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1. Given a 3-dimensional Pappian projective space, it is well
known that the Grassmannian which is representing its set of lines
is a quadric (called the Pltcker quadric) in a 5-dimensional
projective space. The link between the set of lines and the Pltcker
quadric is the bijective Klein map g. Under g pencils of lines
become lines of the Pltcker quadric. Cf. e.g. [5,287], [15,28],
[16,13], [20,176], [21,327].

Now, taking any 3-dimensional projective space, we may ask for an
injective map g from the set of lines into the set of points of
(another) projective space, such that every pencil of lines is
mapped onto a line. If we have a non-Pappian space, then such a map
does not exist [9,172]. For a Pappian space any such map is the
product of the Klein map with a suitable collineation [9,174],
[22,377].

If j denotes a stereographic projection of the Pltcker quadricgthrough a point At=ta (for some line a), then the restriction of gj
to the set of lines which are skew to a is a bijection l, say, onto
a 4-dimensional affine space. The line a has no image under gj and
all lines which meet a in one point are mapped (in a non-injective
way) onto a ruled quadric in the hyperplane at infinity of this
affine 4-space. Cf. [10,109], [14] for these results and their
generalization to higher dimensions as well as [18].

Any subspace of this affine 4-space may be interpreted as the
stereographic image of those points of the Pltcker quadric which
belong to a subspace passing through A. The corresponding sets of
lines are well known (e.g. linear complexes of lines).

However, as has been shown in [13] there is an alternative
construction of this bijection l which will work for Pappian as well
as non-Pappian spaces. Thus this l may serve as a substitute for the
Klein map in the non-Pappian case. Throughout this article the
inverse of such a bijection l will be labeled b. The present paper
is concerned with those sets of lines which correspond under b to
the subspaces of such an affine 4-space. Clearly, only non-Pappian
spaces are of interest.

12. If V is a right vector space over a field K, then the

projective space on V has the set of points P(V)t:=

{X1X=xK,xeV\{o}}, where o denotes the zero vector. If UtCtV is a

subspace, then P(U)t:=t{xKeP(V)1xeU} and l(P(U)) or l(U) stands for

the set of all lines in P(V) passing through P(U) (dimP(U)<1) or

contained in P(U) (dimP(U)>3), respectively. Given two subspaces

1The terms field and skew field will be used for a not necessarily
commutative field and a non-commutative field, respectively.



U tCtU , then l(P(U ),P(U )) or l(U ,U ) denotes the set of lines1 2 1 2 1 2
through P(U ) and contained in P(U ). The centre of K will be1 2
written as Z.

In order to show the existence of a bijection b, as has been

described in 1, we proceed as follows:

Let V and W be right vector spaces over the same field K with

dimP(V)t=t4, dimP(W)t=t3. We choose two homomorphisms p tetHom (V,W)j K
(j=0,8), such that their kernels have only {o} in common, whereas

their images are two different 3-dimensional subspaces of W. Setting

p t:=tp t+tj.p (jtetZ) (1)j 0 8 -yields a family of homomorphisms VtLtW with Zt:=tZu{8} as set of
-indices. We shall write A t:=tkerp , E t:=timp (jeZ), It:=j j j j- -S(A 1jeZ) and At:=tn(E 1jeZ). In terms of the projective spaces P(V)j j

and P(W) we get a family p :P(V)\P(A )tLtP(W) of linear maps [8,152]j jpj pjwith (xK) t:=t(x )K.

Then It:=tP(I) is a hyperplane of P(V) which will be regarded as

hyperplane at infinity. Thus P(V)\I is the set of points of an

affine space. The lines a t:=tP(A ) are the directrices of a regulusj j
r in I [17], [20,319] which will be called the absolute regulus. A

line rtetl(I) is an element of r if, and only if, there exists a

point RtetP(W) which is the image of r under all mappings p . Ifj
P(V) is Pappian, then r is one set of generators of a ruled quadric

and we have an affine space with orthogonality given by the polar

system of the quadric. Cf. e.g. [1,105], [4,122].

In P(W) the planes E t:=tP(E ) belong to a pencil of planes withj j *axis at:=tP(A). We regard this pencil as a line a in the dual space
* - *of P(W). Let a denote the family {E 1jeZ}. If Kt$tZ, then a is aZ j Z* * *Z-chain [2,320] (subline) of a , else a t=ta . We shall write cZ a

for the set of lines in l(W) which are skew to a.

