. So every C-
transformation is either type preserving, whence it can be written as f ′ × f ′′, or
type interchanging, whence it can be written as g′ ×̇ g′′. ¤
Let 1 < k < n− 1. We shall consider below the following well known partial linear
spaces: For each i = 2, 3, . . . , n − 2 the set Gi is the point set of the Grassmann
space (Gi,Li); the elements of its line set Li are the pencils

(40) Gi[P, T ] := {X ∈ Gi | P ⊂ X ⊂ T},
where P ∈ Gi−1, T ∈ Gi+1, and P ⊂ T . The Segre product (or product space) of
(Gk,Lk) and (Gn−k,Ln−k) is the partial linear space with point set

(41) P := Gk × Gn−k

and line set

(42) L :=
{{S} × l | S ∈ Gk, l ∈ Ln−k

} ∪ {
m× {U} | m ∈ Lk, U ∈ Gn−k

}
.

See [7] for further details and references.
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Proof of Theorem 4.
(a) If k = 1 or if k = n− 1 then the assertion follows from Theorem 3.
(b) Let 1 < k < n− 1. Given a subset M⊂ P we put

(43) M⊥ := {(S, U) ∈ P | (S, U) ⊥ (X,Y ) for all (X, Y ) ∈M},
where the sign “⊥” on the right hand side means “adjacent or equal”. Now let
(S,U) and (S, U ′) be adjacent elements of P. Then

(44) {(S, U), (S, U ′)}⊥ = {(S, Y ) ∈ P | U ∩ U ′ ⊂ Y or Y ⊂ U + U ′}
and

(45) {(S,U), (S, U ′)}⊥⊥ = {(S, Y ) ∈ P | U ∩ U ′ ⊂ Y ⊂ U + U ′}.
Similarly, if (S, U) and (S′, U) are adjacent elements of P then

(46) {(S, U), (S′, U)}⊥⊥ = {(X, U) ∈ P | S ∩ S′ ⊂ X ⊂ S + S′}.
Next, suppose that g : P → P is an A-transformation. Every line of (P,L) can
be written in the form (45) or (46), since it contains at least two distinct collinear
points or, said differently, two adjacent elements of P. Thus g is a collineation of
the product space (P,L). By [7, Theorem 1.14], there are two possibilities:
Case 1. There exist collineations of Grassmann spaces f ′ : Gk → Gk and f ′′ :
Gn−k → Gn−k such that g = f ′ × f ′′. Clearly, f ′ and f ′′ are adjacency preserving
in both directions.
Case 2. There exist collineations of Grassmann spaces g′ : Gk → Gn−k and g′′ :
Gn−k → Gk such that g = g′ ×̇ g′′. As above, g′ and g′′ are adjacency preserving in
both directions.
So g is given as in Example 6. ¤
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