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Abstract

The quadratic Veronese embedding ρ maps the point set P of
PG(n, F ) into the point set of PG(

(n+2
2
)
− 1, F ) (F a commutative

field) and has the following well-known property: If M ⊂ P, then
the intersection of all quadrics containing M is the inverse image of
the linear closure of Mρ. In other words, ρ transforms the closure
from quadratic into linear. In this paper we use this property to de-
fine “quadratic embeddings”. We shall prove that if ν is a quadratic
embedding of PG(n, F ) into PG(n′, F ′) (F a commutative field), then
ρ−1ν is dimension-preserving. Moreover, up to some exceptional cases,
there is an injective homomorphism of F into F ′. An additional regu-
larity property for quadratic embeddings allows us to give a geometric
characterization of the quadratic Veronese embedding.

1 Introduction

The aim of this paper is to examine geometric properties of a quadratic
embedding, i.e. a mapping between projective spaces sharing some properties
of the classical quadratic Veronese embedding. We follow an approach that
has been used in discussing embeddings of Grassmann spaces (cf. [6] and
[16]) and product spaces (cf. [17]). See also [8, chapter 25] for combinatorial
characterizations of Veronese varieties over finite fields.

Let F be a commutative field and (P ,L) := PG(n, F ). Write

Φ := {S ⊂ P| S is a quadric of PG(n, F )} ∪ {P}.
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If M⊂ P , then the quadratic closure of M is

M :=
⋂

M⊂S,S∈Φ
S.

We call M a closed set if M =M. The linear closure of a set M of points
will be denoted by M. Each hyperplane of PG(n, F ) is a quadric, namely a
repeated hyperplane. Hence M⊂M⊂M.

Definition 1 Let (P,L) := PG(n, F ) and (P ′,L′) := PG(n′, F ′), where the
field F is commutative. A mapping ν : P → P ′ is a quadratic embedding if

M = (Mν)ν
−1

for all M⊂ P, (1)

and
im ν = P ′. (2)

We give some examples of quadratic embeddings:

Example 1 The classical quadratic Veronese embedding ρ is defined in the
case F ′ = F , n′ =

(
n+2

2

)
− 1, by

F (x0, . . . , xn) ρ7−→ F (yij)0≤i≤j≤n, with yij := xixj.

There are many equivalent definitions. Cf., e.g., [5], [7], [9].

Example 2 Let n′ =
(
n+2

2

)
− 1. If α : F → F ′ is an injective homomor-

phism, then α induces a canonical embedding ε of PG(n′, F ) into PG(n′, F ′).
The mapping ρε turns out to be a quadratic embedding. Since there are
examples of fields admitting an injective, but not surjective homomorphis-
m α : F → F , there exist quadratic embeddings different from the classical
one, even if we demand that F and F ′ are isomorphic.

Example 3 If n = 1 then M ⊂ P is closed if, and only if, |M| ≤ 2 or
M = P. Thus a mapping ν : P → P ′ is a quadratic embedding if, and only
if, n′ = 2, ν is injective and im ν is an arc.

Example 4 If PG(n, F ) = PG(2, 2) and F is a frame in PG(5, F ′) then any
injection ν : P → P ′ such that im ν = F is a quadratic embedding. This is
immediate from the fact that each subsetM of P is closed, unless |M| = 6.
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2 Properties of quadratic embeddings

In this section ν is a quadratic embedding of PG(n, F ) = (P ,L) (n ≥ 1) into
PG(n′, F ′) = (P ′,L′).

Proposition 2.1 Let K1 and K2 be two distinct closed sets in PG(n, F ).
Then Kν1 6= Kν2 . Consequently, the mapping ν is injective and satisfies

M
ν

=Mν ∩ im ν for all M⊂ P . (3)

If U ′ ⊂ P ′ is a subspace, then U ′ν−1 ⊂ P is a closed set.

Proof By the definition of a quadratic embedding,

(Kν1)ν
−1

= K1 = K1 6= K2 = K2 = (Kν2)ν
−1
,

so that Kν1 6= Kν2 . Moreover, ν is injective, since any subset of P with a single
element is closed. Hence (3) is true. Finally, let M := U ′ν−1 . Then

M = (Mν)ν
−1 ⊂ U ′ν−1

=M.2

Theorem 1 If ν is a quadratic embedding of PG(n, F ) into PG(n′, F ′), then
n′ =

(
n+2

2

)
− 1.

Proof Define δ(t) :=
(
t+2

2

)
, t ∈ IN. Let {e0, . . . , en} be a basis of F n+1 and

X := {F (ei + ej)|0 ≤ i < j ≤ n} ∪ {Fei|i = 0, . . . , n}.

