Spheres of Quadratic Field Extensions

By H. HAVLICEK

1. Introduction

The concepts of the geometry of field extensions can be found in the book of W. BENZ [2]. There it is shown that the geometry arising from the real quaternions and the complex numbers has a point model, namely the 2-spheres on a euclidian 4-sphere in a real 5-dimensional euclidian space. This representation of the projective line over the quaternions as a 4-sphere was already known to E. STUDY [19]. In part IV of that paper it is shown how to link this 4-sphere with a manifold of lines in a complex projective 3-space by means of the KLEIN mapping¹.

In the present note we take up these ideas by constructing a point model for the geometry $\Sigma(K,L)$ which belongs to a quadratic extension L/K, where L is a proper skew field and K is a commutative field.

In a first step we represent the projective line over L in terms of a spread $\mathcal{P}_{L/K}$ in a 3-dimensional projective space \mathcal{P} over K. Then we transfer this spread to the KLEIN quadric representing the lines of \mathcal{P} . This establishes immediately a point model of $\mathcal{P}_{L/K}$, say $\mathbf{S}_{L/K}$, in a 5-dimensional projective space $\hat{\mathcal{P}}$ over K. (If K would be a skew field too then the spread $\mathcal{P}_{L/K}$, but no such representation would exist; cf. [7].)

Although our approach is aiming at a point model in a projective space over K, it also yields a point model over the centre Z of L: There is a unique 5-dimensional BAER subspace Π of $\hat{\mathcal{P}}$ which contains $\mathbf{S}_{L/K}$; the underlying field of Π is Z. The set $\mathbf{S}_{L/K}$ is an elliptic quadric of Π ("4-sphere") which is equal to the intersection of Π with the KLEIN quadric.

In addition we shall characterize the images of the chains (K-sublines). It will also be proved that the automorphism group of $\Sigma(K,L)$ is represented by a group of automorphic collineations of $\mathbf{S}_{L/K}$. Both results depend on the embedding of Π in $\hat{\mathcal{P}}$, but the point model itself also may be seen in terms of Π alone. From this point of view it is a generalization of the classical result.

The skew field L is a 4-dimensional quadratic algebra over Z. H. Hotje has shown how to construct a quadric model for the chain geometries arising from certain quadratic algebras. See [13], [14] or the survey article [10]. It will be shown that $S_{L/K}$ equals the Hotje model belonging to $\Sigma(Z,L)$.

¹STUDY points out explicitly the fact that this manifold is (in today's language) both a spread and a dual spread [19,IV,177].

We frequently shall make use of PLÜCKER coordinates and some results of projective line geometry which can be found e.g. in [4], [11], [12] or [17].

2. Spherical models

2.1. Let K be a commutative field and let L be a right quadratic extension field² of K. The centre of L will be denoted by Z.

If L is a skew field then K is a maximal commutative subfield of L. Hence K and the centralizer of K in L coincide so that $Z \subset K$. We infer

$$|L:K|_{left} = |K:Z|_{left} = |K:Z|_{right} = |L:K|_{right} = 2$$

from Corrollary 2 in [6,49]. Hence L is a 4-dimensional quadratic Z-algebra, i.e. L is a quaternion skew field [16,169-171]; cf. also chapter 13 in [20]. Let $\{1,a\}$ be a basis of K over Z. There exist $\lambda_1, \mu_1 \in Z, \mu_1 \neq 0$ such that³

$$a^2 + a\lambda_1 + \mu_1 = 0. \tag{1}_{1,2}$$

In choosing a basis of L over K we have to distinguish three cases: Case 1. L is a skew field and K is a GALOIS extension of Z. Hence

$$(\overline{}): K \to K, \ u = \xi + a\eta \ \mapsto \overline{u} = \xi - (\lambda_1 + a)\eta, \ (\xi, \eta \in Z)$$

$$(2_1)$$

is an automorphism of order 2 which fixes Z elementwise. By the Skolem-Noether theorem (cf. the Corrollary in [6,46]) this automorphism ($\overline{}$) extends to an inner automorphism of L. Hence we can choose $i \in L \setminus K$ such that

$$i^{-1}ui = \overline{u} \text{ for all } u \in K. \tag{31}$$

Case 2. L is a skew field and K/Z is not GALOIS. Hence

$$\operatorname{Char} K = 2, \ \lambda_1 = 0, \tag{22}$$

since a has to be inseparable over Z. We infer from

$$(l+a^{-1}la)a = la+a^{-1}l\mu_1 = la+al = a(l+a^{-1}la)$$
 for all $l \in L$

that $l+a^{-1}la \in K$. So there exists an $i \in L \setminus K$ such that

$$a^{-1}ia = i+1.$$
 (3₂)

Case 3. L is commutative. Choose any $i \in L \setminus K$.

²The term field is used for a not necessarily commutative field whereas skew field always means a non-commutative field. We do not exclude the case that L is commutative in order to illustrate how things will alter in the non-commutative case.

³We refer to the three cases described below in the numbering of formulae: e.g. (4) holds in all cases, but $(1_{1,2})$ in case 1 and case 2 only.

In every case there exist $\lambda_2, \mu_2 \in Z \cap K$, $\mu_2 \neq 0$ such that

$$i^2 + i\lambda_2 + \mu_2 = 0. (4)$$

Multiplication in L is subject to the commutation rule

$$ui = iu^{5} + u^{D} \text{ for all } u \in K,$$
(5)

where S is an injective endomorphism of K and D is an S-derivation of K; cf. [5], [6,56]. But L is 4-dimensional over Z and S fixes Z elementwise, whence S is Z-linear and surjective.

