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Abstract: Plücker transformations of symplectic spaces with

dimensions other than three are induced by orthogonality-preserving

collineations. For three-dimensional symplectic spaces all Plücker

transformations can be obtained - up to orthogonality-preserving

collineations - by replacing some but not necessarily all non-

isotropic lines by their absolute polar lines.

1. Introduction
!

In this paper we discuss bijections of the set L of lines of a symplectic

space, i.e. a (not necessarily finite-dimensional) projective space with
1orthogonality based upon an absolute symplectic quasipolarity. Following [1],

two lines are called related, if they are concurrent and orthogonal, or if

they are identical. A bijection of L that preserves this relation in both
2directions is called a (symplectic ) Plücker transformation. We shall show

that any bijection LtLtL taking related lines to related lines is already a

Plücker transformation. Moreover, a complete description of all Plücker trans-

formations (cf. the abstract above) will be given.

2. Symplectic spaces
!

Let (P,L) be a projective space, 3t<tdim(P,L)t<t8. Assume that p is a

symplectic quasipolarity [11], [12]. Thus p assigns to each point X of P a

----------------------------------------------------------------------------------------------------
1Instead of ‘symplectic’ some authors are using the term ‘null’.
2We shall omit the word ‘symplectic’, since we do not discuss other types of
Plücker transformations in this paper. Cf., however, [1], [2], [4], [5],
[8,p.80ff], [9], [10] for results on other Plücker transformations.
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p p p phyperplane X with XtetX ; furthermore YtetX implies XtetY for all X,YtetP.

Cf. also [6] for an axiomatic description of projective spaces endowed with a

quasipolarity.

We define a mapping from the lattice of subspaces of (P,L) into itself by

setting
! n pTt9Lto(X |X!e!T) for all subspaces Tt$to and ot9LtP. (1)

!
This mapping is again written as p and is also called a quasipolarity. If

(P,L) is finite-dimensional, then it is well known that p is an antiautomorph-

ism of the lattice of subspaces of (P,L). In case of infinite dimension the

mapping (1) still has the properties
!p p p p p p pp(T1!v!T2) t=tT1 !n!T2 , (T1!n!T2) tBtT1 !v!T2 , TtCtT
! p pT1!C!T2 6 T1 !B!T2

!
for all subspaces T1,T2,TtCtP. Note that in the last formula strict inclusions

3are not necessarily preserved, if T1 and T2 both have infinite dimension .

Moreover, it is an easy induction to show for all finite-dimensional subspaces
pp pTtCtP that T t=tT and that every complement of T has the same finite dimen-

sion as T.

(P,L,p) is a symplectic space with absolute quasipolarity p [7,p.384ff],

[11]. In terms of an underlying vector space V of (P,L) the symplectic quasi-

polarity p can be described by a non-degenerate alternating bilinear form of

V*V into the (necessarily commutative) ground field of V. If (P,L) is finite-

dimensional, then it is well known that dim(P,L) is odd.

We are introducing two binary relations on L: Given a,btetL then define a
pand b to be orthogonal (1), if a!n!b t$to. The lines a and b are called

related (~), if a!1!b and a!n!bt$to, or if at=tb. Given orthogonal lines a,b
pthere exists a point Rteta!n!b . Therefore

!p p p p pp pR tBt(a!n!b ) tBta !v!b t=ta !v!b.
! p p pThe line b has a point in common with a , since R is a hyperplane and a is a

co-line. Consequently, 1 and ~ are symmetric relations.
p pEach line atetL either is contained in a or is a complement of a , since

p p pa!n!a being a single point would imply that X t=ta!v!a for all points
pXteta!\!a , in contradiction to p|P being injective. A line atetL is isotropic

p(self-orthogonal) if, and only if, a is totally isotropic, i.e., atCta . We

shall write I for the set of all isotropic lines.

