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Abstract

We introduce and investigate an equivalence relation called radical parallelism on

the projective line over a ring. It is closely related with the Jacobson radical of the

underlying ring. As an application, we present a rather general approach to non-linear

models of affine spaces and discuss some particular examples.
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1 Introduction

If two points of the projective line over a ring are non-distant then they are also said to
be parallel. This terminology goes back to the projective line over the real dual numbers,
where parallel points represent parallel spears of the Euclidean plane [1, 2.4]. In general,
this parallelism of points is not an equivalence relation. In the present article we shall
introduce another concept of “parallelism” on the projective line over a ring. In order to
avoid ambiguity we call this the radical parallelism, since it reflects the Jacobson radical of a
ring R in terms of the projective line over R. The two kinds of parallelism coincide exactly
for local rings.

The radical parallelism is defined and discussed in Section 2. There are several results on
the projective line over a local ring which can be generalized to an arbitrary ring R as
follows: Consider radically parallel points instead of parallel points and the Jacobson radical
of R instead of the only maximal ideal of a local ring. For example, the radical parallelism
is always an equivalence relation. It is the equality relation if, and only if, radR = {0}.
Next, in Section 3, we consider a K-algebra R and the associated affine chain geometry.
Its automorphism group contains bijective transformations R → R (without “exceptional
points”) which are not affine transformations, provided that radR 6= {0} and K 6= GF(2). In
particular, when dimK R is finite, then these mappings are birational, i.e., they are Cremona
transformations.

We may regard R as an affine space over K and fix one of the non-affine transformations
from the above. Then R together with the images of the lines under this transformation
yields a non-linear model of the affine space R over K. Two particular cases of such models
are investigated in detail. The first example arises from the ring of dual numbers over K. It
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yields, for K = R, the well-known parabola model of the real affine plane; cf. [12, p. 67]. For
an arbitrary ground field K, a similar parabola model is described. However, some properties
of the parabola model of the real affine plane do not hold any more if K has characteristic
2. This is due to the fact that in this case all tangent lines of a parabola are parallel. The
second example is based upon the three-dimensional K-algebra of upper 2× 2-matrices over
K. As before, we obtain a kind of “parabola model” which can be easily described in terms
of the associated chain geometry.

Throughout this paper we shall only consider associative rings with a unit element 1, which
is inherited by subrings and acts unitally on modules. The trivial case 1 = 0 is excluded.
The group of invertible elements of a ring R will be denoted by R∗.

Let us recall the definition of the projective line over a ring R: Consider the free left R-
module R2. Its automorphism group is the group GL2(R) of invertible 2 × 2-matrices with
entries in R. A pair (a, b) ∈ R2 is called admissible, if there exists a matrix in GL2(R) with
(a, b) being its first row. Following [8, p. 785], the projective line over R is the orbit of the
free cyclic submodule R(1, 0) under the action of GL2(R). So

P(R) := R(1, 0)GL2(R)

or, in other words, P(R) is the set of all p ⊂ R2 such that p = R(a, b) for an admissible pair
(a, b) ∈ R2. Two such pairs represent the same point exactly if they are left-proportional by
a unit in R. We adopt the convention that points are represented by admissible pairs only.
(Cf. [5, Proposition 2.1] for the possibility to represent points also by non-admissible pairs.)

The point set P(R) is endowed with the symmetric and anti-reflexive relation distant (4)
defined by

4 := (R(1, 0), R(0, 1))GL2(R).

Letting p = R(a, b) and q = R(c, d) gives then

p4 q ⇔

(

a b
c d

)

∈ GL2(R).

The vertices of the distant graph on P(R) are the points of P(R), two vertices of this graph
are joined by an edge if, and only if, they are distant. Given a point p ∈ P(R) let

P(R)p := {x ∈ P(R) | x4 p}

be the neighbourhood of p in the distant graph.

We shall no longer use the term “parallel points” in the present paper, but we speak instead
of “non-distant points” (64). The sign ‖ will be used for the radical parallelism which is
defined below.

