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The aim of this paper is to examine geometric properties of a quadratic
embedding, i.e. a mapping between projective spaces sharing some properties
of the classical quadratic Veronese embedding. We follow an approach that
has been used in discussing embeddings of Grassmann spaces (cf. [6] and
[16]) and product spaces (cf. [17]). See also [8, chapter 25] for combinatorial

Quadratic embeddings

Hans Havlicek Corrado Zanella

December 5, 1996

Abstract

The quadratic Veronese embedding p maps the point set P of
PG(n, F) into the point set of PG((";Q) —1,F) (F a commutative
field) and has the following well-known property: If M C P, then
the intersection of all quadrics containing M is the inverse image of
the linear closure of MP”. In other words, p transforms the closure
from quadratic into linear. In this paper we use this property to de-
fine “quadratic embeddings”. We shall prove that if v is a quadratic
embedding of PG(n, F) into PG(n/, F') (F a commutative field), then
p~ v is dimension-preserving. Moreover, up to some exceptional cases,
there is an injective homomorphism of F' into F’. An additional regu-
larity property for quadratic embeddings allows us to give a geometric
characterization of the quadratic Veronese embedding.

Introduction

characterizations of Veronese varieties over finite fields.

Let F' be a commutative field and (P, L) := PG(n, F'). Write

® .= {S C P|S is a quadric of PG(n, F)} U {P}.



If M C P, then the quadratic closure of M is

= ﬂ S.

MCS,Sed

<|

We call M a closed set if M = M. The linear closure of a set M of points
will be denoted by M. Each hyperplane of PG(n, F') is a quadric, namely a

repeated hyperplane. Hence M ¢ M C M.

Definition 1 Let (P, L) := PG(n, F) and (P, L") := PG(n/, F"), where the
field F' is commutative. A mapping v : P — P’ is a quadratic embedding if

M= (M) for all M C P, (1)

and

imv =P (2)
We give some examples of quadratic embeddings:

Example 1 The classical quadratic Veronese embedding p is defined in the
case I = F, n' = (”'52> — 1, by

F(zo,...,20) = F(yij)oicj<n, With y;j := z;2;.
There are many equivalent definitions. Cf., e.g., [5], [7], [9].

Example 2 Let n' = (";’2) — 1. If @« : F — F' is an injective homomor-
phism, then « induces a canonical embedding € of PG(n’, F') into PG(n/, F”).
The mapping pe turns out to be a quadratic embedding. Since there are
examples of fields admitting an injective, but not surjective homomorphis-
m « : F — F, there exist quadratic embeddings different from the classical
one, even if we demand that /' and F’ are isomorphic.

Example 3 If n = 1 then M C P is closed if, and only if, | M| < 2 or
M =P. Thus a mapping v : P — P’ is a quadratic embedding if, and only
if, n’ = 2, v is injective and im v is an arc.

Example 4 If PG(n, F) = PG(2,2) and F is a frame in PG(5, F’) then any
injection v : P — P’ such that imv = F is a quadratic embedding. This is
immediate from the fact that each subset M of P is closed, unless |M| = 6.



2 Properties of quadratic embeddings

In this section v is a quadratic embedding of PG(n, F') = (P, L) (n > 1) into
PG(n/, F") = (P, L).

Proposition 2.1 Let K, and Ky be two distinct closed sets in PG(n, F).
Then KY # KY. Consequently, the mapping v is injective and satisfies

M =M’ Nimv for all M C P. (3)
If U C P is a subspace, then U~ C P is a closed set.
Proof By the definition of a quadratic embedding,

RD) ' =Ki=Ki#K: =K = (&5,

so that K% # K4. Moreover, v is injective, since any subset of P with a single
element is closed. Hence (3) is true. Finally, let M :=4""". Then

M= (M) cu”' =m.O
Theorem 1 Ifv is a quadratic embedding of PG(n, F') into PG(n', F"), then

n = (";2) —1.

Proof Define §(t) := (tf), t € IN. Let {eo,...,e,} be a basis of F" and
X ={F(e;+e)0<i<j<n}U{Feli=0,...,n}.

Since |X| = §(n) and X = P, we have imv C X7, hence

n' < é(n)—1. (4)

We now prove that in (4) the equality holds. We give a definition, by

recursion on d = 0,...,n, of distinct closed sets in PG(n, F'), say Ksa-1),
Ks@d-1)+1, - - -» Ks@y—1, such that

Ks@a-1) C Ks@a-1)+1 C - C Ks(a)-1,

with U = KCs(ay—1 being a d-subspace of PG(n, F'). For d = 0, choose a
point @ and let Ky = U := {Q}. Now let d > 0 and Ks4—1)-1 = “*U. Take
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a d-subspace U containing "YU and a basis B = {Py, ..., Py} of %U such
that 4~1U N B = (). Since the union of two subspaces of PG(n, F') is a closed
set, we can define

Ké(d—1)+i = dilz/{U{Po,...,Pi}, 1€ {O,,d}

By Prop. 2.1,
DCKECKyC... C K

is a chain of distinct subspaces of PG(n/, F').O

Proposition 2.2 If M C P, then dim(M¥) is equal to the largest i € N,
such that there exists a chain

lcKocKic...CK;=M, (5)

consisting of i + 2 distinct closed subsets of M. Consequently, dim(M") =
dim(MPr), where p denotes the quadratic Veronese embedding.