Case 1. We claim that

$$S = (\overline{}), D = 0, \lambda_2 = 0.$$
 (6₁)

By formulae (3₁) and (5), $i^{-1}ui = u^{S} + i^{-1}u^{D} \in K$ for all $u \in K$, whence D is a zero-derivation. Thus $id_{K} \neq S = (\overline{})$. We infer from $S^{2} = id_{K}$ that $i^{2} \in Z$, whence $\lambda_{2} = 0$.

Case 2. We claim that

$$S = \mathrm{id}_{K}, \ (\xi + a\eta)^{D} = a\eta \text{ for all } \xi, \eta \in \mathbb{Z}, \ \lambda_{2} = 1.$$
(62)

The first assertion is obvious. By (3_2) , ai = ia+a so that $a^D = a$. Now the second assertion follows, because D is a Z-linear mapping with kernel Z. Finally, $\lambda_2 = 1$, because of (4), (3₂) and

$$(i+1)^{2} + (i+1)\lambda_{2} + \mu_{2} = i^{2} + 1 + i\lambda_{2} + \lambda_{2} + \mu_{2} = 0.$$

Case 3. Obviously

$$S = id_K, D = 0.$$
 (6₃)

2.2. Let \mathcal{P} be the projective space on L^2 over K. The points of \mathcal{P} are the 1-dimensional K-subspaces of L^2 . The set of lines of \mathcal{P} is denoted by \mathscr{L} . An ordered basis of L^2 over K is given by

$$\mathbf{b}_0 := (1,0), \ \mathbf{b}_1 := (i,0), \ \mathbf{b}_2 := (0,1), \ \mathbf{b}_3 := (0,i).$$
 (7)

Write $\hat{\mathcal{P}}$ for the projective space on the vector space $L^2 \wedge L^2$ over K. The family

$$(\mathbf{b}_0 \wedge \mathbf{b}_1, \mathbf{b}_0 \wedge \mathbf{b}_2, \mathbf{b}_0 \wedge \mathbf{b}_3, \mathbf{b}_2 \wedge \mathbf{b}_3, \mathbf{b}_1 \wedge \mathbf{b}_3, \mathbf{b}_1 \wedge \mathbf{b}_2)$$

$$(8)$$

is an ordered basis of $L^2 \wedge L^2$. Coordinates always are understood with respect to bases (7) or (8). The KLEIN mapping

$$\sigma: \mathscr{L} \to \widehat{\mathcal{P}}, \ (\mathbf{c}K) \lor (\mathbf{d}K) \ \mapsto \ (\mathbf{c} \land \mathbf{d})K$$

is injective. Its image set is the KLEIN quadric, say Q, with equation

$$x_{01}x_{23} - x_{02}x_{13} + x_{03}x_{12} = 0$$

The non-degenerate bilinear form

$$\left(\sum_{i < j} x_{ij} (\mathbf{b}_i \wedge \mathbf{b}_j), \sum_{k < l} y_{kl} (\mathbf{b}_k \wedge \mathbf{b}_l) \right) \mapsto x_{01} y_{23} + x_{23} y_{01} - x_{02} y_{13} - x_{13} y_{02} + x_{03} y_{12} + x_{12} y_{03}$$

describes the projective polarity \bot which is associated to the KLEIN quadric. Recall that two lines of $\mathscr L$ have a common point if, and only if, their σ -images are conjugate with respect to \bot .

2.3. A partition of the group $(L^2, +)$ is given by

$$\{(1,l)L \mid l \in L\} \cup \{(0,1)L\}.$$
(9)

If L^2 is regarded as a right vector space over L then the projective line over L is obtained from (9); cf. [2,320]. If, however, L^2 is regarded as right vector space over K then (9) yields a spread of lines, say $\mathscr{P}_{L/K}$, in the projective space \mathscr{P} defined in 2.2. We shall adopt this second point of view. Cf. also [8], [9].

Every 2-dimensional subspace $(1,l)L \subset L^2$ is spanned by vectors (1,l), (*i*,*li*). Putting l =: u+iv ($u,v \in K$) gives

$$(1,l) = \mathbf{b}_0 + \mathbf{b}_2 u + \mathbf{b}_3 v,$$

$$(i,li) = (i,iu^S + u^D + i(iv^S + v^D)) = \mathbf{b}_1 + \mathbf{b}_2 (u^D - \mu_2 v^S) + \mathbf{b}_3 (u^S - \lambda_2 v^S + v^D).$$

Write ω for the line arising from (0,1)L; the point ω^{σ} equals $(\mathbf{b}_2 \wedge \mathbf{b}_3)K$. We obtain the following injective parametric representation of $(\mathscr{G}_{L/K} \setminus \{\omega\})^{\sigma}$:

$$(u,v) \mapsto \left(\sum_{i < j} p_{ij}(\mathbf{b}_i \wedge \mathbf{b}_j)\right) K$$

where the p_{ij} 's, as functions of $(u,v) \in K^2$, are given by

$$p_{01} = 1, p_{23} = uu^{S} - \lambda_{2}uv^{S} + uv^{D} - u^{D}v + \mu_{2}vv^{S},$$

$$p_{02} = u^{D} - \mu_{2}v^{S}, p_{13} = -v, (10)$$

$$p_{03} = u^{S} - \lambda_{2}v^{S} + v^{D}, p_{12} = -u.$$

2.4. If L is commutative (case 3) then formula (10) simplifies to

$$p_{01} = 1, p_{23} = u^2 - \lambda_2 uv + \mu_2 v^2, p_{02} = -\mu_2 v, p_{13} = -v, (10_3)$$

$$p_{03} = u - \lambda_2 v, p_{12} = -u.$$

It is well known that now $\mathscr{P}_{L/K}$ is an elliptic linear congruence of lines (regular spread) and that $\mathscr{P}_{L/K}^{\sigma}$ is an elliptic quadric which equals the intersection of the KLEIN quadric with a 3-dimensional subspace, say \mathcal{I} , of $\hat{\mathcal{P}}$. Cf. e.g. chapter 18.6.2 in [10]. By abuse of language we shall refer to $\mathbf{S}_{L/K} := \mathcal{I} \cap Q$ as a 2-sphere. The subspace \mathcal{I} is given by equations

