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1. Given a 3-dimensional Pappian projective space, it is well
known that the Grassmannian which is representing its set of lines
is a quadric (called the Plicker quadric) in a 5-dimensional
projective space. The link between the set of lines and the Pliicker
quadric is the bijective Klein map 7. Under ¥ pencils of lines
become lines of the Pliicker quadric. Cf. e.g. [5,287], [15,28],
[16,13], [20,176], [21,327].

Now, taking any 3-dimensional projective space, we may ask for an
injective map ¥ from the set of lines into the set of points of
(another) projective space, such that every pencil of lines is
mapped onto a line. If we have a non-Pappian space, then such a map
does not exist [9,172]. For a Pappian space any such map is the
product of the Klein map with a suitable collineation [9,174],
[22,377].

If ¢ denotes a stereographic projection of the  Pliicker quadric
through a point 4 = a? (for some line a), then the restriction of ¥y
to the set of lines which are skew to a is a bijection A, say, onto
a 4-dimensional affine space. The line a has no image under Yy and
all lines which meet a in one point are mapped (in a non-injective
way) onto a ruled quadric in the hyperplane at infinity of this
affine 4-space. Cf. [10,109], [14] for these results and their
generalization to higher dimensions as well as [18].

Any subspace of this affine 4-space may be interpreted as the
stereographic image of those points of the Pliicker quadric which
belong to a subspace passing through A. The corresponding sets of
lines are well known (e.g. linear complexes of lines).

However, as has been shown in [13] there is an alternative
construction of this bijection A which will work for Pappian as well
as non-Pappian spaces. Thus this A may serve as a substitute for the
Klein map in the non-Pappian case. Throughout this article the
inverse of such a bijection A will be labeled 3. The present paper
is concerned with those sets of lines which correspond under B to
the subspaces of such an affine 4-space. Clearly, only non-Pappian
spaces are of interest.

2. If B is a right vector space over a field" K, then the
projective space on B has the set of points P(B) :=
{X|X=1K,zeB\{0o}}, where o denotes the zero vector. If Ul ¢ B is a
subspace, then P(Il) := {zKeP(B)|zell} and £LP(W)) or L) stands for
the set of all lines in P(B) passing through P(U) (dimP(U)=1) or

contained in P(U) (dimP(U)=3), respectively. Given two subspaces

1The terms field and skew field will be used for a not necessarily
commutative field and a non-commutative field, respectively.



111 C 112, then 2(73(111),73(112)) or 2(111,112) denotes the set of lines
through 73(111) and contained in 73(112). The centre of K will be
written as Z.

In order to show the existence of a bijection B, as has been
described in 1, we proceed as follows:

Let B and B be right vector spaces over the same field K with
dimP(B) = 4, dimP(B) = 3. We choose two homomorphisms pj € HomK(‘B,‘BB)

(j=0,w), such that their kernels have only {0} in common, whereas

their images are two different 3-dimensional subspaces of 8. Setting

pj = py * J.p, (j e Z2) ) (1)
yields a family of homomorphisms B > B with Z := Zu{o} as set of
indices. We shall write ﬁj = kerpj , @j = impj (jez), 3 :=

Z(ﬁﬂjeé) and 4 := n(@j|j62). In terms of the projective spaces P(B)
and P(B) We get a. family nj:?(‘B)\?(ﬁj) > P(B) of linear maps [8,152]
with (zK)™ := Pk,

Then ¥ := P(3) is a hyperplane of P(B) which will be regarded as
hyperplane at infinity. Thus P(BNF is the set of points of an
affine space. The lines aj 1= ?(ﬁj) are the directrices of a regulus
noin ¢ [17], [20,319] which will be called the absolute regulus. A
line r € £3) is an element of n if, and only if, there exists a
point R € P(BB) which is the image of r under all mappings nj. If
P(B) is Pappian, then n is one set of generators of a ruled quadric
and we have an affine space with orthogonality given by the polar
system of the quadric. Cf. e.g. [1,105], [4,122].