Summing up yields an injective map
pj pk -b:P(V)\P(I)tLtc , Xt9LtX vX , j, ktetZ, jt$tk. (2)a

By (1), the definition of b does not depend on j, k. Given any two

points Y tetE \a, Y tetE \a, there is a unique point XtetP(V)\I with0 0 1 1po p1X t=tY , X t=tY . Hence b is surjective.0 1
The map b can be used to transfer the affine structure from

P(V)\I to c [13]. The stabilizer F of the absolute regulus r ina *PGL(P(V)) and the stabilizer J of a in PGL(P(W)) yield isomorphicZ
transformation groups on P(V)\I respectively c . An isomorphism isa-1given by v (eF)9Ltb vb (eJ).

3. Let ltetl(V)\l(I) be a line and L its point at infinity. There

are three possibilities:



pj
(i) L is on a directrix a of r: Thus l is a single point andjpk - b bl (j$keZ) is a line. Consequently, l t=t(l\{L}) is the

intersection of a pencil of lines with c . It is easily seen thata *every pencil of lines whose centre is in a plane of a but off aZ*and whose plane does not belong to a yields the b-image of a line.
po p1(ii) L is a point off the absolute regulus r: Then l , l are

-1 po p1two skew lines and (p 1l) (p 1l):l tLtl is a projectivity which0 1
generates a regulus s, say. Replacing 0, 1 by any two different

- *elements of Z shows that in every plane of a there is oneZ
directrix of s and, as follows from [20,321], there are no more

bdirectrices. Hence l t=ts\{a}. Conversely, any regulus s of P(W)
*whose directrices are incident with the planes of a contains a andZ

s\{a} is the b-image of a line.

(iii) L is on a line of r but on no directrix: There exist

l tetA , l tetA and xtetK\Z with l +l tetA and Lt=tlK where0 0 1 1 0 1 8
lt:=tl x+l . Since A t=tker(p -p ),0 1 8 1 0po po pol t=t(l x+l ) t=t(l +l ) ,0 1 0 1p1 p1 p1 pol t=t(l x+l ) t=t(l +l ) xt=t(l +l ) x.0 1 0 1 0 1
Thus the spectrum of the automorphism

-1 po po(p 1lK) (p 1lK):(l )KtLt(l )K0 1
equals the cross ratio

-1CR(lK,(l +l )K,l K,l K)t=t{c xc1ctetK\{0}}.0 1 1 0 -1But xtetK\Z implies that the projectivity (p 1l) (p 1l) is no0 1bperspectivity. By [11,62], [19], l is the proper part of a
2 po p1degenerate conic d in the dual plane of l tvtl . We adopt the

notion degenerate conic of lines for a degenerate conic in a ruled
-plane. Replacing 0, 1 by any two elements j, ktetZ (j$k) shows that

pj -{l 1jeZ} is a fundamental chain [11,69] of d. Conversely, suppose

that d is any degenerate conic of lines in a plane F not through a
-such that {FnE 1jeZ} is a fundamental chain of d. Then dtntc is thej a

b-image of a line. Cf. [13,49] for a proof of this less obvious

result.

4. Assume that Ht$tI is a hyperplane of P(V). There are three

possibile cases:
pj(i) HtntI contains a directrix a of r: Then ft:=tH tCtE is aj jpk - bline and H t=tE (j$keZ), whence H is the set of lines in ck a

meeting f.

(ii) HtntI contains no line of r: It follows from [20,333] that

{rnH1rer} is a (non-degenerate) conic. Set L t:=ta nH (j=0,1). Thenj j

2In [20,325] this set of points is named C-configuration.



po p1
L t$tL and for every XtetH\I we have the plane S t:=tL vL vX1 0 X 0 1po p1whose images under p , p are lines through L , L ,0 1 1 0
respectively. The map

po p1 po p1s :l(L ,E )tLtl(L ,E ), S 9LtS (XtetH\I)H 1 0 0 1 X X
is a projectivity of two pencils of lines, as follows from 3 (ii).

bThe line a is fixed under s . Thus H is the set of lines in cH a
which meet any two lines corresponding under s (cf.[3,187]). AHbdetailed discussion of H is given in [12].