 $x_{03} - \lambda_2 x_{13} + x_{12} = 0, \ x_{02} - \mu_2 x_{13} = 0$

and the line \mathcal{T}^{\perp} is spanned by points with coordinates

$$(0,\lambda_2,1,0,0,1)^{\mathsf{T}}, (0,\mu_2,0,0,-1,0)^{\mathsf{T}}.$$

Intersection of \mathcal{T}^{\perp} with the KLEIN quadric yields an equation

$$X^2 + \lambda_2 X Y + \mu_2 Y^2 = 0 \tag{11}_3$$

and putting Y = 1 in (11_3) brings back the minimal equation (4) of *i*.

If the ground field of \mathcal{P} and $\hat{\mathcal{P}}$ is extended from K to L then we get projective spaces $\mathcal{P}_{(L)}$ and $\hat{\mathcal{P}}_{(L)}$ on the vector spaces $L^2 \otimes_K L$ over L and $(L^2 \wedge L^2) \otimes_K L$ over L, respectively. But $(L^2 \wedge L^2) \otimes_K L$ is easily seen to be canonically isomorphic to $(L^2 \otimes_K L) \wedge (L^2 \otimes_K L)$ so that the extended KLEIN quadric $Q_{(L)}$ may be identified with the KLEIN quadric representing the lines of $\mathcal{P}_{(L)}$. The solutions of equation (11₃) over L yield the common points of the extended line $(\mathcal{T}^{\perp})_{(L)}$ with $Q_{(L)}$. These points correspond to those lines in $\mathcal{P}_{(L)}$ which intersect all extended lines of the spread $\mathcal{I}_{L/K}$. Hence, by (11₃) and (4), the number of such lines is two or one if L/K is GALOIS or not, respectively. Cf. [3], [10] for different proofs of this. But it is also easy to see if L/K is GALOIS or not without extending the ground field:

Lemma 1. Let L/K be a quadratic field extension, where both L and K are commutative, and let $\mathbf{S}_{L/K}$ be the image of the spread $\mathcal{G}_{L/K}$ under the Klein mapping. The following assertions are equivalent: (a) L/K is Galois.

(b) The intersection over all tangent planes of the 2-sphere $S_{L/K}$ is empty.

Proof. The intersection over all tangent planes of $\mathbf{S}_{L/K}$ equals $\mathcal{T} \cap \mathcal{T}^{\perp}$, since $\mathbf{S}_{L/K}$ is spanning \mathcal{T} . Calculating $\mathcal{T} \cap \mathcal{T}^{\perp}$ is equivalent to solving the linear homogeneous system

$$2X + \lambda_2 Y = 0, \ \lambda_2 X + 2\mu_2 Y = 0 \tag{123}$$

with determinant $\Delta = 4\mu_2 - \lambda_2^2$. If $\operatorname{Char} K \neq 2$, then both (a) and (b) hold true. However, when $\operatorname{Char} K = 2$ then (12₃) has only the trivial solution if, and only if, $\lambda_2 \neq 0$, i.e. L/K is GALOIS.

If L/K is not GALOIS then $\mathcal{T}^{\perp} \subset \mathcal{T}$, whence the knot of the sphere $\mathbf{S}_{L/K}$ is a line. Cf. chapter 23.2.C in [18].

2.5. Now cases 1 and 2 will be discussed. We shall use the following concept: Let V be a vector space over K and let $\mathbf{a}_0, \dots, \mathbf{a}_r \in \mathbf{V}$ be linearly independent vectors. Then an *r*-dimensional Z-subspace of the projective space on V is given as the set of all points $\mathbf{p}K$, where $\mathbf{p} \in \mathbf{V} \setminus \{\mathbf{o}\}$ is a linear combination of $\mathbf{a}_0, \dots, \mathbf{a}_r$ with coefficients in Z. Such an *r*-dimensional Z-subspace is uniquely determined by r+2 of its points which are in general position.

Theorem 1. Let L/K be a quadratic field extension, where L is non-commutative and K is commutative. The image of the spread $\mathcal{G}_{L/K}$ under the Klein map $\sigma: \mathcal{L} \rightarrow \hat{\mathcal{P}}$ equals the intersection of the Klein quadric with a 5-dimensional Z-subspace of $\hat{\mathcal{P}}$, say Π . This intersection is an elliptic quadric with respect to Π .

Proof. We substitute in formula (10) by putting

$$u =: \alpha + a\beta, v =: \gamma + a\delta$$
 with $(\alpha, \beta, \gamma, \delta) \in \mathbb{Z}^4$.