In P(B) the planes 8j = ?(@j) belong to a pencil of planes with

*
axis a := P(A). We regard this pencil as a line a in the dual space
* - *
of P(B). Let a_, denote the family {€ .|jeZ}. If K # Z, then a_, is a
z * J7 % * z
Z-chain [2,320] (subline) of a , else a, =a. We shall write c,

for the set of lines in £(%) which are skew to a.
Summing up yields an injective map
BPBNP() > ¢, X 1 XOx™ ik ez j=* k (2)
By (1), the definition of B does not depend on j, k. Given any two
points YO 1
X" = YO, X" = Yl' Hence B is surjective.
The map B can be used to transfer the affine structure from

€ 8O\a, Y. € 8’1\a, there is a unique point X € P(BNJF with

P(BNF to c, [13]. The stabilizer & of the absolute regulus n in
*

PTL(P(B)) and the stabilizer ¥ of a, in PTL(P(B)) yield isomorphic

transformation groups on P(BINJ respectively c, - An isomorphism is

given by ¢ (€®) [3_1(,0[3 (e¥).

3. Let 1 € UBNLI) be a line and L its point at infinity. There

are three possibilities:



(i) L is on a directrix aj of n: Thus ™ s a single point and
L (j#keZ) is a line. Consequently, lB = (l\{L})B is  the
intersection of a pencil of lines with c - It is easily seen that

every pencil of lines whose centre is in a plane of azzsi6 but off a

and whose plane does not belong to a yields the B-image of a line.
(ii) L is a point off the absolute regulus n: Then lno, lm are

two skew lines and (n0|l)_1(n1|l):lno 1™ s a projectivity which

generates a regulus 4, say. Replacing 0, 1 by any two different
*

elements of Z shows that in every plane of a, there is one

directrix of 4 and, as follows from [20,321], there are no more

directrices. Hence lB = a\{a}. Conversely, any regulus o of P(B)

*

whose directrices are incident with the planes of a, contains a and

on{a} is the B-image of a line.

(iii) L is on a line of n but on no directrix: There exist
[O € ﬁo, I1
[ .= I0x+I1. Since Zioo p=o ker(pl—po)}DO o,

= + = +
Pt = (I[ x+ )(;Qx:h) +1 )p(llg [=1)(I ,+I Pox.
0 1 01 01

€ Hl and x € K\Z with IO+I1 13 Hm and L = IK where

Thus the spectrum of the automorphism
(b | 1) (p, [ IK):(POK > (1PO)K
equals the cross ratio
CRUK, (I,+1 DKL K1 K) = (e 'xe|e e KON,

But x € K\Z implies that the projectivity (n0|l)_1(n1|l) is no
perspectivity. By [11,62], [19], lB is the proper part of a
degenerate conic® d in the dual plane of ™ v ™ we adopt the
notion degenerate conic of lines for a degenerate conic in a ruled
plane. Replacing 0, 1 by any two elements j, k € z (j#k) shows that
{lnj|jez} is a fundamental chain [11,69] of d. Conversely, suppose
that d is any degenerate conic of lines in a plane ¥ not through a
such that {?n8j|jez} is a fundamental chain of d. Then d n c, is the
B-image of a line. Cf. [13,49] for a proof of this less obvious

result.

4, Assume that H # ¢ is a hyperplane of P(B). There are three
possibile cases:
(i) ¥ n ¥ contains a directrix a., of n: Then f := an C 8j is a
line and ¥™ = 81{ (j#keZ), whence EH?B is the set of lines in c,
meeting f.

(ii) ¥ n § contains no line of n: It follows from [20,333] that

{rn¥|ren} is a (non-degenerate) conic. Set Lj = ajn}ff (j=0,1). Then

*In [20,325] this set of points is named C-configuration.



Llno # LOH1 and for every X € H\J we have the plane y)X = LOVLIVX

whose images under no, nl are lines through Llno, Lom,
respectively. The map
To 1 To 1
GR'E(LI ,8’0) > E(LO ,81), y)X > y)X (X € B\9)

is a projectivity of two pencils of lines, as follows from 3 (ii).
The line a is fixed under o¢,,. Thus EH?B is the set of lines in <,

H
which meet any two lines corresponding under o,, (cf.[3,187]). A

detailed discussion of EH?B is given in [12]. .