Proof By Prop. 2.1, the subspaces Ky, KY, ..., KY are distinct and

KV = MY Nimv = MY,
whence dim(MY) > i.
Now assume dim(M") > i. Then there exists an integer 7, 0 < j < i,
such that

dim(K¥, ) # dim(KY) + 1.
Let P € K%

Y \IC_; Then K := ({P} U IC;-’)”_1 is a closed set (cf. Prop. 2.1),
and ; € K C K41, K # K;. The maximality of the chain (5) implies
K = Kj+1. Therefore

dim(lCJVH) =dim({P} U IC;’) = dirn(IC_;’) +1,
a contradiction.O

Proposition 2.3 If T is a hyperplane of PG(n, F') and M C P\ T, then

dim((Z UM)¥) = (n ;_ 1) + dim(M). (6)



Proof By Theorem 1, dim(7") = (";1) - 1. ItB={P,...,B}tCMisa
basis of M, then the closed sets

Ki=TU{R,.... b}, ic{0,... 1},

form a saturated chain
TCKyC...CK;s.

Now the assertion is a consequence of Theorem 1 and Prop. 2.2.0

Proposition 2.4 Let T be a hyperplane of PG(n,F). If T" and &' are
complementary subspaces of PG(n/, F'), then the mapping

t:P\T — & : A— (TU{A})"NE (7)
has the following property:
dim(M) = dim(M"*) for all M C P\ T. (8)

Consequently, ¢ 1s preserving both collinearity and non-collinearity of points.
So, the mapping ¢ is a (linear) embedding of the affine space P\ T into the
projective space E'.

Proof By (6), dim7" = (”;1) — 1, whence dim &’ = n. Applying (6) again
yields

dim(M') = dim(7"UM’N¢E') =dim(7* UM¥) — (dim(77) + 1)
= dim(M).0

Proposition 2.5 Let |F| > 2 and n > 2. If |F| # 3 or n # 2, then the
embedding (7) can be extended to exactly one embedding 5 : P — &'.

Proof The case n = 2 is dealt with in [12]. The case |F| > 3 is covered by
2, Theorem 3.5]. Thus only |F| = 3 and n > 2 remains open. For F” being
finite, the assertion follows from a result in [10, chapitre 2.3] (cf. also [11,
théoreme 1]), and by slight modifications, this carries over to an infinite F”.

On the other hand we sketch a direct proof for n > 2: Let P € 7. If
g,h € L and P € gNh, then the lines (¢ \ {P})* and (h \ {P})* are coplanar
by Prop. 2.4. Since there exist three non coplanar lines through P, all lines
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of the kind (g \ {P})*, with P € g, share one point P’ € £'. Then we define
PP .= P'. By repeatedly using Prop. 2.4, we have that 3 is an embedding.
The restriction of 3 to a plane A of P, not contained in 7, is an extension
of t|(A\ 7), and thus we obtain the uniqueness of 5.0

As a corollary, we have:

Theorem 2 Let |F| > 2 andn > 2. If |F| # 3 or n # 2, then the ezistence
of a quadratic embedding of PG(n, F') into PG(n', F") implies that the field
F is isomorphic to a subfield of F'.0O

Whenever for some fixed hyperplane 7 C P and an adequately chosen
subspace £ C P’ the mapping (7) is uniquely extendable to an embedding
G P — & then T gives rise to an embedding

vr - P—P/T" : X — {XP}VT7, (9)

here P’ /7" denotes the point set of the quotient space PG(n’, F’) modulo 7.
Moreover, we can associate with 7 the following hyperplane of PG(n/, F'):

TvUTH = H.

Both definitions do not depend on the choice of £'. Since H>-NE Nim ¢ = (),
we have

(Hp) ™ =T. (10)

Proposition 2.6 Let ¥ be the collection of all hyperplanes of PG(n, F). If
Hr is well defined for all T € X3, then

v:Y—Y:T+—H (11)
18 an injective mapping.0
The previous results give sufficient conditions for the existence of the
mapping V.
3 Regular quadratic embeddings

In the following we shall assume that v is a quadratic embedding of PG(n, F),
n > 1, into PG(n/, F'), n' = (";2) -1
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Definition 2 A quadratic embedding v is called (P, {)-regular if there exists
an incident point-line pair (P,{) of PG(n, F) such that the plane arc ¢ has
a unique unisecant line which is running through PY and contained in the
plane 0. If v is (P, {)-reqular for all incident pairs (P, (), then v is said to
be a regular quadratic embedding.