Case 1. By $a^{S} = \overline{a} = -(\lambda_{1}+a)$ and $a^{2} = -(a\lambda_{1}+\mu_{1})$ formula (10) becomes

$$p_{01} = 1, \qquad p_{23} = \alpha^2 - \lambda_1 \alpha \beta + \mu_1 \beta^2 + \mu_2 (\gamma^2 - \lambda_1 \gamma \delta + \mu_1 \delta^2),$$

$$p_{02} = -\mu_2 (\gamma + \overline{a} \delta), \qquad p_{13} = -\gamma - a \delta, \qquad (10_1)$$

$$p_{03} = \alpha + \overline{a} \beta, \qquad p_{12} = -\alpha - a \beta.$$

We apply the collineation $\kappa: \hat{\mathcal{P}} \to \hat{\mathcal{P}}$ given by the regular matrix

$$(a-\overline{a})^{-1} \begin{pmatrix} a-\overline{a} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a & 0 & 0 & \overline{a} \\ 0 & -a\mu_2^{-1} & 0 & 0 & \overline{a} & 0 \\ 0 & 0 & 0 & a-\overline{a} & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 \\ 0 & \mu_2^{-1} & 0 & 0 & -1 & 0 \end{pmatrix}$$

and obtain as parametric representation of $(\mathcal{G}_{L/K} \smallsetminus \{w\})^{\sigma\kappa}$

$$p_{01} = 1, \qquad p_{23} = \alpha^2 - \lambda_1 \alpha \beta + \mu_1 \beta^2 + \mu_2 (\gamma^2 - \lambda_1 \gamma \delta + \mu_1 \delta^2),$$

$$p_{02} = \alpha, \qquad p_{13} = \beta, \qquad (13_1)$$

$$p_{03} = \gamma, \qquad p_{12} = \delta.$$

Case 2. Here $a^2 = \mu_1$ turns (10) into

$$p_{01} = 1, \qquad p_{23} = \alpha^2 + \alpha \gamma + \mu_1 \beta^2 + \mu_1 \beta \delta + \mu_2 (\gamma^2 + \mu_1 \delta^2),$$

$$p_{02} = \mu_2 \gamma + \alpha (\beta + \mu_2 \delta), \qquad p_{13} = \gamma + \alpha \delta, \qquad (10_2)$$

$$p_{03} = \alpha + \gamma + \alpha \beta, \qquad p_{12} = \alpha + \alpha \beta$$

and the collineation $\kappa: \hat{\mathcal{P}} \to \hat{\mathcal{P}}$ given by the regular matrix

$$\mathbf{a}^{-1} \left(\begin{array}{cccccc} a & 0 & 0 & 0 & 0 & 0 \\ 0 & a & 0 & 0 & a\mu_2 & a \\ 0 & 0 & a & 0 & 0 & a \\ 0 & 0 & 0 & a & 0 & 0 \\ 0 & 1 & 0 & 0 & \mu_2 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{array} \right)$$

yields a parametric representation of $(\mathcal{G}_{L/K} \smallsetminus \{w\})^{\sigma\kappa}$

$$p_{01} = 1, p_{23} = \alpha^2 + \alpha \gamma + \mu_1 \beta^2 + \mu_1 \beta \delta + \mu_2 (\gamma^2 + \mu_1 \delta^2), p_{02} = \alpha, p_{13} = \beta, (13_2) \\ p_{03} = \gamma, p_{12} = \delta.$$

There exists a unique 5-dimensional Z-subspace Π of $\hat{\mathcal{P}}$ such that Π^{κ} is determined by the basis (8). It is immediate from the stereographic parametrization (13₁) or (13₂) that $(\mathscr{G}_{L/K} \setminus \{w\})^{\sigma\kappa}$ is a paraboloid of Π^{κ} when $p_{01} = 0$ is regarded as equation of an hyperplane at infinity. This paraboloid is elliptic, since $\mathscr{G}_{L/K}$ is a spread. By means of (13₁) and (13₂) we extend this paraboloid to a regular projective quadric of Π^{κ} with equation

$$x_{02}^{2} - x_{02}x_{13}\lambda_{1} + x_{13}^{2}\mu_{1} + \mu_{2}(x_{12}^{2}\mu_{1} - x_{12}x_{03}\lambda_{1} + x_{03}^{2}) - x_{01}x_{23} = 0$$
(14₁)

and

$$x_{02}^{2} + x_{02}x_{03} + x_{13}^{2}\mu_{1} + x_{13}x_{12}\mu_{1} + x_{12}^{2}\mu_{1}\mu_{2} + x_{03}^{2}\mu_{2} + x_{01}x_{23} = 0, \qquad (14_{2})$$

respectively; the image of this projective quadric under κ^{-1} will be written as $\mathbf{S}_{L/K}$. The quadric $\mathbf{S}_{L/K}{}^{\kappa} \subset \Pi^{\kappa}$ is elliptic, its affine points are given by (13₁) and (13₂), respectively, and $\omega^{\sigma\kappa}$ is its only point at infinity. Therefore $\mathbf{S}_{L/K} = \mathscr{G}_{L/K}{}^{\sigma}$. Obviously $\mathbf{S}_{L/K} \subset Q \cap \Pi$. On the other hand equations (14₁) and (14₂) describe, respectively, a quadric of $\hat{\mathscr{P}}$. A lengthy, but straightforward calculation shows that this is equal to Q^{κ} . Thus $\mathbf{S}_{L/K} = Q \cap \Pi$, as required.

The centre of the skew field L is infinite, since |L:Z| = 4. Therefore $\mathbf{S}_{L/K}$ contains 7 points in general position and Π , being a BAER subspace of $\hat{\mathcal{P}}$, is uniquely determined. By abuse of language we shall refer to $\mathbf{S}_{L/K}$ as a 4-sphere of Π . The polar system which is determined by the 4-sphere $\mathbf{S}_{L/K}$ is always regular, since it is the restriction of \bot to the lattice of subspaces of Π . This is a major difference to the case when L is commutative; cf. Lemma 1.