(iii) ¥ n F contains a line of n but no directrix. We deduce from
[20,325] that {rn#|ren} is a degenerate conic and proceed as in (ii)
with LOH1 = Llno being the only difference. Hence EH?B equals the set
of lines in c, which belong to any plane ¥ intersecting 8’0 and 81 in

two different lines corresponding under o If we regard the star of

e
planes through ™ as a projective plane within the dual space of
P(B), then the set of these planes F is the proper part of a

* *
degenerate conic f , say. The map o¢,, is a generating map for f and
*

azzsi6 is a fundamental chain of f . Th}ies follows as in 3 (iii).

5. Let # = PN < P(B) be a plane and M # MnF =: m. There are
nine possibilities.

(i) m € n: For all j € Z we get a line MY c 8j and these lines
have m™ = m™ as common point. By (1) all lines of MY are lying in
one plane ¥. This implies that MB = Canﬂ(?).

(ii) m is a directrix aj of n: Hence there is a point F := M
and MB = E(F)nca.

In any case other than (i) and (ii) there exist at most two
directrices of n which meet m: If such directrices do exist, then
let a, be none of them. We see that

e, = (py| M (p, [ M:E, > €, (0 # ie2)
yields a projective linear map sizé’o > 8i with 2! ¢ a. The image of
M under B is the set of lines in c, which join a point of 8’0 \ a
with its image under €,

Choose any i € Z\{0}). A point Y = nK € a is si—invariant3 if, and
only if, v is an eigenvector of e, This is equivalent to Y = X"
with X € mnr for some line r € n. The eigenvalue of 1 is in the
centre of K if, and only if, X is on a directrix of n. This follows
from 3 (iii). The spectrum of e, is the union of 0, 1 or 2 conjugacy

classes of K [6,153], [7,207].
We infer from X = mnr that the hyperplane # := Mvr is of type (i)

3We use this as a shorthand for "Y = YSi" or "Y

The latter possibility is equivalent to v € kerei .

€i .
does not exist".



or (iii). The actual type of this H depends on the existence of a
directrix in # n § rather than the eigenvalue of n. By 3 (i) or
(iii), the hyperplane H gives rise to a pencil of planes with an
axis f, or a degenerate conic of planes. This set of planes is named
f* in both cases. All lines of MB are incident with at least one
plane of f* N a*. For all x € &X,M)\{m} the plane x v r is of type
B

* *
is a subset of &¥F) with ¥ € f \a . Since all lines

B

(i), whence x

of &X,M) \ {m} are parallel, all images x
* *
or (iii). Every plane ¥ € f \a arises in this way. If ¥ is of type

are of common type (i)

(i) or (iii), then we name f a focal line4 of MB or f* a degenerate
conic of focal planes of MB, respectively.

If 1 belongs to a central eigenvalue of any e, then let
X = mnr = mnaj (0% jeZ). There is a unique line r’ € n within the

7

plane m v aj. These two lines r, r’ coincide if, and only if, Y is
the only sj—invariant point of a, because r =y is
sj—invariant. We infer the existence of a hyperplane K’ (?f type (i)
through M with mva, = r'va, = H'n¥. The line f’ := #™ meets all
lines of MB. By construction, Y’ € f’ < 8j. This f’ is a focal line
of MB. For every x € LX,M)\{m} we deduce that xB is the
intersection of c, with a pencil of lines &(F,¥), say. Necessarily
F = xnj € f/ and ¥ = Fux™ e f*\a*, so that Y € &.

Now the listing of all possible cases is being continued:

(iiil) m meets no line of n: If two lines of MB would span a
plane, then it would meet a in an € ,-invariant point, an absurdity.
Hence the lines of MB are pairwise skew and MB is a partial spread
of P(B).

(iv) m meets a unique line of n and a directrix a . There is a
single sj—invariant point Y on a and through this point there is a
focal line f c 8j. For any point F € f there is a line in E(SO,Y)
which is being mapped on F under €. The join of this line and f
will be labeled F°. Writing f* for thJe pencil of planes with axis f
shows FG € f*. Then, by the linearity of ej, o:f > f*, F— FG is a
projectivity. Thus MB is the intersection of <, with the union of
all pencils E(F,FG) where F € f.