Proposition 3.1 Suppose that n > 2 and that v is (P, {)-reqular. Then v is
reqular.

Proof By n > 2, there exists a hyperplane 7 of PG(n, F') such that P € T,
¢ ¢ T. Define an embedding ¢ : P\ 7 — & according to (7). The (P,{)-
regularity of v implies that

[(ENAPH N (NP = 1. (12)

If the settings of Prop. 2.5 are true, then ¢ extends to an embedding
B P — & with £ = (¢\ {P})* by (12). Hence 3 is a collineation.

Otherwise |F| =: p € {2,3} so that |F'| = p by (12). If X € P\ 7, then
there is a certain number of lines through X and on each such line there are
p points of P\ 7. In £ the same number of lines is running through X* and,
by Prop. 2.4, there are p points of im ¢ on each such line. This in turn means
that on each line in & through a point of £ \ im¢ there is either no point
of im¢ or no other point of £ \ im¢, whence &\ im: is a subspace. More
precisely, 7’ := £\ im is a hyperplane of £’. Two distinct lines of the affine
space P \ 7 are parallel if, and only if, they are disjoint and coplanar. By
Prop. 2.4 these properties carry over to the (-images of these lines, whence ¢
is an affinity of P\ 7 onto £ \ 7’. (This is trivial when p = 3.) Thus ¢ is
also extendable to a collineation 3 : P — &’ if Prop. 2.5 cannot be applied.

Next choose any point X; € 7 and any line ¢ ¢ 7, X; € ¢;. Then
({X7} VT?) N7 is the only unisecant of ¢ at X? within the plane 7%, since
|6\ { X1\ (¢4 \{X1})"| = 1. Hence v is (Xy, £1)-regular. Repeatedly using
this last idea yields that v is regular.O0

As an immediate consequence of the proof of Prop. 3.1 we have

Proposition 3.2 Let v be a reqular quadratic embedding and n > 2. Choose
any hyperplane T C P. Then the embedding ¢ : P\ T — &', defined ac-
cording to (7), is extendable to a unique collineation 3 : P — &'. Conse-
quently, F and F' are isomorphic fields, and vy : P — P'/T" (cf. (9)) is a
collineation.O



If n =1, then the (P, {)-regularity of v implies
[E| =[NP} = |¢"\{P"}| = [F"].

This does not imply, however, that v is regular. If n = 1 and v is regular,
then im v obviously is an oval but not necessarily a conic. Cf. [3, 4, 14] for
topological conditions that force an oval to be a conic.

These results can be improved if we assume that |F'| =: ¢ is finite. Then
n = 1 and v being (P, {)-regular yield |F| = |F'| = ¢ so that imv is a (¢4 1)-
arc in PG(2, F') = PG(2, ¢). Hence imv is an oval, which in turn shows that
v is regular. Moreover, by Segre’s theorem, imv is a (regular) conic if ¢ is
odd; the last result is also true when ¢ € {2,4}.

The case n = 1 is excluded from our further discussions. Hence we may
assume without loss of generality that F' = F’, by virtue of Prop. 3.2.

The following result will be used in order to characterize the v-images of
lines.

Lemma 1 Let By and P, be two distinct points of PG(2, F') and let o be a
collineation of PG(2, F') taking Py to P», but not fizing the line PyP,. Then

C:={X|{X}=xn2z% x is a line through Py}

is containing three distinct collinear points if, and only if, o is a non-projective
collineation.

Proof 1If o is projective, then C is a regular conic, whence it does not contain
three distinct collinear points.

If o is not projective, then let o € Aut(F') be the companion automor-
phism of o. Set

{P} = (RP)" NP
Choose some line e running through F, but not containing P; or P, and define
{E} :=ene?. Then (P, Py, P», F) is an ordered quadrangle; we may assume
that this is the standard frame of reference. A straightforward calculation
yields
C = {F(uou§, ugus, u1ut)|(0,0) # (ug,u1) € F?}.

By a # idp, there exists an element ¢ € F with ¢ # ¢*. Define v € F via
c=v"* Thus v # 0,1 and F(1,1,1), F(1,v* vv®) are distinct points of

C. With
o 1+ vv%c

1+
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we obtain
1

—(1,1,1
1+c(’ ’ )+1+c

whence C is containing three distinct collinear points.O

(1, 0% v0®) = (1, w*, ww®),

Proposition 3.3 If g is a line of PG(n,F), n > 2, and v is a regular
quadratic embedding, then g* is a reqular conic.