The Jacobson radical of a ring R, denoted by radR, is the intersection of all the maximal
left (or right) ideals of R. It is a two sided ideal of R and its elements can be characterized
as follows:

b ∈ radR ⇔ 1− ab ∈ R∗ for all a ∈ R ⇔ 1− ba ∈ R∗ for all a ∈ R; (1)

see [10, pp. 53–54].

2



2 Radical parallelism

A point p ∈ P(R) is called radically parallel to a point q ∈ P(R) if

x4 p ⇒ x4 q (2)

holds for all x ∈ P(R). In this case we write p ‖ q. Clearly, the relation ‖ is reflexive and
transitive; we shall see in due course that ‖ is in fact an equivalence relation.

Each matrix γ ∈ GL2(R) determines an automorphism P(R)→ P(R) : p 7→ pγ of the distant
graph. Hence, by definition,

p ‖ q ⇔ pγ ‖ qγ (3)

holds for all p, q ∈ P(R) and all γ ∈ GL2(R).

The connection between the radical parallelism on P(R) and the Jacobson radical of R is as
follows:

Theorem 2.1 The point R(1, 0) is radically parallel to q ∈ P(R) exactly if there is an
element b in the Jacobson radical radR such that q = R(1, b).

Proof: We start with a characterization of radR in terms of matrices. For all a, b ∈ R we
have

(

1 b
0 1

)(

1− ba 0
a 1

)

=

(

1 b
a 1

)

. (4)

So, by (1), we get

b ∈ radR ⇔

(

1 b
a 1

)

∈ GL2(R) for all a ∈ R. (5)

Clearly, we have

P(R)R(1,0) = {x ∈ P(R) | x4R(1, 0)} = {R(a, 1) | a ∈ R}. (6)

So (5) shows immediately that R(1, 0) is radically parallel to every point q = R(1, b) with
b ∈ radR.

Conversely, suppose that R(1, 0) ‖ q. Then R(0, 1)4R(1, 0) implies R(0, 1)4 q. So we may
set q = R(1, b) with b ∈ R. Now (6) and R(1, 0) ‖ q imply that the right hand side of (5) is
fulfilled, whence b ∈ radR. ¤

In order to obtain an alternative description of the radical parallelism we consider the factor
ring R/radR =: R and the canonical epimorphism R→ R : a 7→ a+ radR =: a. It has the
crucial property

a ∈ R∗ ⇔ a ∈ R ∗ (7)

for all a ∈ R; cf. [10, Proposition 4.8].

Now we turn to the corresponding projective lines. The mapping

P(R)→ P(R) : p = R(a, b) 7→ R(a, b) =: p (8)
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is well defined and surjective [5, Proposition 3.5]. Furthermore, as a geometric counterpart
of (7) we have

p4 q ⇔ p4 q (9)

for all p, q ∈ P(R), where we use the same symbol to denote the distant relations on P(R)
and on P(R), respectively. See [5, Propositions 3.1, 3.2].

Theorem 2.2 The mapping given by (8) has the property

p ‖ q ⇔ p = q (10)

for all p, q ∈ P(R).

Proof: Let q = R(c, d) ∈ P(R). Then (7) shows that R(1, 0) = q if, and only if, c ∈ R∗ and
d ∈ radR or, equivalently, q = R(1, b) with b := c−1d ∈ radR. So from Theorem 2.1 we get

R(1, 0) ‖ q ⇔ R(1, 0) = q (11)

for all q ∈ P(R). Now consider arbitrary points p, q ∈ P(R). There is a matrix γ ∈ GL2(R)
with pγ = R(1, 0). We have

rγ = r γ (12)

for all r ∈ P(R), where γ ∈ GL2(R) is obtained by applying the canonical epimorphism to
the entries of the matrix γ ∈ GL2(R); cf. [5, Proposition 3.1]. With (3), (11), and (12) we
conclude

p ‖ q ⇔ pγ = R(1, 0) ‖ qγ ⇔ pγ = R(1, 0) = qγ ⇔ pγ = qγ ⇔ p = q. (13)

This completes the proof. ¤

As an immediate consequence of Theorem 2.2 we obtain:

Corollary 2.3 The radical parallelism ‖ on the projective line over a ring is an equivalence
relation.

