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Abstract

We discuss representations of the projective line over a ring R with 1 in a projective
space over some (not necessarily commutative) field K. Such a representation is based
upon a (K,R)-bimodule U . The points of the projective line over R are represented
by certain subspaces of the projective space P(K,U ×U) that are isomorphic to one of
their complements. In particular, distant points go over to complementary subspaces,
but in certain cases, also non-distant points may have complementary images.
Mathematics Subject Classification (1991): 51C05, 51A45, 51B05.

1 Introduction

Each ring R with 1, containing in its centre a (necessarily commutative) field F with 1 ∈ F ,
gives rise to a chain geometry Σ(F,R). For a survey, see [11]. In [4] we introduced the
concept of a generalized chain geometry Σ(F,R); now R is a ring with 1 containing a (not
necessarily commutative) field F subject to 1 ∈ F . In both cases the point set of Σ(F,R) is
P(R), i.e., the projective line over R, and the chains are the F -sublines.
In the present paper we introduce representations of the projective line over an arbitrary
ring R in a projective space over some field K. In a second publication our results will be
applied to obtain representations of generalized chain geometries.
The starting point of our investigation is A. Herzer’s approach [11] to obtain a model of a
chain geometry Σ(F,R) for a finite-dimensional F -algebra R by means of a faithful right
R-module U with finite F -dimension, say r. Here the points of the projective line P(R) are in
one-one correspondence with certain (r−1)-dimensional subspaces of the (2r−1)-dimensional
projective space P(F,U × U). In our more general setting we use a (K,R)-bimodule U ; so
U is a left K-vector space and at the same time a right R-module. We neither do assume
that K is a subset of R, nor that U is a faithful R-module, nor that the K-dimension of
U is finite. A projective representation obtained in this way maps the points of P(R) into
the set of those subspaces of the projective space P(K,U × U) that are isomorphic to one
∗Supported by a Lise Meitner Research Fellowship of the Austrian Science Fund (FWF), project M529-
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of their complements. This mapping is injective if, and only if, U is a faithful R-module. In
this case we speak of a projective model of P(R).
If U ′ is a sub-bimodule of U then there are representations of P(R) that stem from the action
of R on U ′ and U/U ′. In general, these induced representations are not injective, even if U
is faithful. This is one of the reasons why we also discuss non-injective representations. The
examples at the end of the paper illustrate how these induced representations can sometimes
be used in order to describe models of P(R) in terms of P(K,U × U).

2 The projective line over a ring

Let R be a ring. Throughout this paper we shall only consider rings with 1 (where the trivial
case 1 = 0 is not excluded). The group of invertible elements of the ring R will be denoted
by R∗. Consider the free left R-module R2. Its automorphism group is the group GL2(R)
of invertible 2× 2-matrices with entries in R. According to [4], [11], the projective line over
R is the orbit

P(R) := R(1, 0)GL2(R)

of the free cyclic submodule R(1, 0) under the action of GL2(R). Since R2 = R(1, 0)⊕R(0, 1),
the elements (the points) of P(R) are exactly those free cyclic submodules of R2 that have a
free cyclic complement.
A pair (a, b) ∈ R2 is called admissible, if there exist c, d ∈ R such that

�
a b
c d

�
∈ GL2(R). So

P(R) = {R(a, b) ⊂ R2 | (a, b) admissible}. However, in certain cases the points of P(R) may
also be represented by non-admissible pairs, as we will see below.
We recall that a pair (a, b) ∈ R2 is unimodular, if there exist x, y ∈ R such that ax+ by = 1,
i.e., if there is an R-linear form R2 → R mapping (a, b) to 1. This is equivalent to saying
that the right ideal generated by a and b is the whole ring R.
Obviously, each admissible pair (a, b) is unimodular. If R is commutative, then admissibility
and unimodularity are equivalent. W. Benz in [1] considers only commutative rings and
defines the projective line using unimodular pairs.

Proposition 2.1 Let (a, b) ∈ R2 be admissible, and let s ∈ R. Put (a′, b′) := s(a, b). Then

(1) s is left invertible ⇐⇒ R(a, b) = R(a′, b′).

(2) s is right invertible ⇐⇒ (a′, b′) is admissible.