If Q is a point, then L[Q] stands for the star of lines with centre Q and

----------------------------------------------------------------------------------------------------
3 pThere are, e.g., hyperplanes HtCtP with Ht$tX for all XtetP. For all suchp phyperplanes H t=tP t=to, although Ht$tP.
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I[Q]t:=tL[Q]!n!I for the set of all isotropic lines through Q. In the follow-

ing Lemma 1 we state two simple properties of isotropic lines that are well

known in case of finite dimension [3,p.181ff], [7,p.384ff] but hold as well

for infinite dimension:

Lemma 1. If QtetP, then all isotropic lines through Q are given by
! pI[Q]t=t{x!e!L|Q!e!x!C!Q }.
!

Let atetL\I be non-isotropic. The set of isotropic lines intersecting the line
pa equals the set of all lines intersecting both a and a .

!p p pProof. Let a line x with Q!e!x!C!Q be given. This implies Q !B!x so that x
p p p pand x are in the same hyperplane Q . Since x is a co-line, x and x cannot

be skew, i.e. xtetI[Q]. On the other hand, from xtetI[Q] follows immediately
p pthat xtCtx tCtQ .

Next let atetL\I. If btetI intersects a at a point Q, say, then
p pp p p pQtetbtCtb implies b t=tbtCtQ , whereas Qteta tells us a tCtQ . Thus, as

p pbefore, b and a are not skew. Conversely, given points Qteta and Rteta then
p p p p p pRteta tCtQ and QtetatCtR , whence Q!v!RtCtQ !n!R t=t(Q!v!R) .P

We apply this result to show

Lemma 2. Distinct lines a,btetL with a!n!bt$to are related if, and only if,

atetI or btetI.
!

Proof. If one of the given lines is isotropic, then at~tb. Conversely, if

at~tb and atmtI, say, then btetI by Lemma 1.P

As an immediate consequence we obtain

Lemma 3. Let M be a set of mutually related lines. Then at most one line of M

is non-isotropic.

Given lines a,btetL then there is always a finite sequence
!

at~ta1t~t...t~tant~tb:
!

This is trivial when at=tb. If a!n!bt=:tQ is a point, then there exists a line

a1tetI[Q] so that at~ta1t~tb by Lemma 2. If a and b are skew then there exists

a common transversal line of a and b, say c, whence repeating the previous

construction for a,c and then for c,b gives the required sequence. Thus (L,~)
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4is a Plücker space [1,p.199]. A (symplectic) Plücker transformation is a

bijective mapping v!:!LtLtL preserving the relation ~ in both directions. We

say that v is induced by a mapping k!:!PtLtP, if
!v k k(A!v!B) t=tA !v!B for all A,BtetP with At$tB.

!
The group PGSp(P,p) consists of all collineations PtLtP commuting with p

[7,p.388ff], [8,p.19]. Obviously, each ktetPGSp(P,p) is inducing a Plücker

transformation.
tIf dim(P,L)t=t3, then for each duality t with I t=tI the restriction

t|L!:!LtLtL is a Plücker transformation. Moreover, in the three-dimensional

case there are always Plücker transformations not arising from collineations
por dualities: Let L1 be any subset of L\I such that L1 t=tL1. Then define

! ( xt9Ltx if xtetL\L1,d!:!LtLtL, { p (2)xt9Ltx if xtetL1 .9!
Such a bijection d will be called partial p-transformation (with respect to

L1); it is a Plücker transformation of (L,~), since
!p p p pat~tb 46 at~tb 46 a t~tb 46 a t~tb for all a,btetL, at$tb.

!
The identity on L and the restriction of p to L are partial p-transformations,

as follows from setting L1t:=to and L1t:=tL\I, respectively. For every other
pchoice of L1 (e.g., L1t:=t{a,a }) it is easily seen that there exist two non-

d d pisotropic concurrent lines xtetL\L1, ytetL1. Then x t=tx and y t=ty are skew

lines. Such a Plücker transformation cannot arise from a collineation or

duality.

3. The three-dimensional case
!

Theorem 1. Let (P,L,p) be a 3-dimensional symplectic space and let b!:!LtLtL

be a bijection such that
! b bat~tb implies a t~tb for all a,btetL.

!
Then there exists a partial p-transformation d!:!LtLtL such that db is induced

by a collineation ktetPGSp(P,p).
!

Theorem 1 is a consequence of the subsequent Propositions 1.1 - 1.4 in which b

and (P,L,p) are given as above.