In particular, ‖ is a symmetric relation despite its (seemingly asymmetric) definition in
formula (2). Since p ‖ q means that the neighbourhood of p in the distant graph is a subset
of the neighbourhood of q, we get, by virtue of this symmetry:

Corollary 2.4 The neighbourhood of a point p ∈ P(R) in the distant graph cannot be a
proper subset of the neighbourhood of a point q ∈ P(R).

Furthermore, we have
#{x ∈ P(R) | x ‖ p} = #radR (14)

for all p ∈ P(R); in fact, Theorem 2.1 implies that (14) holds for p = R(1, 0), whence the
assertion follows from the transitive action of GL2(R) on P(R) and (3). Thus the “size” of
radR can be recovered from the distant graph on P(R) as the cardinality of an (arbitrarily
chosen) class of radically parallel points. In particular, ‖ is the equality relation if, and only
if, radR = {0}.
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Another easy consequence of (9) and Theorem 2.2 is

p ‖ q ⇔ p = q ⇒ p 64 q ⇔ p 64 q (15)

for all p, q ∈ P(R). Note that here our assumption 1 6= 0 is essential, since it guarantees
that 4 is an antireflexive relation. (The only point of the projective line over the zero-ring
is distant to itself.) In general, however, the converse of (15) is not true:

Theorem 2.5 The relations “radically parallel” and “non-distant” on P(R) coincide if, and
only if, R is a local ring.

Proof: Since GL2(R) acts transitively on P(R) and leaves 4 and ‖ invariant, it suffices to
characterize those rings where

{x ∈ P(R) | R(1, 0) 64 x} = {x ∈ P(R) | R(1, 0) ‖ x}. (16)

Furthermore, we recall the following property: If a pair (a, b) ∈ R2 is admissible and so the
first row of an invertible matrix, then the first column of the inverse matrix shows that (a, b)
is unimodular, i.e., there are a′, b′ ∈ R such that aa′ + bb′ = 1.

Now let R be local. Then R \ R∗ = radR, since this is the only maximal left ideal in R;
see [10, Theorem 19.1]. The previous remark on unimodularity, applied to the local ring R,
shows that at least one entry of each admissible pair (a, b) ∈ R2 is a unit. From this we get
that a point x ∈ P(R) satisfies R(1, 0) 64 x if, and only if, x = R(1, b) with b ∈ radR. But
this is equivalent to R(1, 0) ‖ x by Theorem 2.1.

Conversely, suppose that (16) holds. Choose any non-unit b ∈ R. Then R(1, b) is a point
and R(1, 0) 64R(1, b) implies b ∈ radR by Theorem 2.1. Hence R \ R∗ ⊂ radR and, since
radR ⊂ R \ R∗ holds trivially, R \ R∗ = radR is a two-sided ideal. But this means that R
is a local ring. ¤

Corollary 2.3, Corollary 2.4, and (14) generalize well-known results on the projective line
over a local ring. Cf. [8, Proposition 2.4.1].

3 Non-linear models of affine spaces

In this section R is a ring and K 6= R is a field contained in the centre of R. So R is
an algebra over K with finite or infinite dimension. The point set of the chain geometry
Σ(K,R) is the projective line over R, the chains are the K-sublines of P(R); cf. [8, p. 790].

We fix the point R(1, 0) =:∞. By (6), the mapping

ι : R→ P(R)∞ : z 7→ R(z, 1) (17)

is a bijection. We consider R as an affine space over K.

For each subset S ⊂ P(R) let (S ∩ P(R)∞)ι
−1

be the affine trace of S. The affine traces of
the chains through ∞ are precisely the so-called regular lines Ku + v (u ∈ R∗, v ∈ R); cf.
[8, Proposition 3.5.3]. By reversing the order of the coordinates in Theorem 2.1, we obtain

(radR)ι = {x ∈ P(R) | x ‖ R(0, 1)},
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whence radR is the affine trace of {x ∈ P(R) | x ‖ R(0, 1)}. One can easily check that the
affine trace of {x ∈ P(R) | x 64R(0, 1)} equals R \ R∗. In general, however, (R \ R∗)ι is not
equal to {x ∈ P(R) | x 64R(0, 1)}. Let, for example, R = R+Rj be the ring of real anormal-
complex numbers, where j2 = 1 and j /∈ R; cf. [1, p. 44]. Then R(1− j, 1 + j) 64R(0, 1), but
R(1− j, 1 + j) /∈ Rι, because 1 + j is not invertible.