Proof: (1): If there is an l ∈ R with ls = 1, then (a, b) = l(a′, b′). So R(a, b) = R(a′, b′).
If R(a, b) = R(a′, b′), then there is an l ∈ R such that (a, b) = l(a′, b′). Since (a, b) is
admissible, it is also unimodular, and so there are x, y ∈ R with 1 = ax+ by = lsax+ lsby =
ls. Hence s is left invertible.
(2): If s is right invertible, then sr = 1 for some r ∈ R. An easy calculation shows that

γ =
(

s 0
1− rs r

)
∈ GL2(R), with γ−1 =

(
r 1− rs
0 s

)
. (1)
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There is a matrix
�
a b
c d

�
∈ GL2(R), whence

�
a′ b′

∗ ∗

�
= γ

�
a b
c d

�
∈ GL2(R), as required.

If (a′, b′) is admissible, then there are x′, y′ ∈ R with a′x′+ b′y′ = 1. So s(ax′+ by′) = 1, i.e.,
s has a right inverse. �

Note that the statement of Proposition 2.1 remains true if one substitutes “admissible” by
“unimodular”, however, the proof of (2)“⇒” then has to be modified.
Rings with the property that ab = 1 implies ba = 1 are called Dedekind-finite (see e.g. [13]).
From Proposition 2.1 we obtain

Proposition 2.2 Let R be a ring. Then the following are equivalent:

(1) R is Dedekind-finite.

(2) If R(a, b) ∈ P(R), then (a, b) is admissible.

(3) No point of P(R) is properly contained in another point of P(R).

Remark 2.3 If R is not Dedekind-finite, then each point p ∈ P(R) belongs to an infinite
sequence of points

. . . ( p−2 ( p−1 ( p0 = p ( p1 ( p2 ( . . .

Namely, let γ be the matrix of formula (1), where sr = 1 6= rs. Then Proposition 2.1 shows
that the points pi := pγ

i are as desired.

Recall that according to F.D. Veldkamp [15], [16] the ring R has stable rank 2, if for each
unimodular pair (a, b) ∈ R2 there is a c ∈ R such that a+bc is right invertible. The following
results on rings of stable rank 2 can be found in [15] (results 2.10 and 2.11):

Remark 2.4 Let R be of stable rank 2. Then R is Dedekind-finite and each unimodular
(a, b) ∈ R2 is admissible.

Note that Herzer’s definition of stable rank 2 in [11] seems to be stronger but actually coin-
cides with Veldkamp’s because of 2.4. Moreover, it is not necessary to distinguish between
left and right stable rank 2 because by [15], 2.2, the opposite ring (with reversed multiplica-
tion) of a ring of stable rank 2 also has stable rank 2.
Using results of [13], § 20, one obtains that each left (or right) artinian ring has stable rank 2
(called “left stable range 1” in [13]). We shall need the following special case:

Remark 2.5 Assume that R contains a subfield K such that R is a finite-dimensional left
(or right) vector space over K. Then R is of stable rank 2. In particular, R is Dedekind-finite.

Here by a subfield we mean a not necessarily commutative field K ⊂ R with 1 ∈ K.
We turn back to the projective line over an arbitrary ring. The point set P(R) is endowed
with the symmetric relation 4 (“distant”) defined by

4 := {R(1, 0), R(0, 1)}GL2(R)

i.e., two points p, q ∈ P(R) are distant exactly if there is a γ ∈ GL2(R) mapping R(1, 0) to
p and R(0, 1) to q. Distance can also be expressed in terms of coordinates:
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Remark 2.6 Let p = R(a, b), q = R(c, d) ∈ P(R) with admissible (a, b), (c, d). Then

p4q ⇐⇒
(
a b
c d

)
∈ GL2(R).

Note that this is independent of the choice of the admissible representatives (a, b), (c, d). In
addition, 4 is anti-reflexive exactly if 1 6= 0; compare [11].
By definition, two points of P(R) are distant if, and only if, they are complementary sub-
modules of R2. There are several possibilities for points being non-distant, which all can
occur as the following examples show:

Examples 2.7 (1) Let R be a ring that is not Dedekind-finite. Let γ ∈ GL2(R) be defined
as in Remark 2.3. Then p = R(1, 0)γ = R(s, 0) and q = R(0, 1) are non-distant: They
have a trivial intersection but they do not span R2.
Now consider p′ = R(1, 0)γ−1 = R(r, 1 − rs) (see formula (1)). Then p′ and q are
non-distant: They span R2, but (1 − rs)(r, 1 − rs) = (0, 1 − rs) 6= (0, 0) lies in their
intersection.