(iii) HtntI contains a line of r but no directrix. We deduce from

[20,325] that {rnH1rer} is a degenerate conic and proceed as in (ii)
p1 po bwith L t=tL being the only difference. Hence H equals the set0 1

of lines in c which belong to any plane F intersecting E and E ina 0 1
two different lines corresponding under s . If we regard the star ofHpoplanes through r as a projective plane within the dual space of

P(W), then the set of these planes F is the proper part of a
* *degenerate conic f , say. The map s is a generating map for f andH* *a is a fundamental chain of f . This follows as in 3 (iii).Z

5. Let Mt=tP(M)tCtP(V) be a plane and Mt$tMnIt=:tm. There are

nine possibilities.
- pj(i) mtetr: For all jtetZ we get a line M tCtE and these linesjpo pj pjhave m t=tm as common point. By (1) all lines of M are lying in

bone plane F. This implies that M t=tc nl(F).a pj(ii) m is a directrix a of r: Hence there is a point Ft:=tMjband M t=tl(F)nc .a
In any case other than (i) and (ii) there exist at most two

directrices of r which meet m: If such directrices do exist, then

let a be none of them. We see that0 -1 -e t:=t(p 1M) (p 1M):E tLtE (0t$titetZ)i 0 i 0 i eiyields a projective linear map e :E tLtE with a tCta. The image ofi 0 i
M under b is the set of lines in c which join a point of E t\taa 0
with its image under e .i- 3Choose any itetZ\{0}. A point Yt=tyKteta is e -invariant if, andi poonly if, y is an eigenvector of e . This is equivalent to Yt=tXi
with Xtetmnr for some line rtetr. The eigenvalue of y is in the

centre of K if, and only if, X is on a directrix of r. This follows

from 3 (iii). The spectrum of e is the union of 0, 1 or 2 conjugacyi
classes of K [6,153], [7,207].

We infer from Xt=tmnr that the hyperplane Ht:=tMvr is of type (i)

3 ei eiWe use this as a shorthand for "Yt=tY " or "Y does not exist".
The latter possibility is equivalent to ytetkere .i



or (iii). The actual type of this H depends on the existence of a

directrix in HtntIg rather than the eigenvalue of y. By 3 (i) or

(iii), the hyperplane H gives rise to a pencil of planes with an

axis f, or a degenerate conic of planes. This set of planes is named
* bf in both cases. All lines of M are incident with at least one

* *plane of f t\ta . For all xtetl(X,M)\{m} the plane xtvtr is of type
b * *(i), whence x is a subset of l(F) with Ftetf \a . Since all lines

bof l(X,M)t\t{m} are parallel, all images x are of common type (i)
* *or (iii). Every plane Ftetf \a arises in this way. If H is of type

4 b *(i) or (iii), then we name f a focal line of M or f a degenerate
bconic of focal planes of M , respectively.

If y belongs to a central eigenvalue of any e , then leti-Xt=tmnrt=tmna (0$jeZ). There is a unique line r’tetr within thej
plane mtvta . These two lines r, r’ coincide if, and only if, Y isj pothe only e -invariant point of a, because r’ t=:tY’ isj
e -invariant. We infer the existence of a hyperplane H’ of type (i)j pjthrough M with mva t=tr’va t=tH’nI. The line f’t:=tH’ meets allj jblines of M . By construction, Y’tetf’tCtE . This f’ is a focal linejb bof M . For every xtetl(X,M)\{m} we deduce that x is the

intersection of c with a pencil of lines l(F,F), say. Necessarilyapj po * *Ft=tx tetf’ and Ft=tFvx tetf \a , so that YtetF.

Now the listing of all possible cases is being continued:
b(iii) m meets no line of r: If two lines of M would span a

plane, then it would meet a in an e -invariant point, an absurdity.jb bHence the lines of M are pairwise skew and M is a partial spread

of P(V).

(iv) m meets a unique line of r and a directrix a : There is aj
single e -invariant point Y on a and through this point there is aj
focal line ftCtE . For any point Ftetf there is a line in l(E ,Y)j 0
which is being mapped on F under e . The join of this line and fjs *will be labeled F . Writing f for the pencil of planes with axis f

s * * sshows F tetf . Then, by the linearity of e , s:ftLtf , F9LtF is ajbprojectivity. Thus M is the intersection of c with the union ofasall pencils l(F,F ) where Ftetf.