Each matrix γ ∈ GL2(R) defines an automorphism of the chain geometry Σ(K,R). Let us
write Dγ for the set of all points z ∈ R such that zιγ ∈ P(R)∞. Then the mapping

γ′ : Dγ → R : z 7→ zιγι−1

(18)

is injective, but in general the domain and the image of γ ′ will be proper subsets of R.

Theorem 3.1 Let γ =
(

a b

c d

)

be a 2× 2-matrix over R. Then the following hold:

(a) The matrix γ is invertible and the corresponding mapping γ ′, given by (18), is defined
for all points of R if, and only if,

a, d ∈ R∗, and b ∈ radR. (19)

(b) If (19) is satisfied then the corresponding mapping γ ′ : R → R is an affine transfor-
mation for b = 0, and a non-affine bijective transformation for b ∈ radR \ {0} and
K 6= GF(2).

Proof: (a) Let γ ∈ GL2(R) and suppose that γ ′ is defined for all points of R. So we obtain

(P(R)∞)γ ⊂ P(R)∞. (20)

By definition, the distant relation 4 is invariant under GL2(R). Therefore (P(R)∞)γ =
P(R)∞γ , so that (20) is equivalent to R(a, b) = ∞γ ‖ ∞. Thus a ∈ R∗ and b ∈ radR by
Theorem 2.2. Furthermore, R(c, d)4R(a, b) ‖ ∞ yields R(c, d)4∞, so that d ∈ R∗.

Conversely, we infer from (19) that a− bd−1c ∈ R∗. Hence

(

−1 0
0 d

)(

1 −b
0 1

)(

−a+ bd−1c 0
d−1c 1

)

=

(

a b
c d

)

(21)

shows that γ ∈ GL2(R). It follows from d ∈ R∗, b ∈ radR, and (1) that zb + d ∈ R∗ for all
z ∈ R. Therefore γ yields the mapping

γ′ : R→ R : z 7→ (zb+ d)−1(za+ c) (22)

with domain Dγ = R.

(b) We deduce from (a) that (20) is satisfied. By Corollary 2.4, applied to the points ∞
and ∞γ , it follows that (P(R)∞)γ = P(R)∞γ = P(R)∞, whence the injective mapping γ ′ is
bijective. There are two cases:

If ∞ = ∞γ then b = 0. This implies that γ ′ : R → R : z 7→ d−1(za + c) is an affine
transformation; see also [8, Lemma 3.5.7].

6



If ∞ 6=∞γ then b ∈ radR \ {0}. We observe, as above, that the first and the third matrix
on the left hand side of (21) both yield affine transformations. Hence we may confine our
attention to the transformation

β′ : R→ R : z 7→ (1− zb)−1z (23)

arising from the second matrix in (21). Let now K 6= GF(2). Then there is an element
k ∈ K \ {0, 1}. The image of the line K under β ′ carries the points 0β

′

= 0, 1β
′

= (1− b)−1,
and kβ′ = (1 − kb)−1k. These points are non-collinear, since b ∈ radR \ {0} implies that
b /∈ K, whence 1− b and 1−kb are linearly independent over K. Thus β ′ cannot be an affine
transformation. ¤

The following example shows that we cannot drop the assumption K 6= GF(2) in Theorem
3.1 (b). Let R = GF(2) + GF(2)ε be the ring of dual numbers over GF(2), where ε2 = 0

and ε /∈ GF(2). The invertible matrix δ :=
(

1 ε

0 1 + ε

)

yields a transformation on P(R) that

interchanges ∞ with R(1, ε), but fixes the remaining four points of P(R). Hence δ ′ = idR is
an affine transformation, even though ∞δ 6=∞.