(2) Let R contain a subfield K such that R, considered as left vector space over K, has
finite dimension n. Then all points of P(R) are n-dimensional subspaces of the left
vector space R2. In particular, two points have a trivial intersection exactly if they
span R2.

In Example 4.7 below we will see an example of a commutative (and hence Dedekind-finite)
ring where non-distant points intersect trivially.

3 Homomorphisms

Now we want to study mappings between projective lines over rings that are induced by ring
homomorphisms.
From now on, we will follow the convention that whenever a point of P(R) is given in the
form R(a, b), we always assume that the pair (a, b) ∈ R2 is admissible.
Let R,S be rings. The distance relations on P(R) and P(S) are denoted by 4R and 4S,
respectively. Consider a ring homomorphism ϕ : R → S, where we always suppose that
1R is mapped to 1S. Associated to ϕ is a homomorphism M(2 × 2, R) → M(2 × 2, S),
mapping

�
a b
c d

�
to

�
aϕ bϕ

cϕ dϕ

�
, which will also be denoted by ϕ. Its restriction to GL2(R) is

a group homomorphism into GL2(S). This implies that if (a, b) ∈ R2 is admissible, so is
(aϕ, bϕ) ∈ S2, and we can introduce the mapping

ϕ̄ : P(R)→ P(S) : R(a, b) 7→ S(aϕ, bϕ).

Proposition 3.1 Let ϕ : R → S be a ring homomorphism. Then for ϕ̄ : P(R) → P(S) the
following statements hold:

(1) ϕ̄ preserves distance, i.e., ∀p, q ∈ P(R) : p4Rq ⇒ pϕ̄4Sq
ϕ̄.
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(2) ϕ̄ is compatible with the action of GL2(R), i.e. ∀p ∈ P(R) ∀γ ∈ GL2(R) : pγϕ̄ = pϕ̄γ
ϕ.

(3) ϕ̄ is injective if, and only if, ϕ is.

Proof: Only (3) deserves our attention. Let ϕ be injective. Assume that R(a, b)ϕ̄ = R(c, d)ϕ̄

holds for R(a, b), R(c, d) ∈ P(R). Then there is an s ∈ S∗ with (aϕ, bϕ) = s(cϕ, dϕ). Since
(c, d) ∈ R2 is unimodular, there are x, y ∈ R with s = s1 = s1ϕ = s(cx+dy)ϕ = aϕxϕ+bϕyϕ ∈
Rϕ. Analogously, one sees that s−1 ∈ Rϕ. Hence s ∈ (Rϕ)∗, which equals (R∗)ϕ, since ϕ is
injective. So R(a, b) = R(c, d).
Now let ϕ̄ be injective, and assume aϕ = bϕ for a, b ∈ R. Then R(1, a)ϕ̄ = S(1, aϕ) =
S(1, bϕ) = R(1, b)ϕ̄, whence R(1, a) = R(1, b) and so a = b. �

We call the mapping ϕ̄ : P(R) → P(S) the homomorphism of projective lines induced by
ϕ : R→ S. Such homomorphisms map distant points to distant points. However, they may
also map non-distant points to distant points: Consider e.g. the homomorphism P(Z) →
P(Q) induced by the natural inclusion Z → Q. This injective homomorphism actually
is a bijection, since each element of P(Q) can be represented by a pair of relatively prime
integers. The points Z(1, 0) and Z(1, 2) are non-distant because

�
1 0
1 2

�
is not invertible over Z.

However, their image points Q(1, 0) and Q(1, 2) are different and hence distant in P(Q).
The following gives a characterization of the homomorphisms ϕ̄ that preserve also non-
distance. By rad(R) we denote the (Jacobson) radical of the ring R (cf. [13]).

Proposition 3.2 Let ϕ̄ : P(R) → P(S) be induced by the ring homomorphism ϕ : R → S.
Then the following statements are equivalent:

(1) ∀p, q ∈ P(R) : pϕ̄4Sq
ϕ̄ ⇒ p4Rq.

(2) ∀y ∈ R : yϕ ∈ S∗ ⇒ y ∈ R∗.

(3) ker(ϕ) ⊂ rad(R) and (Rϕ)∗ = S∗ ∩Rϕ.