3. Chains and Traces

3.1. The field extension L/K gives rise to an incidence structure $\Sigma(K,L)$ which is formed by the points of the projective line on L^2 (over L) and whose blocks, called *chains*, are the K-sublines. Moreover we shall be concerned with *traces*, i.e. Z-sublines, if L is a skew field. See [2,326]. However, in contrast to [2], L^2 will again be regarded as vector space over K, so that the spread $\mathscr{G}_{L/K}$ is endowed with subsets called chains and traces, respectively.

3.2. If *L* is commutative then the chains are exactly those reguli which are contained in $\mathscr{G}_{L/K}$. Hence the σ -images of the chains are precisely the non-degenerate conics (*circles*, 1-spheres) contained in $S_{L/K}$. This is well known; see e.g. [10].

3.3. For every chain \mathcal{C} in $\mathcal{G}_{L/K}$ there is at least one *transversal line* t of \mathcal{C} even if L is a skew field. This means that the mapping

$$\ell \ (\in \ \mathbb{C}) \ \mapsto \ell \cap t \ (\in \ t)$$

is a bijection of \mathcal{C} onto t; cf. [8]. On the other hand, given a line $t \notin \mathcal{G}_{L/K}$ then the set of all lines of $\mathcal{G}_{L/K}$ which have a point in common with t is a chain with t being one of its transversal lines. All chains are in one orbit with respect to the group of automorphic projective collineations of the spread $\mathcal{G}_{L/K}$. So it is sufficient to discuss the *standard chain* \mathcal{K} , say, which is given by the transversal line $\mathbf{b}_0 K \vee \mathbf{b}_2 K$.

Theorem 2. Let L/K be a quadratic field extension, where L is non-commutative and K is commutative, and let \mathcal{C} be a chain of $\mathcal{I}_{L/K}$. There exists a unique linear congruence of lines, say \mathcal{M} , such that $\mathcal{C} = \mathcal{I}_{L/K} \cap \mathcal{M}$. This congruence of lines is either hyperbolic or parabolic. The field K is a Galois extension of the centre of L if, and only if, \mathcal{M} is hyperbolic.

Proof. Let $\mathcal{C} = \mathcal{K}$ be the standard chain. We obtain a parametric representation of $(\mathcal{K} \setminus \{\omega\})^{\sigma}$ by putting $\gamma = \delta = 0$ in formulae (10₁) and (10₂), respectively. *Case 1.* We read off from formula (10₁) that \mathcal{K}^{σ} is contained in the 3-

Case 1. We read off from formula (10₁) that \mathcal{R}° is contained in the 3dimensional subspace $\mathfrak{X} \subset \hat{\mathcal{P}}$ given by the system

$$x_{02} = 0, x_{13} = 0$$

and we infer from formula (13_1) that $\mathcal{K}^{\sigma\kappa}$ is spanning a three dimensional subspace of $\hat{\mathcal{P}}$. Hence there is a unique linear congruence of lines, say \mathcal{M} , given by $\mathcal{M}^{\sigma} = \mathfrak{X} \cap Q$, such that $\mathcal{C} \subset \mathcal{M}$. The congruence \mathcal{M} is hyperbolic, since \mathfrak{X}^{\perp} is a secant of Q which is spanned by points with coordinates

$$(0,0,0,0,1,0)^{\mathsf{T}}$$
 and $(0,1,0,0,0,0)^{\mathsf{T}}$,

respectively. These two points are the σ -images of the axes of the congruence \mathcal{M} . These axes coincide with the only two transversal lines of \mathcal{K} (cf. [8]). Note that $\mathfrak{X} \cap Q$ is a hyperbolic (doubly ruled) quadric of \mathfrak{X} .

Case 2. Repeat the argumentation of case 1: However now the subspace $\mathcal X$ is given by the system

$$x_{03}+x_{12} = 0, \ x_{13} = 0$$

and the congruence \mathcal{M} is parabolic, since \mathfrak{X}^{\perp} is a tangent line of Q which is spanned by points with coordinates

$$(0,0,1,0,0,1)^{\mathsf{T}}$$
 and $(0,1,0,0,0,0)^{\mathsf{T}}$,

respectively. The second point is the σ -image of the axis of the congruence \mathcal{M} . This axis is the only transversal line of \mathcal{K} (cf. [8]). Note that $\mathfrak{X}^{\perp} \subset \mathfrak{X}$ and that $\mathfrak{X} \cap Q$ is a quadratic cone of \mathfrak{X} whose tangent planes belong to the pencil of planes in \mathfrak{X} with axis \mathfrak{X}^{\perp} . **Theorem 3.** Let L/K be a quadratic field extension, where L is non-commutative and K is commutative, and let $\mathbf{S}_{L/K}$ be the image of the spread $\mathcal{I}_{L/K}$ under the Klein mapping σ . A subset C of $\mathbf{S}_{L/K}$ is the σ -image of a chain $\mathcal{C} \subset \mathcal{I}_{L/K}$ if, and only if, there exists a 3-dimensional subspace \mathfrak{X} of $\hat{\mathcal{P}}$ with the following properties:

- 1. $\mathfrak{X} \cap \Pi$ is a 3-dimensional subspace of Π and $\mathbf{C} = \mathfrak{X} \cap \mathbf{S}_{L/K}$ is an elliptic quadric of the subspace $\mathfrak{X} \cap \Pi$ (over Z).
- 2. $\mathfrak{X} \cap Q$ contains a line of $\hat{\mathcal{P}}$ (over K).