Since |X | = δ(n) and X = P , we have im ν ⊂ X ν , hence

n′ ≤ δ(n)− 1. (4)

We now prove that in (4) the equality holds. We give a definition, by
recursion on d = 0, . . . , n, of distinct closed sets in PG(n, F ), say Kδ(d−1),
Kδ(d−1)+1, . . . , Kδ(d)−1, such that

Kδ(d−1) ⊂ Kδ(d−1)+1 ⊂ . . . ⊂ Kδ(d)−1,

with dU := Kδ(d)−1 being a d-subspace of PG(n, F ). For d = 0, choose a
point Q and let K0 = 0U := {Q}. Now let d > 0 and Kδ(d−1)−1 = d−1U . Take
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a d-subspace dU containing d−1U and a basis B = {P0, . . . , Pd} of dU such
that d−1U ∩ B = ∅. Since the union of two subspaces of PG(n, F ) is a closed
set, we can define

Kδ(d−1)+i := d−1U ∪ {P0, . . . , Pi}, i ∈ {0, . . . , d}.

By Prop. 2.1,
∅ ⊂ Kν0 ⊂ Kν1 ⊂ . . . ⊂ Kνδ(n)−1

is a chain of distinct subspaces of PG(n′, F ′).2

Proposition 2.2 If M ⊂ P, then dim(Mν) is equal to the largest i ∈ IN,
such that there exists a chain

∅ ⊂ K0 ⊂ K1 ⊂ . . . ⊂ Ki =M, (5)

consisting of i + 2 distinct closed subsets of M. Consequently, dim(Mν) =
dim(Mρ), where ρ denotes the quadratic Veronese embedding.

Proof By Prop. 2.1, the subspaces Kν0 , Kν1 , . . . , Kνi are distinct and

Kνi =Mν ∩ im ν =Mν ,

whence dim(Mν) ≥ i.
Now assume dim(Mν) > i. Then there exists an integer j, 0 ≤ j < i,

such that
dim(Kνj+1) 6= dim(Kνj ) + 1.

Let P ∈ Kνj+1 \ Kνj . Then K := ({P} ∪ Kνj )ν
−1 is a closed set (cf. Prop. 2.1),

and Kj ⊂ K ⊂ Kj+1, K 6= Kj. The maximality of the chain (5) implies
K = Kj+1. Therefore

dim(Kνj+1) = dim({P} ∪ Kνj ) = dim(Kνj ) + 1,

a contradiction.2

Proposition 2.3 If T is a hyperplane of PG(n, F ) and M⊂ P \ T , then

dim((T ∪M)ν) =
(
n+ 1

2

)
+ dim(M). (6)
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Proof By Theorem 1, dim(T ν) =
(
n+1

2

)
− 1. If B = {P0, . . . , Pt} ⊂ M is a

basis of M, then the closed sets

Ki := T ∪ {P0, . . . , Pi}, i ∈ {0, . . . , t},

form a saturated chain
T ⊂ K0 ⊂ . . . ⊂ Kt.

Now the assertion is a consequence of Theorem 1 and Prop. 2.2.2

Proposition 2.4 Let T be a hyperplane of PG(n, F ). If T ν and E ′ are
complementary subspaces of PG(n′, F ′), then the mapping

ι : P \ T −→ E ′ : A 7−→ (T ∪ {A})ν ∩ E ′ (7)

has the following property:

dim(M) = dim(Mι) for all M⊂ P \ T . (8)

Consequently, ι is preserving both collinearity and non-collinearity of points.
So, the mapping ι is a (linear) embedding of the affine space P \ T into the
projective space E ′.

Proof By (6), dim T ν =
(
n+1

2

)
− 1, whence dim E ′ = n. Applying (6) again

yields

dim(Mι) = dim(T ν ∪Mν ∩ E ′) = dim(T ν ∪Mν)− (dim(T ν) + 1)
= dim(M).2

Proposition 2.5 Let |F | > 2 and n ≥ 2. If |F | 6= 3 or n 6= 2, then the
embedding (7) can be extended to exactly one embedding β : P → E ′.

Proof The case n = 2 is dealt with in [12]. The case |F | > 3 is covered by
[2, Theorem 3.5]. Thus only |F | = 3 and n > 2 remains open. For F ′ being
finite, the assertion follows from a result in [10, chapitre 2.3] (cf. also [11,
théorème 1]), and by slight modifications, this carries over to an infinite F ′.