Proof: (1) ⇒ (2): For r ∈ R with rϕ ∈ S∗ we have S(1, 0)4SS(1, rϕ). Hence condition (1)
implies R(1, 0)4RR(1, r) and thus r ∈ R∗.
(2) ⇒ (1): Let pϕ̄4Sqϕ̄ hold for p, q ∈ P(R). Choose γ ∈ GL2(R) with pγ = R(1, 0). Then
qγ = R(x, y) for a certain admissible pair (x, y) ∈ R2. By 3.1(2), we have S(1, 0) = pγϕ̄ =
pϕ̄γ

ϕ
4Sq

ϕ̄γϕ = qγϕ̄ = S(xϕ, yϕ), and hence yϕ ∈ S∗. So, by (2), y ∈ R∗. This implies pγ4Rqγ

and thus also p4Rq.
(2) ⇔ (3): See [8], Lemma 1.5. �

As the example P(Z)→ P(Q) above shows, the ring homomorphism ϕ need not be surjective
if ϕ̄ is.
We now consider the case where ϕ : R→ S is a surjective homomorphism of rings. It is not
clear whether in general ϕ̄ also is surjective. We study special cases.
According to J.R. Silvester [14] we introduce the following notions for a ring R:
The elementary linear group E2(R) is the subgroup of GL2(R) generated by the elementary
transvections, i.e, by all matrices of the form

�
1 0
x 1

�
or

�
1 x
0 1

�
(x ∈ R). The group GE2(R)
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is the subgroup of GL2(R) generated by E2(R) and all diagonal matrices
�
a 0
0 b

�
∈ GL2(R).

Note that E2(R) is normal in GE2(R). If GE2(R) = GL2(R), then R is called a GE2-ring.
Examples of GE2-rings and also of rings that are not GE2-rings can be found in [14], p.114
and p.121, respectively. Important for us is the following:

Remark 3.3 (See [9], 4.2.5.) Let R be a ring of stable rank 2. Then R is a GE2-ring.

Lemma 3.4 Let R be a GE2-ring. Then P(R) = R(1, 0)E2(R).

Proof: Let p = R(1, 0)γ ∈ P(R), with γ ∈ GL2(R). Since GL2(R) = GE2(R) and E2(R) is
normal in GE2(R), we have γ = δη, where δ =

�
a 0
0 b

�
and η ∈ E2(R). So p = R(1, 0)γ =

R(a−1, 0)γ = R(1, 0)η ∈ R(1, 0)E2(R). �

Now we can state conditions that imply that with ϕ : R→ S also ϕ̄ is surjective.

Proposition 3.5 Let ϕ : R → S be a surjective homomorphism of rings. Then also ϕ̄ :
P(R)→ P(S) is surjective, if one of the following conditions is satisfied:

(1) S is a GE2-ring.

(2) ker(ϕ) ⊂ rad(R).

(3) R is the internal direct product of ker(ϕ) and some ideal R′ ⊂ R.

Proof: (1): Consider a point q ∈ P(S). By Lemma 3.4 we have q = S(1, 0)η, where
η ∈ E2(S), i.e., η is a product of elementary transvections. Since ϕ : R → S is surjective,
each elementary transvection has a preimage under ϕ : M(2 × 2, R) → M(2 × 2, S) that is
an elementary transvection over R. Hence η = γϕ, where γ ∈ E2(R), and so by 3.1(2) we
obtain q = R(1, 0)ϕ̄η = R(1, 0)γϕ̄ ∈ P(R)ϕ̄.
(2): Follows from [5], Lemma 1.14.
(3): In this case, GL2(R) consists exactly of the sums γ + γ′, where γ ∈ GL2(ker(ϕ)) and
γ′ ∈ GL2(R′). Moreover, ϕ|GL2(R′) : GL2(R′) → GL2(S) is an isomorphism of groups. This
yields the assertion. �

Note that one could also use Proposition 3.2 in order to prove assertion (2) above, since the
radical of M(2× 2, R) consists exactly of all matrices with entries in rad(R).

4 Projective representations

The projective representations we are now aiming at are based upon the following.

Remark 4.1 (see [2]). Let U be a left vector space over a field K, and let S = EndK(U) be
its endomorphism ring. Moreover, let G be the set of all subspaces of the projective space
P(K,U × U) that are isomorphic to one of their complements. Then

Ψ : P(S)→ G : S(α, β) 7→ U (α,β) := {(uα, uβ) | u ∈ U}
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is a well-defined bijection mapping distant points of P(S) to complementary subspaces in
G and non-distant points to non-complementary subspaces. Moreover, the groups GL2(S)
and AutK(U × U) are isomorphic and their actions on P(S) and on G, respectively, are
equivalent via Ψ. In particular, the mappings induced on G by GL2(S) arise from projective
collineations of the projective space P(K,U × U).