Suppose that γ ′ is a non-affine bijection according to Theorem 3.1 (b). We obtain a non-
linear model of the affine space on the K-vector space R by applying the bijection γ ′ to the
points and lines of this affine space. So we get a “new” space which has the same point set,
but the β ′-images of the “old” lines will be the lines in the “new” sense. In view of Theorem
3.1 (b), such non-linear models of affine spaces are possible whenever the radical of R is
non-zero and K 6= GF(2). It would be interesting to describe explicitly the “new lines” in a
purely geometric way. However, this is beyond the scope of this article. Below we just give
two examples, one of it generalizes the well-known parabola model of the real affine plane
[12, p. 67].

We have several distinguished subgroups of GL2(R) which, by Theorem 3.1, fix P(R)∞ as a
set. The commutative group

B :=
{

(

1 −b

0 1

)

| b ∈ radR
}

(24)

acts regularly on the set of points that are radically parallel to∞; cf. Theorem 2.1. For each
β ∈ B the induced mapping β ′ : R → R is given by (23). Next, there is the commutative
group

T :=
{

(

1 0
c 1

)

| c ∈ R
}

. (25)

Each τ ∈ T fixes ∞ and, by Theorem 3.1, it yields the translation τ ′ : R → R : z 7→ z + c.
Every translation of R arises in this way. A transformation τ ∈ T need not fix every point
p ‖ ∞. In fact, if τ is the matrix in formula (25) then p = R(1, b), with b ∈ radR, remains
fixed if, and only if,

bcb = 0. (26)

For a subset S ⊂ R let ann(S) := {a ∈ R | aS = Sa = 0} denote the annihilator of S in
R. So, for example, c ∈ ann(radR) implies that (26) is fulfilled for all b ∈ radR. Finally, a
straightforward calculation shows that

N :=
{

(

1 + n1 0
n2 1

)

| n1, n2 ∈ ann(radR) ∩ radR
}

(27)
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is a commutative subgroup of GL2(R). (Observe that (1 + n1)(1 − n1) = 1.) Each ν ∈ N
stabilizes∞ and, by Theorem 3.1, it determines an affinity ν ′ : R→ R : z 7→ z(1+n1)+n2.
The groups N and B have the property that

νβ = βν for all ν ∈ N and all β ∈ B. (28)

Every point p ‖ ∞ remains fixed under every transformation ν ∈ N . For, clearly, ∞ν = ∞
and, since p can be written as ∞β with β ∈ B, we obtain pν =∞βν =∞νβ = p from (28).

We adopt the notation B ′ := {β ′ | β ∈ B}; T ′ and N ′ are defined similarly.

In the remainder of this section, we suppose that m := dimK R is finite. Then the so-called
cone of singularity R \R∗ is an algebraic set; see [8, Remark 3.5.4]. Also, the affine trace of
a chain is an affine normal rational curve of degree ≤ m, provided that it has at least two
points in common with P(R)∞; see [8, Theorem 3.6.5]. According to [8, p. 804], the mappings
given in (18) are Cremona transformations ; cf. also [2] and [3, p. 129]. In particular, the
mappings described in Theorem 3.1 (b) are bijective Cremona transformations R→ R.

Let s be the dimension of the Jacobson radical of R. Then 1 /∈ radR implies s ≤ m− 1. All
elements of radR are nilpotent; see [10, Proposition 4.18]. Thus ys+1 = 0 for all y ∈ radR.
So, for each β ∈ B, formula (23) can be written in polynomial form as

β′ : R→ R : z 7→ (1 + zb+ · · ·+ (zb)s) z. (29)

The final part of this section is devoted to the investigation of two particular examples,
where we are able to describe explicitly the images of the lines under a fixed non-identical
transformation β ′ ∈ B′. It will be easy to show that non-regular lines go over to non-regular
lines and that the images of the regular lines are “certain” parabolas. Our main objective is
to make more precise this last statement. We rule out, however, the field with two elements
from our discussion, because in an affine space over GF(2) a parabola has only two points,
and it would take rather complicated formulations to include this case.