Proof. (a) Let \mathcal{K} be the standard chain and define \mathfrak{X} as in Theorem 2. Then, by (10₁) and (10₂), putting $\gamma = \delta = 0$, and application of κ^{-1}

$$\mathcal{K}^{\sigma} = (\mathfrak{X} \cap \Pi) \cap \mathbf{S}_{L/K} = \mathfrak{X} \cap \mathbf{S}_{L/K} = (\mathfrak{X} \cap \Pi) \cap Q$$

is an elliptic quadric of a 3-dimensional subspace of the Z-subspace Π . It was shown in Theorem 2 that $\mathfrak{X} \cap Q$ is either a hyperbolic quadric (case 1) or a quadratic cone (case 2), whence $\mathfrak{X} \cap Q$ contains a line of $\hat{\mathcal{P}}$.

(b) Suppose that $\mathfrak X$ is satisfying conditions 1 and 2. Then define

$$\mathcal{C} \subset \mathcal{G}_{L/K}$$
 by $\mathcal{C}^{\sigma} = \mathfrak{X} \cap \mathbf{S}_{L/K} = \mathbf{C}$ and $\mathcal{M} \subset \mathcal{L}$ by $\mathcal{M}^{\sigma} = \mathfrak{X} \cap Q$

Hence $\mathfrak{X} \cap Q$ is a ruled quadric in \mathfrak{X} . However $\mathfrak{X} \cap \mathbf{S}_{L/K}$ contains at least 5 points in general position with respect to $\Pi \cap \mathfrak{X}$ and these points are also in general position with respect to \mathfrak{X} . Thus $\mathfrak{X} \cap Q$ is either a hyperbolic quadric or a quadratic cone and \mathfrak{M} is either a hyperbolic or parabolic linear congruence of lines, respectively. Denote by $t \in \mathfrak{L}$ an axis of this congruence, whence

$$T := t^{\sigma} \in \mathfrak{X}^{\perp} \cap Q.$$

Moreover $t \notin \mathscr{G}_{L/K}$, since no line of \mathscr{C} is skew to t, but all lines of $\mathscr{G}_{L/K}$ are mutually skew. We deduce from $T \notin \mathbf{S}_{L/K} = Q \cap \Pi$ and $T \in Q$ that $T \notin \Pi$.

The set of all lines of the spread $\mathscr{G}_{L/K}$ which are intersecting t is a chain \mathcal{C}' and

$$\mathcal{C}'^{\sigma} = T^{\perp} \cap \mathbf{S}_{L/K} = T^{\perp} \cap \Pi \cap Q.$$

Clearly $T^{\perp} \cap \Pi$ is a subspace of Π . If $T^{\perp} \cap \Pi$ would be a hyperplane relative to Π then T would also be in Π , since the polarity determined by $\mathbf{S}_{L/K}$ is induced by \perp and it would take $T^{\perp} \cap \Pi$ back to $T^{\perp \perp} = T \in \Pi$, an absurdity. On the other hand $T^{\perp} \cap \Pi$ contains \mathbf{C} so that $\mathfrak{X} \cap \Pi = T^{\perp} \cap \Pi$. To sum up we have shown that

$$\mathcal{C}^{\sigma} = \mathbf{C} = \mathfrak{X} \cap \Pi \cap Q = T^{\perp} \cap \Pi \cap Q = \mathcal{C}^{\prime \circ}$$

which establishes that $\ensuremath{\mathbb{C}}$ is a chain.

There may be 3-dimensional subspaces $\mathcal{Y} \subset \hat{\mathcal{P}}$ such that both $\mathcal{Y} \cap \mathbf{S}_{L/K}$ and $\mathcal{Y} \cap Q$ are

elliptic quadrics⁴.

3.4. Let L be a skew field. The incidence structure which is formed by a fixed chain \mathcal{C} and the set of all traces which are a part of \mathcal{C} is isomorphic to the chain geometry $\Sigma(Z,K)$. So it is natural to ask if there is a 3-dimensional Z-subspace of \mathcal{P} such that the chain \mathcal{C} and the traces within \mathcal{C} , when restricted to this Z-subspace, represent - up to a collineation - the spread $\mathcal{G}_{K/Z}$ and its chains (Z-sublines), respectively. The answer is that such a Z-subspace exists, but it is by no means uniquely determined.

We illustrate this for the standard chain $\mathcal{K} \subset \mathcal{G}_{L/K}$. Denote by Ψ the Z-subspace of \mathcal{P} determined by the basis (7). We shall show that there exists a collineation $\rho \in \mathrm{PGL}(\mathcal{P})$ such that \mathcal{K} and $\Psi^{\rho^{-1}}$ have the required property⁵: Define ρ as the projective collineation of \mathcal{P} given in cases 1 and 2 by the matrices

$$\begin{pmatrix} -\overline{a} & -a & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -\overline{a} & -a \\ 0 & 0 & 1 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} a & a & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & a & a \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

respectively. Then the corresponding automorphic collineation of the KLEIN quadric is described by one of the 6×6 matrices written down below and $\mathcal{K}^{\rho\sigma} \setminus \{w^{\sigma}\}$ has the parametric representations