Let now K be a field and let R be a ring. A left vector space U over K is called a (K,R)-
bimodule, if U is a (unitary) right R-module such that for all k ∈ K, u ∈ U , a ∈ R the
equality k(u · a) = (ku) · a holds. If U is a (K,R)-bimodule, then ϕ : R → EndK(U) with
aϕ = ρa : u 7→ u · a is a ring homomorphism.
If, on the other hand, there is a homomorphism ϕ : R→ EndK(U), then U becomes a (K,R)-
bimodule by setting u ·a := uρa , where ρa = aϕ. A homomorphism ϕ : R→ EndK(U) is also
called a K-linear representation of R.
So, the concepts of a K-linear representation of R and a (K,R)-bimodule are equivalent.
Whenever we consider a (K,R)-bimodule U , we denote by ϕ the associated linear represen-
tation, and for a ∈ R we write ρa for the endomorphism aϕ : u 7→ u · a.
A (K,R)-bimodule U and the associated linear representation ϕ are called faithful, exactly
if ϕ is an injection.
Combining 3.1 and 4.1, we obtain our main result:

Theorem 4.2 Let U be a (K,R)-bimodule. Then the mapping

Φ := ϕ̄Ψ : P(R)→ G : R(a, b) 7→ U (ρa,ρb)

maps distant points of P(R) to complementary subspaces in P(K,U × U). The bimodule U
is faithful if, and only if, Φ is injective.

Thus, to each homomorphism ϕ : R→ EndK(U) corresponds a mapping Φ (see above). We
call Φ a projective representation of P(R), and a faithful projective representation if U is
faithful. We are interested in the image of P(R) under a projective representation. If the
representation is faithful, then Φ : P(R) → P(R)Φ is a bijection, and the image P(R)Φ can
be seen as a model of P(R) in the projective space; we then call P(R)Φ a projective model of
P(R). Otherwise, one obtains a model of the projective line over another ring:

Proposition 4.3 Let J = ann(U) be the annihilator of U , i.e., the kernel of the represen-
tation ϕ : R→ EndK(U). Then the following statements hold:

(1) The mapping ϕf : R/J → EndK(U) with ρa+J : u 7→ uρa is a faithful K-linear repre-
sentation of R/J . Hence Φf = ϕfΨ is a faithful projective representation of P(R/J).

(2) The projective model P(R/J)Φf contains P(R)Φ.

(3) The mapping π̄ : P(R)→ P(R/J) induced by the canonical epimorphism π : R→ R/J
is surjective if, and only if, P(R/J)Φf = P(R)Φ.

Recall that Proposition 3.5 gives conditions under which the assumptions of statement (3)
are met.
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The representation ϕ : R → S = EndK(U) gives rise to a group homomorphism ϕ :
GL2(R)→ GL2(S) ∼= AutK(U × U). Using 3.1(2) and 4.1 we obtain the following:

Proposition 4.4 Let U be a (K,R)-bimodule, and let γ ∈ GL2(R). Then the induced
mapping

P(R)Φ → P(R)Φ : R(a, b)Φ 7→ R(a, b)γΦ

is induced by a projective collineation of P(K,U × U).

Finally, Proposition 3.2 yields the following:

Proposition 4.5 Let U be a (K,R)-bimodule. Then the corresponding projective represen-
tation Φ maps non-distant points to non-complementary subspaces exactly if for each a ∈ R
the condition ρa ∈ AutK(U) implies a ∈ R∗.

Note that from ρa ∈ AutK(U) and a ∈ R∗ one obtains that (ρa)−1 = ρa−1 .
We mention two classes of examples where the condition of Proposition 4.5 is satisfied.

Examples 4.6 (1) Let R contain K as a subfield. Then U = R is a left vector space over
K, and ϕ : R → EndK(U) with ρa : x 7→ xa is a faithful linear representation of R,
called the regular representation. In this case Φ is the identity, where the submodule
R(a, b) ∈ P(R) is considered as a projective subspace of P(K,U×U). So points of P(R)
are distant exactly if their Φ-images are complementary. This reflects the algebraic
fact that the endomorphism ρa : R→ R : x 7→ xa is a bijection exactly if a ∈ R∗.