(v) m meets a unique line of r but no directrix: Write Y for the
*only e -invariant point of a and f for the degenerate conic ofj

focal planes whose existence has been shown above. Every plane
* * bFtetf \a contains a subset of M which is the proper part of a

degenerate conic of lines, by 3 (iii). Any two of these degenerate

conics of lines correspond under the b-transformed map of a

4 *One could also introduce the name focal pencil of planes for f .



translation of P(V).

(vi) m meets two different directrices a , a : There are twoj k bfocal lines f tCtE and f tCtE . A line of c is in M if, and onlyj j k k a
if, it meets f and f .j k

(vii) m meets exactly two lines of r but only one directrix: In
pothe terminology introduced above, let Yt=tX and Y’ be the only two

e -invariant points on a with Xtetmna , say. So we have a focal linei j *f’tCtE with Y’tetf’ and a degenerate conic f of focal planes allj bof which pass through Y. The set M is the intersection of c witha
the union of all pencils of lines having their centres on f’ and

* *their planes in f t\ta .

(viii) m meets exactly two lines of r but no directrix: Write Y

and Y’ for the two e -invariant points. There exist two degeneratei * *conics of focal planes which will be named f and f’ , respectively.
* *All planes of f pass through Y and all planes of f’ contain Y’.

* * * *When fixing one plane Ftetf \a , then the planes of f’ t\ta will
bmeet F in a set of lines equal to M tntl(F); this is the b-image of

a line of type (iii).

(ix) m meets more than two lines of r: Let Y and Y’ be any two

different e -invariant points. Then the arguments of (viii) may bei
repeated.

6. The stereographic projection of the Pltcker quadric (cf. 1)

motivates the following definition of a relation i on It*tl witha
l t:=tl(W)\c :a a

If XtetI is off r, then (X,y)eit:5ty=a. If X is on a line rtetr,
pj - *then (X,y)eit:5tyel(r ,Y) (jeZ arbitrary) with Yteta being subject

to the condition

CR(Y,E ,E ,E )t=tCR(X,rna ,rna ,rna ).1 0 8 1 0 8
The union of btCt(P(V)\I)t*tc and itCtIt*tl is a relationa a
rtCtP(V)t*tl(W). If XtCtP(V), then we adopt the notation
rX t:=t{yel(W)1E XeX with (X,y)er}.

rEvery subspace StCtP(V) gives rise to a set S tCtl(W). If S is
r bnot at infinity, then S will be called the closure of S . For

bexample, let ltetl(V)\l(I). Then l t=tl(F,F)\{a} implies
r b rl t=tl(F,F). If there is a regulus s with l t=ts\{a} then l t=ts.

Finally, assume that d is a degenerate conic of lines in a plane F
b rand l t=tdnc . Then l t=tdtut(u(l(Fna,Y)1Y=avy,yednc }. It isa a

lengthy but streightforward to discuss all possible cases. If P(W)
ris Pappian, then the image of S under the Klein map g is a

(complete) intersection of the Pltcker quadric with a subspace
gthrough a . This shows that the following definitions are in



accordance with the classical ones. Cf. e.g. [3,185], [4,181],

[5,322], [15,30], [16,17], [16,31], [20,241], [21,312], [21,319].

A set of lines of l(W) is called a linear congruence of lines or

linear complex of lines, if it corresponds under a collineation of

P(W) to a set of lines which is in relation r with a hyperplane or

plane of P(V), respectively. By 4, there are three types of linear

complexes of lines which will be named special (type (i)), general

(type (ii)), or degenerate (type (iii)). By definition of g, the set
gI is a special linear complex. Besides nine possible types of

linear congruences arising from affine planes (cf. 5) we may get

three additional types which are related to planes at infinity. In

the Pappian case the number of possibilities reduces from twelve to

four. (The author is still looking for apropriate names for the

various types of linear congruences in the non-Pappian case.)

If P(W) is Pappian, then the line a does not play a special role
r rgfor a set S whenever S is not in I, since S is not lying in the

gtangent hyperplane of the Pltcker quadric in a . However, if K is a
*skew field, then the line a and the subpencil a may be essential.Z*For example, the line a, the chain a (and a Z-chain in the line a)Z rare uniquely determined by a general linear complex H [12].
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