Proposition 1.1. There exists an injective mapping k!:!PtLtP such that
!

----------------------------------------------------------------------------------------------------
4Alternatively, L may be seen as the set of vertices of a graph with two
vertices joined by an edge if, and only if, the corresponding lines are
distinct and related. We refrain, however, from using terminology of graph
theory.
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b kI[Q] t=tI[Q ] for all QtetP. (3)
!

Moreover, b is a Plücker transformation, since
bI t=tI. (4)

! bProof. By the invariance of ~ under b, the elements of I[Q] are mutually
brelated. We infer from Lemma 3 that I[Q] contains at most one non-isotropic

bline. Thus I[Q] !n!I has at least two distinct elements, whence it is a subset

of a pencil of isotropic lines, say I[Q’] with Q’tetP.
bWe show I[Q’]tCtI[Q] : Assume, to the contrary, that there exists a line

b bxtmtI[Q] with x tetI[Q’]. Recall that at most one line of I[Q] is non-
bisotropic. Therefore there is a point X’tetx that is not incident with any

b bline of I[Q] . Thus we can draw a line b’t=tb through X’ that is not related
bto any line of I[Q] . Hence b is not related to any line of I[Q]. By

pdim(P,L)t=t3, b and the plane Q have a common point lying on some line

ctetI[Q], so that ct~tb, a contradiction.
bNext I[Q] tCtI[Q’] will be established: Suppose there is a line atetI[Q]

b b bsuch that a tmtI[Q’]. Then a t~tI[Q’] forces that a is a non-isotropic line
peither through the point Q’ or in the plane Q’ . Let dtetL[Q] be

b bnon-isotropic, whence I[Q] u{d } is a set of mutually related lines containing
b b b bthe non-isotropic line a . Since d tmtI[Q] and I[Q’]tCtI[Q] , the line

b bd t$ta also has to be non-isotropic in contradiction to Lemma 3.

To sum up, there is a mapping k satisfying formula (3). The injectivity

of k follows from the bijectivity of b together with (3).
bFinally, we prove (4): I tCtI is a consequence of (3). Conversely, assume

b b k bthat etetL\I. Choose a point Rtete. Then I[R] u{e }t=tI[R ]u{e } is a set of
b kmutually related lines. Therefore e is a non-isotropic line either through R

kp bor in R . Lemma 2 and I t=tI imply that b is a Plücker transformation.P

Proposition 1.2. Let atetL. Then
! bp pba t=ta , (5)

!k b pbQ teta !u!a for all Qteta. (6)
!

If atetL\I, then either
! k bQ teta for all Qteta (7)

!
or

! k pbQ teta for all Qteta. (8)

b p b bpProof. If atetI, then a tetI, whence (5) follows from at=ta and a t=ta . If

atetL\I, then, by Lemma 1,
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!
Ct:=t{xtetL|xt$ta, xt~ta}

! pis a hyperbolic linear congruence of lines with axes a and a ; moreover CtCtI.
bWe infer from b being a Plücker transformation and (4), that C tCtI is also a

b pb bhyperbolic linear congruence with a ,a being its axes. Obviously, only a
pb band a are meeting all lines of C . On the other hand, by Lemma 1, the axes

b b bpof C are a and a . This completes the proof of (5).
k b pbIf atetI, then (6) holds true, since Q teta t=ta . If atetL\I and

k b b k kp b k bp pbQ tmta, then a t~tI[Q] t=tI[Q ], whence Q tBta and therefore Q teta t=ta ,

as required to establish (6).

Now let atetL\I. Assume to the contrary that there exist points Q0,Q1teta
k b k pbsuch that Q0 teta and Q1 teta . Then atmtI implies I[Q0]!n!I[Q1]t=to where-

k k b bas, by Lemma 1 and (3), Q0 !v!Q1 tetI[Q0] !n!I[Q1] . This is a contradiction

to b being injective.P

Proposition 1.3. Write L1 for the set of all lines atetL\I satisfying (8).

Then !!!!!!!!!!!!!
! ! ( xt9Ltx if xtetL\L1,d!:!LtLtL, { p (9)xt9Ltx if xtetL1 ,9!

is a partial p-transformation. The Plücker transformation db!:!LtLtL takes

intersecting lines to intersecting lines.
!