Example 3.2 Let R = K + Kε be the ring of dual numbers over K, where K 6= GF(2).
This is a local commutative ring, and its radical is Kε. The lines parallel to Kε are called
vertical. In formula (29) we may put z = z1 + z2ε and b = tε with z1, z2, t ∈ K. Thus we get

β′ : R→ R : (z1 + z2ε) 7→ z1 + (tz2
1 + z2)ε. (30)

We assume that t 6= 0. All non-regular lines or, said differently, all vertical lines are invariant
under β ′. In order to describe the images of the regular lines, we consider the group N ′.
Its transformations are obtained from (27) by substituting n1 = l1ε and n2 = l2ε, where
l1, l2 ∈ K, and this gives

ν ′ : R→ R : z1 + z2ε 7→ z1 + (z1l1 + z2 + l2)ε. (31)

Then, either l1 6= 0, whence ν ′ is a non-trivial shear with the vertical axis z1 = −l2/l1,
or l1 = 0, whence ν ′ is a vertical translation, i.e. a translation along the vertical line Kε.
Altogether, since l1 and l2 can be chosen arbitrarily in K, the transformations in N ′ are all
the shears with a vertical axis and all the vertical translations. From a projective point of
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view this is the group of all elations whose centre is the point at infinity of all the vertical
lines.

If L is a regular line then there is a ν ′ ∈ N ′ such that Lν′ = K; for if L and K are parallel
then ν ′ can be chosen as a vertical translation, and otherwise as a non-trivial shear whose
vertical axis contains the point K ∩ L. Hence the group N ′ acts transitively and, by the
commutativity of N ′, even regularly on the set of regular lines.

It is clear that the image under β ′ of the regular line K is a parabola C, say, with an equation
z2 = tz2

1 . By the transitivity of N ′ on the set of regular lines and by (28), the set of β ′-images
of the regular lines is the orbit of the parabola C under the action of the group N ′, i.e. the
set of all parabolas with an equation

z2 = tz2
1 + l1z1 + l2 with l1, l2 ∈ K. (32)

In projective terms this is a net of conics mutually osculating at the point at infinity of all
vertical lines.

For each translation τ ′ : z 7→ z+ c, c ∈ R, the point ∞β = R(1, tε) is fixed under τ , because
(tε)c(tε) = 0; cf. (26). But C is the affine trace of a chain through ∞β; so Cτ ′ is the affine
trace of a chain through∞βτ =∞β, whence, by the above, Cτ ′ ∈ CN ′ . Therefore CT ′ ⊂ CN ′ .
There are two cases:

If charK = 2 then CT ′ 6= CN ′ , since in this case for every parabola in CT ′ all its tangent
lines are parallel to the line K, whereas there is a non-trivial shear ν ′ ∈ N ′ which maps C
to a parabola whose mutually parallel tangent lines are not parallel to K.

Suppose now that charK 6= 2. Then equation (32) can be written in the form

z2 +
l21
4t
− l2 = t

(

z1 +
l1
2t

)2

.

Hence for each ν ′ ∈ N there exists a translation τ ′ ∈ T ′ with Cν′ = Cτ ′ . This is illustrated
(with ν ′ 6= τ ′) in Figure 1. (We just proved an affine version of a theorem on osculating
conics; see [6, 2.5.4] or [11, Satz 2].) Thus CT ′ = CN ′ . So the mapping (30) leads us in a
natural way to the aforementioned parabola model of the affine plane over K, charK 6= 2.
The point set of this model is the ring R; its line set consists of all vertical lines together
with all translates of the parabola C.

z1

z2

C

Cν′ = Cτ ′

Figure 1.

Observe that there is also a parabola model for charK = 2. However, since CT ′ 6= CN ′ , we
have to use all the vertical lines and the orbit of C under the group N ′ (rather than the
translation group) in order to obtain its line set.
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The paper [16] gives, for the real dual numbers, an explicit description and some applications
of the transformations described in Theorem 3.1 (b).

Example 3.3 Let R be the ring of upper triangular 2 × 2-matrices over K, where K 6=
GF(2). So, R has a K-basis

j1 :=
(

1 0
0 0

)

, j2 :=
(

0 0
0 1

)

, ε :=
(

0 1
0 0

)

.