On the other hand we sketch a direct proof for n > 2: Let P ∈ T . If
g, h ∈ L and P ∈ g∩h, then the lines (g \ {P})ι and (h \ {P})ι are coplanar
by Prop. 2.4. Since there exist three non coplanar lines through P , all lines
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of the kind (g \ {P})ι, with P ∈ g, share one point P ′ ∈ E ′. Then we define
P β := P ′. By repeatedly using Prop. 2.4, we have that β is an embedding.
The restriction of β to a plane A of P , not contained in T , is an extension
of ι|(A \ T ), and thus we obtain the uniqueness of β.2

As a corollary, we have:

Theorem 2 Let |F | > 2 and n ≥ 2. If |F | 6= 3 or n 6= 2, then the existence
of a quadratic embedding of PG(n, F ) into PG(n′, F ′) implies that the field
F is isomorphic to a subfield of F ′.2

Whenever for some fixed hyperplane T ⊂ P and an adequately chosen
subspace E ′ ⊂ P ′ the mapping (7) is uniquely extendable to an embedding
β : P → E ′, then T gives rise to an embedding

νT : P −→ P ′/T ν : X 7−→ {Xβ} ∨ T ν ; (9)

here P ′/T ν denotes the point set of the quotient space PG(n′, F ′) modulo T ν .
Moreover, we can associate with T the following hyperplane of PG(n′, F ′):

T ν ∪ T β =: H′T .

Both definitions do not depend on the choice of E ′. Since H′T ∩E ′ ∩ im ι = ∅,
we have

(H′T )ν
−1

= T . (10)

Proposition 2.6 Let Σ be the collection of all hyperplanes of PG(n, F ). If
H′T is well defined for all T ∈ Σ, then

ν̂ : Σ −→ Σ′ : T 7−→ H′T (11)

is an injective mapping.2

The previous results give sufficient conditions for the existence of the
mapping ν̂.

3 Regular quadratic embeddings

In the following we shall assume that ν is a quadratic embedding of PG(n, F ),
n ≥ 1, into PG(n′, F ′), n′ =

(
n+2

2

)
− 1.
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Definition 2 A quadratic embedding ν is called (P, `)-regular if there exists
an incident point-line pair (P, `) of PG(n, F ) such that the plane arc `ν has
a unique unisecant line which is running through P ν and contained in the
plane `ν. If ν is (P, `)-regular for all incident pairs (P, `), then ν is said to
be a regular quadratic embedding.

Proposition 3.1 Suppose that n ≥ 2 and that ν is (P, `)-regular. Then ν is
regular.

Proof By n ≥ 2, there exists a hyperplane T of PG(n, F ) such that P ∈ T ,
` 6⊂ T . Define an embedding ι : P \ T → E ′ according to (7). The (P, `)-
regularity of ν implies that

|(` \ {P})ι \ (` \ {P})ι| = 1. (12)

If the settings of Prop. 2.5 are true, then ι extends to an embedding
β : P → E ′ with `β = (` \ {P})ι by (12). Hence β is a collineation.

Otherwise |F | =: p ∈ {2, 3} so that |F ′| = p by (12). If X ∈ P \ T , then
there is a certain number of lines through X and on each such line there are
p points of P \T . In E ′ the same number of lines is running through X ι and,
by Prop. 2.4, there are p points of im ι on each such line. This in turn means
that on each line in E ′ through a point of E ′ \ im ι there is either no point
of im ι or no other point of E ′ \ im ι, whence E ′ \ im ι is a subspace. More
precisely, T ′ := E ′ \ im ι is a hyperplane of E ′. Two distinct lines of the affine
space P \ T are parallel if, and only if, they are disjoint and coplanar. By
Prop. 2.4 these properties carry over to the ι-images of these lines, whence ι
is an affinity of P \ T onto E ′ \ T ′. (This is trivial when p = 3.) Thus ι is
also extendable to a collineation β : P → E ′ if Prop. 2.5 cannot be applied.

Next choose any point X1 ∈ T and any line `1 6⊂ T , X1 ∈ `1. Then
({Xβ

1 } ∨ T ν)∩ `ν1 is the only unisecant of `ν1 at Xν
1 within the plane `ν1, since

|(`1 \ {X1})ι\(`1\{X1})ι| = 1. Hence ν is (X1, `1)-regular. Repeatedly using
this last idea yields that ν is regular.2

As an immediate consequence of the proof of Prop. 3.1 we have

Proposition 3.2 Let ν be a regular quadratic embedding and n ≥ 2. Choose
any hyperplane T ⊂ P. Then the embedding ι : P \ T → E ′, defined ac-
cording to (7), is extendable to a unique collineation β : P → E ′. Conse-
quently, F and F ′ are isomorphic fields, and νT : P → P ′/T ν (cf. (9)) is a
collineation.2
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If n = 1, then the (P, `)-regularity of ν implies

|F | = |` \ {P}| = |`ν \ {P ν}| = |F ′|.