(2) Let U be a faithful (K,R)-bimodule. Assume moreover that R contains a subfield
L such that R is a finite-dimensional left vector space over L. Then the projective
representation Φ maps non-distant points to non-complementary subspaces:
In view of (1), it suffices to show that for each a ∈ R with ρa ∈ AutK(U) the L-linear
mapping R→ R : x 7→ xa is injective. Suppose xa = 0 for x ∈ R. Then for all u ∈ U
we have 0 = u · 0 = u · (xa) = (u · x)ρa . Since ρa is an automorphism, this implies
u · x = 0 for all u ∈ U , and hence x = 0 because U is a faithful R-module.

We proceed by giving an example of a faithful projective representation where non-distant
points appear as complementary subspaces:

Example 4.7 Let K be any commutative field, let R be the polynomial ring R = K[X],
and let U = K(X) be its field of fractions. Then U contains K and R, and thus is a faithful
(K,R)-bimodule in a natural way. Obviously, ρX : u 7→ uX is a bijection on U , but X 6∈ R∗.
This means that e.g. R(1, 0) and R(1, X) are non-distant points of P(R), but their images
U (1,0) = U ×{0} and U (1,ρX) = {(u, uX) | u ∈ U} are complementary subspaces of P(K,U ×
U). Note that R(1, 0) and R(1, X), considered as submodules of R2, also intersect trivially,
but they do not span R2 (compare 2.7).
Note, moreover, that we could also interpret the elements R(a, b)Φ = U(a, b) as points of the
projective line over the field U . Hence any two such elements must be complementary.
In a similar way one can also construct examples where R is not contained in any field: Let
R and U be as above. Let R[ε] be the ring of dual numbers over R, with ε central, ε 6∈ K,
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and ε2 = 0. Then ε is a zero-divisor and hence R[ε] is not embeddable into any field. Now
take U [ε] and proceed as above.

Let U be a (K,R)-bimodule. A subset U ′ ⊂ U is called a sub-bimodule of U , if U ′ is a
subspace of the left vector space U over K and at the same time a submodule of the right
R-module U . The linear representation of R given by the bimodule U ′ is ϕ′ : a 7→ ρa|U ′ .
The faithful representation (ϕ′)f : R/ann(U ′)→ EndK(U ′) will be called the induced faithful
representation.
The projective representation Φ′ associated to ϕ′ maps the points of P(R) to certain sub-
spaces of the projective space P(K,U ′ × U ′), more exactly, P(R)Φ′ is a subset of the set G ′
of all subspaces of P(K,U ′ × U ′) that are isomorphic to one of their complements.
Now P(K,U ′×U ′) is a projective subspace of P(K,U ×U), and we can compare the images
of P(R) under the projective representations Φ and Φ′. One obtains the following geometric
interpretation:

Proposition 4.8 Let U ′ be a sub-bimodule of the (K,R)-bimodule U , and let Φ′ and Φ be
the associated projective representations of P(R). Then for each p ∈ P(R) we have

pΦ′ = pΦ ∩ (U ′ × U ′).

In particular, each pΦ meets the projective subspace P(K,U ′ × U ′) in an element of G ′.

Proof: First consider p = R(1, 0). Then pΦ′ = U ′×{0} = (U×{0})∩(U ′×U ′) = pΦ∩(U ′×U ′).
Now consider an arbitrary p ∈ P(R). Then p = R(1, 0)γ for some γ ∈ GL2(R). The
induced automorphism γϕ of U × U leaves U ′ × U ′ invariant, it coincides on U ′ × U ′ with
γϕ
′ ∈ AutK(U ′ × U ′). This yields the assertion. �

Note that the Φ′-image of P(R) is contained in the image of P(R/ann(U ′)) under the
induced faithful representation (Φ′)f . According to 4.3(3), the two sets coincide exact-
ly if the mapping π̄ : P(R) → P(R/ann(U ′)), associated to the canonical epimorphism
π : R→ R/ann(U ′), is surjective.

Proposition 4.9 Let U = U ′ ⊕ U ′′ be a (K,R)-bimodule. Let ϕ, ϕ′, ϕ′′ be the associated
representations of R. Then for each p ∈ P(R) we have pΦ = pΦ′ ⊕ pΦ′′.