$$\begin{pmatrix} a-\overline{a} & 0 & 0 & 0 & 0 & 0 \\ 0 & \overline{a}^{2} & \underline{aa} & 0 & a^{2} & \overline{aa} \\ 0 & -\overline{a} & -\overline{a} & 0 & -a & -a \\ 0 & 0 & 0 & a-\overline{a} & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & -\overline{a} & -a & 0 & -a & -\overline{a} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ \alpha-\lambda_{1}\beta-a\beta \\ \alpha^{2}-\lambda_{1}\alpha\beta+\mu_{1}\beta^{2} \\ 0 \\ -\alpha-a\beta \end{pmatrix} = (a-\overline{a}) \begin{pmatrix} 1 \\ -\mu_{1}\beta \\ \alpha-\lambda_{1}\beta \\ \alpha^{2}-\lambda_{1}\alpha\beta+\mu_{1}\beta^{2} \\ -\beta \\ -\alpha \end{pmatrix}$$
(15₁)

and

$$\begin{pmatrix} a & 0 & 0 & 0 & 0 & 0 \\ 0 & \mu_{1} & \mu_{1} & 0 & \mu_{1} & \mu_{1} \\ 0 & a & 0 & 0 & 0 & a \\ 0 & 0 & 0 & a & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & a & a & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ a\beta \\ \alpha^{+}a\beta \\ \alpha^{2}+\mu_{1}\beta^{2} \\ 0 \\ a\beta+\alpha \end{pmatrix} = a \begin{pmatrix} 1 \\ \mu_{1}\beta \\ \alpha \\ \alpha^{2}+\mu_{1}\beta^{2} \\ \beta \\ \alpha \end{pmatrix},$$
(15₂)

respectively, with $\alpha, \beta \in Z$. Both (15₁) and (15₂) are in accordance with (10₃) when replacing $\alpha, \beta, \lambda_1, \mu_1$ by u, v, λ_2, μ_2 and ruling out the non-zero factors $(a-\overline{a})$ and a, respectively. Applying ρ^{-1} establishes the result.

In order to see that $\Psi^{\rho^{-1}}$ is not uniquely determined by \mathcal{K} , we may transform the standard chain under any of the collineations κ_c ($c \in K \setminus \{0\}$) which, de-

⁴There need not be a chain $\Sigma(K,L)$ which contains a given trace and a given point off that trace; cf. however condition (*) in [2,334].

 $^{{}^{5}\}mathcal{K}$ yields a spread of Ψ which belongs to $\Sigma(Z,Z(i))$ rather than $\Sigma(Z,K)$.

pending on the two cases, are given by the matrices

(c	0	0	0	Ì	(c	1	0	0)
0	1	0	0	and	0	С	0	0	,
0	0	С	0		0	0	С	1	
lo	0	0	1,		0	0	0	С	J

respectively. It is easily seen that \mathcal{K} , but not $\Psi^{\rho^{-1}}$, is left invariant under all collineations κ_c , since K is infinite.

Now it is immediate that the σ -images of traces within $\mathscr{P}_{L/K}$ are exactly the 1-spheres on $\mathbf{S}_{L/K}$ and that Lemma 1 can be applied on the σ -image of every chain. This gives a geometric characterization of case 1 and case 2 in terms of the σ -image of any chain.

We infer from (13₁), (13₂), (14₁) and (14₂) that $S_{L/K}$ is identical with the HoTJE model of the chain geometry $\Sigma(Z,L)$, because the quadratic form appearing at the coordinate p_{23} is just the norm of $(\alpha+a\beta)+i(\gamma+a\delta) \in L$; cf. [13], [14].

4. Automorphisms

4.1. We restrict our attention to cases 1 and 2, i.e. *L* is a skew field. Every automorphic collineation of the KLEIN quadric which leaves $S_{L/K}$ invariant maps 2-spheres onto 2-spheres. This may be reversed as follows⁶ (cf. also [21]):

Theorem 4. Let $\varphi: \mathbf{S}_{L/K} \to \mathbf{S}_{L/K}$ be a bijection such that both φ and φ^{-1} map 2-spheres onto 2-spheres. Then φ extends to a collineation $\psi: \hat{\mathcal{P}} \to \hat{\mathcal{P}}$ which leaves the Klein quadric invariant.

Proof. We can go back from $S_{L/K}$ to the projective line over L via the KLEIN map and the spread $\mathcal{G}_{L/K}$. Hence φ gives rise to an automorphism of $\Sigma(K,L)$. By [1], [2,343] and [15], every automorphism of $\Sigma(K,L)$ is induced by a product of bijections $f: L^2 \to L^2$ of the following three types:

1. f is an L-linear mapping.

2. $(l_0, l_1)^f = (l_0^J, l_1^J), J \in Aut(L) \text{ and } K^J = K.$

3. $(l_0, l_1)^f = ((l_1^{-1})^J, (l_0^{-1})^J), J$ an antiautomorphism of L and $K^J = K$.

Mappings of first and second type are semilinear bijections of the vector space L^2 over K, whence we obtain corresponding automorphic collineations of the spread $\mathcal{G}_{L/K}$. When f is of third type then define

 $\tau: L^{2} \times L^{2} \to L, \ \left((l_{0}, l_{1}), (m_{0}, m_{1}) \right) \ \mapsto \ -l_{1}{}^{J}m_{0} + l_{0}{}^{J}m_{1}.$

This τ is a non-degenerate sesquilinear form on L^2 (over L or K). Moreover

⁶The assumptions of Theorem 4 may be weakened by virtue of "Satz 2" in [15].

$$\left((l_0,l_1),(m_0,m_1)\right)^{\tau} \;=\; 0 \;\;\iff\; (m_0,m_1) \;\in\; \left((l_1^{-1})^J,(l_0^{-1})^J\right)L.$$

Thus τ gives rise to a duality of \mathcal{P} which leaves $\mathcal{P}_{L/K}$ invariant and transforms the lines of the spread in the required way. But every automorphic collineation or automorphic duality of $\mathcal{P}_{L/K}$ induces an automorphic collineation of the KLEIN quadric which leaves $\mathbf{S}_{L/K}$ invariant. So there exists a collineation ψ with the required properties.