This does not imply, however, that ν is regular. If n = 1 and ν is regular,
then im ν obviously is an oval but not necessarily a conic. Cf. [3, 4, 14] for
topological conditions that force an oval to be a conic.

These results can be improved if we assume that |F | =: q is finite. Then
n = 1 and ν being (P, `)-regular yield |F | = |F ′| = q so that im ν is a (q+1)-
arc in PG(2, F ′) ∼= PG(2, q). Hence im ν is an oval, which in turn shows that
ν is regular. Moreover, by Segre’s theorem, im ν is a (regular) conic if q is
odd; the last result is also true when q ∈ {2, 4}.

The case n = 1 is excluded from our further discussions. Hence we may
assume without loss of generality that F = F ′, by virtue of Prop. 3.2.

The following result will be used in order to characterize the ν-images of
lines.

Lemma 1 Let P0 and P2 be two distinct points of PG(2, F ) and let σ be a
collineation of PG(2, F ) taking P0 to P2, but not fixing the line P0P2. Then

C := {X|{X} = x ∩ xσ, x is a line through P0}

is containing three distinct collinear points if, and only if, σ is a non-projective
collineation.

Proof If σ is projective, then C is a regular conic, whence it does not contain
three distinct collinear points.

If σ is not projective, then let α ∈ Aut(F ) be the companion automor-
phism of σ. Set

{P1} := (P0P2)σ
−1 ∩ (P0P2)σ.

Choose some line e running through P0 but not containing P1 or P2 and define
{E} := e∩eσ. Then (P0, P1, P2, E) is an ordered quadrangle; we may assume
that this is the standard frame of reference. A straightforward calculation
yields

C = {F (u0u
α
0 , u0u

α
1 , u1u

α
1 )|(0, 0) 6= (u0, u1) ∈ F 2}.

By α 6= idF , there exists an element c ∈ F with c 6= cα. Define v ∈ F via
c = vααcα. Thus v 6= 0, 1 and F (1, 1, 1), F (1, vα, vvα) are distinct points of
C. With

w :=
1 + vvαc

1 + vαc
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we obtain
1

1 + c
(1, 1, 1) +

c

1 + c
(1, vα, vvα) = (1, wα, wwα),

whence C is containing three distinct collinear points.2

Proposition 3.3 If g is a line of PG(n, F ), n ≥ 2, and ν is a regular
quadratic embedding, then gν is a regular conic.

Proof Choose hyperplanes T , Ǔ ⊂ P such that g ∩ T ∩ Ǔ = ∅. Set {T} :=
g ∩ T and define a collineation νT according to (9). Write

L′T := {x′ ∈ L′|T ν ∈ x′ ⊂ gν}

and
πT : L′T −→ gνT : x′ 7−→ x′ ∨ T ν .

This πT is a projectivity from a pencil of lines onto a pencil of subspaces.
Replacing T by Ǔ gives a point U and a projectivity πU . Since ν−1

T νǓ is a
collineation of quotient spaces,

πTν
−1
T νǓπ

−1
U : L′T −→ L′U

is extendable to a collineation, say σ, of the plane gν onto itself. We have

gν ∩ T ν̂ σ7−→ T νUν 6= gν ∩ T ν̂ ,
T νUν σ7−→ gν ∩ Ǔ ν̂ ,
T νXν σ7−→ UνXν (X ∈ g \ {T, U})

and
gν = {X ′|{X ′} = x′ ∩ x′σ, x′ ∈ L′T}.

Since any two distinct points of g form a closed set, no three points of gν

are collinear. We read off from Lemma 1 that σ is projective, whence gν is a
regular conic.2

We remark that ν−1
T νǓ is a projective collineation of quotient spaces.