Proof Choose hyperplanes 7, C P such that N7 NU = (). Set {T} :=
g N7 and define a collineation v according to (9). Write

ro={2 e LT € 2’ Cg"}
and
mr Ly — g"T 2 — 2 VTV,
This m7 is a projectivity from a pencil of lines onto a pencil of subspaces.
Replacing 7 by U gives a point U and a projectivity 7. Since v7'yy is a
collineation of quotient spaces,
vt gyt s Ly — L)
is extendable to a collineation, say o, of the plane g” onto itself. We have
FNT - TU £ N T,
U7 % g7 NUY,
T"X7 = U"X" (X € g\ {T\U})

and
¢ ={X'{X'} =2'na" 2" e L}
Since any two distinct points of g form a closed set, no three points of ¢g”
are collinear. We read off from Lemma 1 that o is projective, whence g” is a
regular conic.O
We remark that v:'y; is a projective collineation of quotient spaces.

Proposition 3.4 Let (Fy, Py, ..., P,, E) be an ordered frame of PG(n, F),
n > 2, and let v be a regular quadratic embedding. Write Q)), := PY, E' :=
E, and Q;; for the common point of the tangent lines of the conic (PP;)"
at P/ and P}, i,j € {0,1,...,n},i# j. Then

(@0 <i<j<nyu{E) (13)

is a frame of PG(n/, F).



Proof For anyi,j € {0,1,...,n},i < j, take a P;; € B,P;\ {P,;, P;}. Then
{Q00, Q115 - -+ Q@ JU{P0 < i < j < n}is a basis of PG(n/, F) by Theorem
L. Since Q;, Q;, P, Qi; is a plane quadrangle, the exchange lemma yields
that
B :={Q;0<i<j<n}
is a basis of PG(n/, F').
Define hyperplanes

T = {Plk €{0,1,...,n}\ {i}} C P,

and X! := T (cf. (11)) for i € {0,1,...,n}. Obviously Q' € &; for all
J,k€{0,1,...,n}\ {i}. Moreover, if j € {0,1,...,n}\ {i}, then

{Q;za ;j7 g'j}m‘)(‘i/

is the tangent line of the conic (F;P;)” at P} = Q’;, so that Q;; € &]. We
infer that

X =B\ {Qu}-
Now E ¢ 7; implies £/ ¢ &. Finally, 7; U7 is a closed set not containing
E. Hence

E' ¢ (T, UT)" =B\ {Q}}
This completes the proof.0

Theorem 3 Ifv is a reqular quadratic embedding of PG(n, F') into PG(n', F),

n>2n = (”;2> — 1 and p denotes the quadratic Veronese embedding, then

there ezists a collineation k of PG(n', F') such that v = pk.

Proof We adopt the notation of Prop. 3.4. The coordinates with respect
to (P, Py,..., P, E) of a point X € P are written as F(zo,z1,...,2,), and
the coordinates of X” with respect to (Qfy, Qb1s- - - Qhny, E) (cf. (13)) are
denoted by F (o0, Yo1, - - - » Ynn)- In order to simplify notation we put y;; = y;;
for i > 7.

Choose an index i € {0,1,...,n} and set

gz/ = {Q;‘m ;17"'7 ;n}

Hence &/ is a complement of 7" (cf. the proof of Prop. 3.4) and, by Prop. 3.2,
we obtain a collineation g; : P — & with P; — @}, (j € {0,1,...,n}) and
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E — E!, where {E!} := {E'}VTY)NE.. So, by taking (Qly, Q% - .., Q., EL)
as frame of reference in £, we obtain that X% has coordinates

F(xgt, 2y, .. 2)

with a; € Aut(F).

If j € {0,1,...,n}, then V{—ill/Tj is a projective collineation, as has been
remarked after Prop. 3.3. Hence also 3; 15]- is projective. Thus 3; and (3,
belong to the same automorphism o := «; € Aut(F).

Now we compare the coordinates of X, X, X%: If z; # 0, then { X"} =
({X¥} VT?)NE!. Hence there exists an element ¢; € F \ {0} such that

_ a _ a _ o
Yio = CiZy, Yi1 = Gy, .., Yin = GTy.

If, moreover, x; # 0, 7 € {0,1,...,n}\ {i}, then

LY Ui
(A 9 9
whence, by vi; = y;i,
G 3
¢ xf
If x; =0, then y;0 = yi1 = ... = y;n = 0. Thus we have
F(yoos Yous - - - Ynn) = Flagag, x5at, ... apan).

Now letting x be that collineation of PG(n/, F') which transforms each coor-
dinate under a completes the proof.0
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