(v) m meets a unique line of n but no directrix: Write Y for the
only sj—invariant point of a and f* for the degenerate conic of
focal planes whose existence has been shown above. Every plane
F e fak\az;'6 contains a subset of MB which is the proper part of a

degenerate conic of lines, by 3 (iii). Any two of these degenerate

conics of lines correspond under the pB-transformed map of a

*
4One could also introduce the name focal pencil of planes for f .



translation of P(B).
(vi) m meets two different directrices a ., ak: There are two
. . .. B .
focal lines fj C 8j and fk C 81{' A line of Ca is in M" if, and only
if, it meets fj and fk'
(vii) m meets exactly two lines of n but only one directrix: In

the terminology introduced above, let ¥ = X"

and Y’ be the only two
si—invariant points on a with X € mnaj, say. So *We have a focal line
f’ < 8j with Y’ € f’ and a degenerate conic f of focal planes all
of which pass through Y. The set MB is the intersection of <, with
the union of all pencils of lines having their centres on f’ and
their planes in f* AN a*.

(viii) m meets exactly two lines of n but no directrix: Write Y
and Y’ for the two si—invariant points. Thel;e exist iWO degenerate
conics of focal planes which will be named f and f’ , respectively.
All planes of f* pass through Y and all planes of f’s'6 contain Y’.
When fixing one plane ¥ € f*\a*, then the planes of f’s'6 N azsi6 will
meet F in a set of lines equal to MB n UF); this is the B-image of
a line of type (iii).

(ix) m meets more than two lines of n: Let Y and Y’ be any two

different si—invariant points. Then the arguments of (viii) may be

repeated.

6. The stereographic projection of the Plicker quadric (cf. 1)
motivates the following definition of a relation ¢ on ¥ x Ea with
L = W) :

a a
If X € $ is off n, then (X,ylet :¢ y=a. If X is on a line r € n,
s - *
then (X,ylev :o yeﬂ(rm,%’) (jeZ arbitrary) with Y € a being subject
to the condition
CR(Y,6 ,6 ,6 ) = CR(X,rna
1”0 =

rna.,rna ).
o]

The wunion of B < (P(BNF) x c, and 1L < ? X Ea is a relation
pc P@B x &B). If X < P(B), then we adopt the notation
xP = {yel(B)|3 XeX with (X,y)ep}.

Every subspace ¥ < P(B) gives rise to a set P c ). If ¢ is
not at infinity, then #P will be called the closure of y’B. For
example, let I e 2BNLI). Then lB = UF,FN{a} implies

B

P = UF,¥). If there is a regulus o with 7 = ax{a} then P = .

Finally, assume that d is a degenerate conic of lines in a plane &
and 1P = dnca. Then P = d u (u(ﬂ(?na,y)|‘9=avy,yednca}. It is
lengthy but streightforward to discuss all possible cases. If P(B)
is Pappian, then the image of #° under the Klein map % is a
(complete) intersection of the Pllicker quadric with a subspace

through a’. This shows that the following definitions are in



accordance with the classical ones. Cf. e.g. [3,185], [4,181],
[5,322], [15,30], [16,17], [16,31], [20,241], [21,312], [21,319].

A set of lines of £&(B) is called a linear congruence of lines or
linear complex of lines, if it corresponds under a collineation of
P(B) to a set of lines which is in relation p with a hyperplane or
plane of P(B), respectively. By 4, there are three types of linear
complexes of lines which will be named special (type (i)), general
(type (ii)), or degenerate (type (iii)). By definition of %, the set
7 is a special linear complex. Besides nine possible types of
linear congruences arising from affine planes (cf. 5) we may get
three additional types which are related to planes at infinity. In
the Pappian case the number of possibilities reduces from twelve to
four. (The author is still looking for apropriate names for the
various types of linear congruences in the non-Pappian case.)

If P(B) is Pappian, then the line a does not play a special role
for a set ¥ whenever ¥ is not in J, since #P7 is not lying in the
tangent hyperplane of the Pliicker quadric in a’. However, if K is a

skew field, then the line a and the subpencil a may be essential.

Z

*
For example, the line a, the chain aZ (and a Z-chain in the line a)

are uniquely determined by a general linear complex #P [12].
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