There are two maximal ideals in R, namely Kj1 +Kε and Kj2 +Kε, and their union is the
cone of singularity. The radical is Kε. A line or plane is said to be vertical if it is parallel
to Kε. In formula (29) we may put z = z1j1 + z2j2 + z3ε and b = tε with z1, z2, z3, t ∈ K.
Thus we get

β′ : R→ R : z1j1 + z2j2 + z3ε 7→ z1j1 + z2j2 + (z3 + tz1z2)ε. (33)

We assume that t 6= 0. All vertical lines are invariant under β ′. Each point on the cone of
singularity remains fixed. Consider a plane which is parallel to one of the planes of the cone
of singularity. The restriction of β ′ to such a plane is a planar shear, fixing the intersection
of the plane with the cone of singularity. Hence all non-regular lines go over to non-regular
lines.

The group N ′ is obtained from (27) by putting n1 = l1ε and n2 = l2ε, where l1, l2 ∈ K. So
we get

ν ′ : R→ R : z1j1 + z2j2 + z3ε 7→ z1j1 + z2j2 + (z1l1 + z3 + l2)ε. (34)

If l1 6= 0 then ν ′ is a non-trivial admissible shear, i.e. a shear in the direction of Kε with an
axis parallel to the plane z1 = 0. In fact, the axis of ν ′ is the vertical plane z1 = −l2/l1. If
l1 = 0 then ν ′ is a vertical translation, i.e. a translation along the vertical line Kε. Altogether,
the transformations in N ′ are all the admissible shears and all the vertical translations. In
projective terms this is the group of all elations whose centre is the point at infinity of all
the vertical lines and whose axis is a plane through the line at infinity of all the planes
z1 = const.

z1
z2

z3

Figure 2.

z1
z2

z3

Figure 3.

Let P be the plane with equation z3 = 0. It is clear that P β′ is a hyperbolic paraboloid H
with equation z3 = tz1z2, and that the set of images of the regular lines in P is the set H
of all the parabolas contained in H. (Figure 2 shows, for K = R, the cone of singularity
and the plane P . In Figure 3 their images under β ′ are displayed.) As in Example 3.2,
the group N ′ operates regularly on the set of non-vertical lines in a vertical plane which is
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non-parallel to z1 = 0: If L is a regular line then there is a unique vertical plane VL through
L, and this plane is not parallel to z1 = 0. Thus there is a unique mapping ν ∈ N such that
Lν′ = VL ∩ P . So, by this action of N ′ and by (28), the set of β ′-images of the regular lines
is the union of all orbits CN ′ with C ∈ H.

An alternative description is possible using the translation group T ′. (The straightforward
calculations leading to the following results are left to the reader.) Fix a parabola C ∈ H
lying in the vertical plane V , say. Then V := {V τ ′ ∩ H | τ ′ ∈ T ′} is a set of parabolas. It
follows that each parabola in V is a translate of a parabola in CN ′ and vice versa. There are
two cases. If charK = 2 then no parabola in V \ {C} is a translate of C. If charK 6= 2 then
all parabolas in V are translates of C. (This is well known for K = R.)

Irrespective of charK, the β ′-images of the regular lines are—up to translations—precisely
the parabolas in H. Furthermore, if charK 6= 2 then this result remains true if H is replaced
by H0 := {C ∈ H | 0 ∈ C}. Also we obtain the following parabola model of the affine 3-space
over K. The point set of this model is the ring R; its line set consists of all non-regular lines
together with all translates of the parabolas in H (for arbitrary characteristic of K) or in
H0 (for charK 6= 2 only).

If K = R then R is isomorphic to the ring of real ternions. A detailed investigation of the
chain geometry over the real ternions can be found in [2].

The mappings discussed in Example 3.2 are closely related with the geometry of the isotropic
(or: Galilean) plane. Likewise, Example 3.3 leads to a three-dimensional Cayley-Klein ge-
ometry, namely the geometry of the pseudo-isotropic space. We refer, among others, to [13],
[17], [7, p. 136], and [14, p. 24].

The parabola model of the real affine plane is the starting point of the theory of shift planes.
See [15, p. 420]. Such a plane arises, for example, from the real affine plane if the vertical
lines and the translates of a curve which is in a certain sense “close to a parabola” are
defined to be the “new lines”. Similarly, it seems plausible that “in the neighbourhood” of
our parabola model of the real affine 3-space there could exist so called R

3-spaces (in the
sense of [4]) other than the real affine 3-space. The reader should consult [9] for results and
a lot of references on this interesting class of topological geometries.
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