Proof: As in the proof of Proposition 4.8 we first verify the assertion for p = R(1, 0) (with
the help of 4.8) and then use the action of GL2(R). �

Let again U ′ be a sub-bimodule of the (K,R)-bimodule U . Then also Ũ = U/U ′ is a (K,R)-
bimodule, corresponding to the representation ϕ̃ : R → EndK(Ũ), where ρ̃a : u + U ′ 7→
uρa + U ′. The kernel of this representation is the ideal consisting of all a ∈ R such that
the image of ρa is contained in U ′. As above, we obtain an induced faithful representation
(ϕ̃)f : R/ ker(ϕ̃)→ EndK(Ũ).

The projective representation Φ̃ maps P(R) into the set G̃ of all subspaces of P(K, Ũ × Ũ)
that are isomorphic to one of their complements. Now the projective space P(K, Ũ × Ũ) is
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canonically isomorphic to the projective space of all subspaces of P(K,U × U) containing
U ′×U ′, because (U ×U)/(U ′×U ′) ∼= Ũ × Ũ . We shall identify the elements of G̃ with their
images under this isomorphism. So we can compare Φ̃ and Φ, and the same procedure as
before yields

Proposition 4.10 Let Ũ = U/U ′, and let Φ̃ be the associated projective representation of
P(R). Then for each p ∈ P(R) we have

p
eΦ = pΦ + (U ′ × U ′).

In particular, each pΦ + (U ′ × U ′) is an element of G̃.

As before, one may also consider the induced faithful representation (Φ̃)f of P(R/ ker(ϕ̃)).

5 Examples

In this section we study some examples. Note that we consider only rings R that are finite-
dimensional left vector spaces over a subfield K. Then for each ideal I of R also the ring
R/I is finite dimensional over K, whence R/I is of stable rank 2 and hence a GE2-ring
(compare 2.5 and 3.3). So Proposition 3.5 implies that in all our examples the mapping
π̄ : P(R)→ P(R/I) induced by the canonical epimorphism π : R→ R/I is surjective.

Example 5.1 Let K = R be any (not necessarily commutative) field and let U = K2 with
componentwise action (x1, x2)·k = (x1k, x2k). Then U is the direct sum of the sub-bimodules
U1 = K(1, 0) and U2 = K(0, 1), on which R = K acts faithfully in the natural way. The
representations induced in the skew lines Ui × Ui are faithful and map P(K) onto the set of
all points of Ui×Ui. Moreover, β := Φ−1

1 Φ2 is a bijection between these two projective lines,
which is linearly induced and hence a projectivity. The elements of the projective model
P(K)Φ in P(K,U × U) are exactly the lines joining a point of U1 × U1 and its β-image in
U2 × U2. So P(K)Φ is a regulus in 3-space (compare [6]).
The same applies if U = Kn. Then one obtains a regulus in a (2n−1)-dimensional projective
space (see [3]), i.e., a generalization to the not necessarily pappian case of a family of (n−1)-
dimensional subspaces on a Segre manifold Sn−1,1 (compare [7]).

Example 5.2 Example 5.1 above can be modified in the following way: Let α1, α2 : K → K
be field monomorphisms. Then K acts faithfully on U = K2 via (x1, x2) ·k = (x1k

α1 , x2k
α2).

The induced projective models of P(K) in the projective lines Ui × Ui are projective sub-
lines over the subfields Kαi . In general, the bijection β between the two models is not
K-semilinearly induced.
We mention one special case: If K = C, α1 = id, and α2 is the complex conjugation,
then the projective model of P(C) is a set of lines in the 3-space P(C, U × U). It can be
interpreted as follows: The α2-semilinear bijection β extends to a collineation of order two
which fixes a Baer subspace (with R as underlying field). The lines of the projective model of
P(C) meet this Baer subspace in a regular spread (elliptic linear congruence). See [10] for a
generalization of this well-known classical result that the regular spreads of a real 3-space can
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be characterized (in the complexified space) as those sets of lines that join complex-conjugate
points of two skew complex-conjugate lines.

Example 5.3 Let K be any field. Let U = R = Kn, with componentwise addition and
multiplication. For i ∈ {1, . . . , n}, let Ui = Kbi, where bi runs in the standard basis. Then
Ui is a sub-bimodule of U , the induced faithful action is the ordinary action of K. Hence
the projective model P(R)Φ = P(R) meets the line Ui × Ui in all points. Moreover, each
(n − 1)-dimensional projective subspace of P(K,U × U) that meets all the lines Ui × Ui
belongs to P(R), because GL2(R) ∼= GL2(K)× . . .×GL2(K).
If n = 2, the set P(R) is a generalization to the not necessarily pappian case of a hyperbolic
linear congruence.