Proposition 3.4 Let (P0, P1, . . . , Pn, E) be an ordered frame of PG(n, F ),
n ≥ 2, and let ν be a regular quadratic embedding. Write Q′ii := P ν

i , E ′ :=
Eν, and Q′ij for the common point of the tangent lines of the conic (PiPj)ν

at P ν
i and P ν

j , i, j ∈ {0, 1, . . . , n}, i 6= j. Then

{Q′ij|0 ≤ i ≤ j ≤ n} ∪ {E ′} (13)

is a frame of PG(n′, F ).
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Proof For any i, j ∈ {0, 1, . . . , n}, i < j, take a Pij ∈ PiPj \ {Pi, Pj}. Then
{Q′00, Q

′
11, . . . , Q

′
nn}∪{P ν

ij|0 ≤ i < j ≤ n} is a basis of PG(n′, F ) by Theorem
1. Since Q′ii, Q

′
jj, P

ν
ij, Q

′
ij is a plane quadrangle, the exchange lemma yields

that
B′ := {Q′ij|0 ≤ i ≤ j ≤ n}

is a basis of PG(n′, F ).
Define hyperplanes

Ti := {Pk|k ∈ {0, 1, . . . , n} \ {i}} ⊂ P,

and X ′i := T ν̂i (cf. (11)) for i ∈ {0, 1, . . . , n}. Obviously Q′jk ∈ X ′i for all
j, k ∈ {0, 1, . . . , n} \ {i}. Moreover, if j ∈ {0, 1, . . . , n} \ {i}, then

{Q′ii, Q′ij, Q′jj} ∩ X ′i

is the tangent line of the conic (PiPj)ν at P ν
j = Q′jj, so that Q′ij ∈ X ′i . We

infer that
X ′i = B′ \ {Q′ii}.

Now E 6∈ Ti implies E ′ 6∈ X ′i . Finally, Ti ∪ Tj is a closed set not containing
E. Hence

E ′ 6∈ (Ti ∪ Tj)ν = B′ \ {Q′ij}.
This completes the proof.2

Theorem 3 If ν is a regular quadratic embedding of PG(n, F ) into PG(n′, F ),
n ≥ 2, n′ =

(
n+2

2

)
− 1 and ρ denotes the quadratic Veronese embedding, then

there exists a collineation κ of PG(n′, F ) such that ν = ρκ.

Proof We adopt the notation of Prop. 3.4. The coordinates with respect
to (P0, P1, . . . , Pn, E) of a point X ∈ P are written as F (x0, x1, . . . , xn), and
the coordinates of Xν with respect to (Q′00, Q

′
01, . . . , Q

′
nn, E

′) (cf. (13)) are
denoted by F (y00, y01, . . . , ynn). In order to simplify notation we put yij := yji
for i > j.

Choose an index i ∈ {0, 1, . . . , n} and set

E ′i := {Q′i0, Q′i1, . . . , Q′in}.

Hence E ′i is a complement of T νi (cf. the proof of Prop. 3.4) and, by Prop. 3.2,
we obtain a collineation βi : P → E ′i with Pj 7→ Q′ij (j ∈ {0, 1, . . . , n}) and
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E 7→ E ′i, where {E ′i} := ({E ′}∨T νi )∩E ′i . So, by taking (Q′i0, Q
′
i1, . . . , Q

′
in, E

′
i)

as frame of reference in E ′, we obtain that Xβi has coordinates

F (xαi0 , x
αi
1 , . . . , x

αi
n )

with αi ∈ Aut(F ).
If j ∈ {0, 1, . . . , n}, then ν−1

Ti νTj is a projective collineation, as has been
remarked after Prop. 3.3. Hence also β−1

i βj is projective. Thus βi and βj
belong to the same automorphism α := αi ∈ Aut(F ).

Now we compare the coordinates of X, Xν , Xβi : If xi 6= 0, then {Xβi} =
({Xν} ∨ T νi ) ∩ E ′i . Hence there exists an element ci ∈ F \ {0} such that

yi0 = cix
α
0 , yi1 = cix

α
1 , . . . , yin = cix

α
n.

If, moreover, xj 6= 0, j ∈ {0, 1, . . . , n} \ {i}, then

ci =
yij
xαj
, cj =

yji
xαi

whence, by yij = yji,
ci
cj

=
xαi
xαj
.

If xi = 0, then yi0 = yi1 = . . . = yin = 0. Thus we have

F (y00, y01, . . . , ynn) = F (xα0x
α
0 , x

α
0x

α
1 , . . . , x

α
nx

α
n).

Now letting κ be that collineation of PG(n′, F ) which transforms each coor-
dinate under α completes the proof.2
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[9] H. Karzel: Über einen Fundamentalsatz der synthetischen algebra-
ischen Geometrie von W. Burau und H. Timmermann. J. Geom. 28
(1987), 86–101.

[10] M. Limbos: Plongements et Arcs Projectifs. Thèse Université Libre de
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