4.2. We did not assert the uniqueness of ψ in Theorem 4. On the other hand $\psi | \Pi$ is uniquely determined by φ , since the identity mapping of Π is the only collineation extending the identity of $\mathbf{S}_{L/K}$. In case 1, by (3₁), the mapping

$$h: L^2 \rightarrow L^2$$
, $(l_0, l_1) \mapsto (l_0 i, l_1 i)$

is a semilinear bijection of L^2 over K with respect to $(\overline{}) \in \operatorname{Aut}(K)$. This h yields a non-trivial collineation of \mathcal{P} which fixes every line of the spread $\mathscr{G}_{L/K}$, but no other line, no point and no plane of \mathcal{P} . The σ -transform of this collineation is a BAER involution of $\hat{\mathcal{P}}$ fixing Π elementwise; cf. also [19,IV,177]. In case 2, ψ is unique, since K/Z is not GALOIS.

4.3. Suppose that L is arbitrary. We close with the following

Corrollary. Let L/K be a quadratic field extension, where K is commutative. The spread $\mathcal{G}_{L/K}$ admits a symplectic polarity fixing every line of this spread if, and only if, L is commutative.

Proof. The σ -transforms of symplectic polarities of \mathcal{P} (regarded as transformations on the set of lines) are exactly the involutory automorphic perspective collineations of the KLEIN quadric. When L is commutative then $\mathbf{S}_{L/K}$ spans a 3-dimensional subspace of \mathcal{T} and therefore admits such a perspective collineation fixing $\mathbf{S}_{L/K}$ pointwise. When L is non-commutative then $\mathbf{S}_{L/K}$ is spanning $\hat{\mathcal{P}}$ and no such perspective collineation exists.

References

- W. BENZ, Zur Geometrie der Körpererweiterungen, Canadian J. Math. 21 (1969), 1097-1122.
- [2] W. BENZ, Vorlesungen über Geometrie der Algebren, Grundlehren Bd. 197, Springer, Berlin Heidelberg New York, 1973.
- [3] A. BEUTELSPACHER, J. UEBERBERG, Bruck's vision of regular spreads or What is the use of a Baer-superspace?, Abh. math. Sem. Univ. Hamburg, to appear.
- [4] W. BURAU, Mehrdimensionale projektive und höhere Geometrie, Dt. Verlag d. Wissenschaften, Berlin, 1961.
- [5] P.M. COHN, Quadratic Extensions of Skew Fields, Proc. London Math. Soc.

11 (1961), 531-556.

- [6] P.M. COHN, Skew Field Constructions, Cambridge University Press, Cambridge, 1977.
- [7] H. HAVLICEK, Zur Theorie linearer Abbildungen I, II, J. Geometry 16 (1981), 152-167, 168-180.
- [8] H. HAVLICEK, On the Geometry of Field Extensions, Aequat. Math., to appear.
- [9] H. HAVLICEK, Spreads of right quadratic skew field extensions, Geom. Dedicata, to appear.
- [10] A. HERZER, Chain Geometries, in: F. Buekenhout (ed.), Handbook of Incidence Geometry, D. Reidel, Dordrecht, to appear.
- [11] J.W.P. HIRSCHFELD, Finite projective spaces of three dimensions, Clarendon Press, Oxford, 1991.
- [12] V. HLAVATY, Differential Line Geometry, Noordhoff, Groningen, 1953.
- [13] H. HOTJE, Einbettung gewisser Kettengeometrien in projektive Räume, J. Geometry 5 (1974), 85-94.
- [14] H. HOTJE, Zur Einbettung von Kettengeometrien in projektive Räume, Math. Zeitschr. 151 (1976), 5-17.
- [15] H. MÄURER, R. METZ, W. NOLTE, Die Automorphismengruppe der Möbiusgeometrie einer Körpererweiterung, Aequat. Math. 21 (1980), 110-112.
- [16] G. PICKERT, Projektive Ebenen, Springer, 2nd ed., Berlin Heidelberg New York, 1975.
- [17] G. PICKERT, Analytische Geometrie, Akad. Verlagsges. Geest & Portig, 7th ed., Leipzig, 1976.
- [18] E.M. SCHRÖDER, Metric geometry, in: F. Buekenhout (ed.), Handbook of Incidence Geometry, D. Reidel, Dordrecht, to appear.
- [19] E. STUDY, Ein Seitenstück zur Theorie der linearen Transformationen einer komplexen Veränderlichen I,II,III,IV, Math. Zeitschr. 18 (1923), 55-86, 201-229, ibid. 21 (1924), 45-71, 174-194.
- [20] B.L. VAN DER WAERDEN, Algebra II, Springer, 5th ed., Berlin Heidelberg New York, 1967.
- [21] M. WERNER, Zur Darstellung der Automorphismengruppe einer kinematischen Kettengeometrie im Quadrikenmodell, J. Geometry 19 (1982), 146-153.

Author's address: Hans Havlicek, Abteilung für Lineare Algebra und Geometrie, Technische Universität, Wiedner Hauptstraße 8-10/1133, A-1040 Wien, Austria.