Example 5.4 Let K be any field. Let U = R = K[ε], where ε 6∈ K, ε2 = 0 and εk = kαε
for some fixed α ∈ Aut(K). This is a ring of twisted dual numbers over K. It is a local ring
with I = Kε the maximal ideal of all non-invertible elements. So U ′ = I is a sub-bimodule
of U = R, with ann(U ′) = I, and on U ′ we have the induced faithful representation (ϕ′)f of
R/I ∼= K with kε ·a = kaαε. So each point of U ′×U ′ is incident with a line of our projective
model P(R) = P(R)Φ.

Now consider the bimodule Ũ = R/U ′ ∼= K. The kernel of the induced representation ϕ̃ is
again I. As before, it is easily seen that each plane through U ′×U ′ contains a line of P(R).
The relation 64 is an equivalence relation on P(R), because R is a local ring. Easy calculations
show that elements of P(R) belong to the same equivalence class exactly if they meet U ′×U ′
in the same point or, equivalently, if they together with U ′ × U ′ span the same plane.
So there is a bijection β between the points of U ′ × U ′ and the planes through U ′ × U ′

such that for each p ∈ P(R) we have p ⊂ (p ∩ (U ′ × U ′))β. This bijection β is given by
K(kαε, lαε) 7→ K(k, l)⊕ (U ′ × U ′).
Moreover, one can compute that the projective model P(R) consists of all lines in P(K,U×U)
that meet U ′ × U ′ in a unique point, say q, and then lie in the plane qβ.
In case α = id the bijection β is a projectivity. So then the set P(R) is a generalization of a
parabolic linear congruence. The ring R is then the ordinary ring of dual numbers over K. In
the general case β is only semilinearly induced. If K = C and α is the complex conjugation,
then R is the ring of Study’s quaternions (see [12], p.445).

Example 5.5 Let R be the ring of upper triangular 2× 2-matrices with entries in K. Then
U = K2 is in a natural way a faithful (K,R)-bimodule. Moreover, U ′ = K(0, 1) is a sub-
bimodule with ann(U ′) = {

�
a b
0 0

�
| a, b ∈ K}. So R/ann(U ′) ∼= K, and the induced faithful

representation is the ordinary action of K on U ′. This means that each point of U ′ × U ′ is
on a line of the projective model P(R)Φ.

Now consider Ũ = U/U ′. The kernel of the induced action is J = {
�

0 b
0 c

�
| b, c ∈ K}. So

R/J ∼= K, and also here we have the ordinary action of K on Ũ ∼= K(1, 0). Hence each
plane through U ′ × U ′ contains a line of P(R)Φ.
Up to now, we are in the same situation as in Example 5.4. An easy calculation shows that
the projective model P(R)Φ consists of all lines that meet U ′ × U ′ in a point. This is the
generalization of a special linear complex to the not necessarily pappian case.
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Example 5.6 Let U = R = K[ε, δ] with ε 6∈ K, δ 6∈ K[ε], ε, δ central, and ε2 = δ2 = εδ = 0.
The projective model P(R)Φ = P(R) is a set of planes in 5-space.
The ring R is a local ring with maximal ideal I = Kε + Kδ = U ′. Moreover, ann(U ′) = I,
and R/I ∼= K acts on U ′ componentwise. So according to 5.1 the induced model of P(K) in
the 3-space U ′ × U ′ is a regulus R.
Now consider Ũ = R/U ′. Then ker(ϕ̃) = I, and we have the ordinary faithful action of K
on Ũ ∼= K. So all hyperplanes (4-spaces) through U ′ × U ′ contain an element of P(R).
As in Example 5.4 the elements of P(R) fall into equivalence classes with respect to 64, such
that equivalent elements have the same intersection and the same join with U ′ × U ′. This
yields a bijection β between the regulus R and the set of all hyperplanes through U ′ × U ′.
As in 5.4, case α = id, this bijection is a projectivity. A calculation shows that P(R) consists
of all planes that meet the 3-space U ′ × U ′ in an element of R, say X, and then lie in the
hyperplane Xβ.
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[4] A. Blunck and H. Havlicek. Extending the concept of chain geometry. Geom. Dedicata

(to appear).
[5] A. Blunck and M. Stroppel. Klingenberg chain spaces. Abh. Math. Sem. Univ. Hamburg,

65:225–238, 1995.
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