Proof. In order to show that d is a well-defined partial p-transformation, we
p pjust have to establish that atetL1 implies a tetL1: Given Q0teta and Q1teta

b k kthen Q0!v!Q1 and (Q0!v!Q1) =tQ0 !v!Q1 are isotropic lines. Therefore
!k k bp pbQ0 !v!Q1 t$ta t=ta tmtI
!k pb pso that Q1 tmta . Now, by (8), a tetL1.

db db kIf distinct lines b and c intersect at a point R, then b !n!c t=tR

follows from (7), (8) and (9).P

Proposition 1.4. The mapping k!:!PtLtP defined in (3) belongs to PGSp(P,p).

The Plücker transformation db is induced by this collineation k. !!!!!!!!!!!!
!

Proof. The bijection db is taking intersecting lines to intersecting lines.

Every star of lines is mapped under db either onto a star of lines or onto a

ruled plane [4], [10,Theorem 1]. The latter possibility does not occur, since

db is induced by k. Because of dim(P,L) being finite, the mapping k is a col-
blineation [10,Theorem 3]. Finally, I t=tI implies ktetPGSp(P,p).P

!!!!!
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4. The higher-dimensional case
!

Theorem 2. Let (P,L,p) be an n-dimensional symplectic space (5t<tnt<t8) and

let b!:!LtLtL be a bijection such that
!b bat~tb implies a t~tb for all a,btetL.

!
Then b is induced by a collineation ktetPGSp(P,p).

!
As before, the Theorem will be split into several Propositions subject to the

assumptions stated above.

Proposition 2.1. The bijection b takes intersecting lines to intersecting

lines. There exists an injective mapping k!:!PtLtP inducing b. This k is pre-

serving collinearity and non-collinearity of points. Moreover
!b kL[Q] t=tL[Q ] for all QtetP. (10)

! b bProof. Suppose that a,btetL meet at a point Q. If at~tb, then a and b are

intersecting. Otherwise, by Lemma 2, atmtI and btmtI. Then I[Q]!u!{a} and

I[Q]!u!{b} are, respectively, sets of mutually related lines. Each line of L
pis related to at least one line in I[Q], since Q is a hyperplane covered by

bI[Q]. If I[Q] would be a set of coplanar lines, then all lines in L would
bmeet a fixed plane in contradiction to nt>t5. Thus I[Q] is not contained in a

bplane, whence there exists a point Q’ with I[Q] tCtL[Q’]. Since the elements
b b bof I[Q] !u!{a } are mutually related, Q’teta . Repeating this for b yields

bQ’tetb .

Now the assertions on k follow from [10,Theorem 1].P

Proposition 2.2. The bijection b is a Plücker transformation, since
bI t=tI. (11)

!
Proof. Given atetI then choose a point Qteta. We observe that at~tL[Q], whence
b k ka t~tL[Q ] by (10). Since L[Q ] contains more than one non-isotropic line,
ba tetI follows from Lemma 2.

Given btetL\I then choose a point Rtetb. Assume to the contrary that
bb tetI. Then for each line

!
xtetL[R]!\!(I[R]!u!{b})

!------ ------there exists a line xtetI[R] such that b,x,x are three distinct lines in one

pencil. By the invariance of collinearity and non-collinearity of points under
b b ------bk, as is stated in Proposition 2.1, b ,x ,x are again three distinct lines in

b ------bone pencil. However, b and x are isotropic, so that
!b kx tetI[R ].
!
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b kHence L[R] tCtI[R ] which is impossible by (10).

Now (11) and Lemma 2 show that b is a Plücker transformation.P

Proposition 2.3. The mapping k!:!PtLtP, described in Proposition 2.1, is a

collineation belonging to PGSp(P,p). !!!!!!!!!!!!
!

Proof. Since b is a Plücker transformation of (L,~), Proposition 2.1 can be
-1 -1applied to b . Therefore b and b are preserving intersection of lines. By

[10,Theorem 2], the mapping k is a collineation and, by formula (11),

ktetPGSp(P,p).P

This completes the proof of Theorem 2.
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