Symplectic Plücker Transformations

Hans HAVLICEK

Abteilung für Lineare Algebra und Geometrie, Technische Universität, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria

Dedicated to Hans Vogler on the occasion of his 60th birthday

AMS Subject Classification: 51A50.

Keywords: Symplectic space, Plücker transformation, line geometry.

Abstract: Plücker transformations of symplectic spaces with dimensions other than three are induced by orthogonality-preserving collineations. For three-dimensional symplectic spaces all Plücker transformations can be obtained – up to orthogonality-preserving collineations – by replacing some but not necessarily all non-isotropic lines by their absolute polar lines.

1. Introduction

In this paper we discuss bijections of the set \mathscr{L} of lines of a symplectic space, i.e. a (not necessarily finite-dimensional) projective space with orthogonality based upon an absolute symplectic¹ quasipolarity. Following [1], two lines are called related, if they are concurrent and orthogonal, or if they are identical. A bijection of \mathscr{L} that preserves this relation in both directions is called a (symplectic²) Plücker transformation. We shall show that any bijection $\mathscr{L} \to \mathscr{L}$ taking related lines to related lines is already a Plücker transformation. Moreover, a complete description of all Plücker transformations (cf. the abstract above) will be given.

2. Symplectic spaces

Let $(\mathcal{P}, \mathcal{L})$ be a projective space, $3 \leq \dim(\mathcal{P}, \mathcal{L}) \leq \infty$. Assume that π is a symplectic quasipolarity [11], [12]. Thus π assigns to each point X of \mathcal{P} a

¹Instead of 'symplectic' some authors are using the term 'null'.

²We shall omit the word 'symplectic', since we do not discuss other types of Plücker transformations in this paper. Cf., however, [1], [2], [4], [5], [8,p.80ff], [9], [10] for results on other Plücker transformations.

hyperplane X^{π} with $X \in X^{\pi}$; furthermore $Y \in X^{\pi}$ implies $X \in Y^{\pi}$ for all $X, Y \in \mathcal{P}$. Cf. also [6] for an axiomatic description of projective spaces endowed with a quasipolarity.

We define a mapping from the lattice of subspaces of $(\mathcal{P}, \mathcal{L})$ into itself by setting

$$\mathcal{I} \mapsto \bigcap (X^{\pi} | X \in \mathcal{I}) \text{ for all subspaces } \mathcal{I} \neq \emptyset \text{ and } \emptyset \mapsto \mathcal{P}.$$
(1)

This mapping is again written as π and is also called a quasipolarity. If $(\mathcal{P}, \mathcal{L})$ is finite-dimensional, then it is well known that π is an antiautomorphism of the lattice of subspaces of $(\mathcal{P}, \mathcal{L})$. In case of infinite dimension the mapping (1) still has the properties

$$\begin{split} (\mathcal{I}_1 \vee \mathcal{I}_2)^{\pi} \; = \; \mathcal{I}_1^{\pi} \cap \mathcal{I}_2^{\pi}, \quad (\mathcal{I}_1 \cap \mathcal{I}_2)^{\pi} \; \supset \; \mathcal{I}_1^{\pi} \vee \mathcal{I}_2^{\pi}, \quad \mathcal{I} \; \subset \; \mathcal{I}^{\pi\pi} \\ \mathcal{I}_1 \subset \mathcal{I}_2 \; \; \Rightarrow \; \mathcal{I}_1^{\pi} \supset \mathcal{I}_2^{\pi} \end{split}$$

for all subspaces $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I} \subset \mathcal{P}$. Note that in the last formula strict inclusions are not necessarily preserved, if \mathcal{I}_1 and \mathcal{I}_2 both have infinite dimension³. Moreover, it is an easy induction to show for all finite-dimensional subspaces $\mathcal{I} \subset \mathcal{P}$ that $\mathcal{I}^{\pi\pi} = \mathcal{I}$ and that every complement of \mathcal{I}^{π} has the same finite dimension as \mathcal{I} .

 $(\mathcal{P}, \mathcal{L}, \pi)$ is a symplectic space with absolute quasipolarity π [7,p.384ff], [11]. In terms of an underlying vector space **V** of $(\mathcal{P}, \mathcal{L})$ the symplectic quasipolarity π can be described by a non-degenerate alternating bilinear form of $\mathbf{V} \times \mathbf{V}$ into the (necessarily commutative) ground field of **V**. If $(\mathcal{P}, \mathcal{L})$ is finitedimensional, then it is well known that dim $(\mathcal{P}, \mathcal{L})$ is odd.

We are introducing two binary relations on \mathcal{L} : Given $a, b \in \mathcal{L}$ then define aand b to be **orthogonal** (1), if $a \cap b^{\pi} \neq \emptyset$. The lines a and b are called **related** (~), if $a \perp b$ and $a \cap b \neq \emptyset$, or if a = b. Given orthogonal lines a, bthere exists a point $R \in a \cap b^{\pi}$. Therefore

$$R^{\pi} \supset (a \cap b^{\pi})^{\pi} \supset a^{\pi} \lor b^{\pi\pi} = a^{\pi} \lor b.$$

The line b has a point in common with a^{π} , since R^{π} is a hyperplane and a^{π} is a co-line. Consequently, \bot and \sim are symmetric relations.

Each line $a \in \mathcal{L}$ either is contained in a^{π} or is a complement of a^{π} , since $a \cap a^{\pi}$ being a single point would imply that $X^{\pi} = a \vee a^{\pi}$ for all points $X \in a \setminus a^{\pi}$, in contradiction to $\pi | \mathcal{P}$ being injective. A line $a \in \mathcal{L}$ is **isotropic** (self-orthogonal) if, and only if, a is **totally isotropic**, i.e., $a \subset a^{\pi}$. We shall write \mathcal{F} for the set of all isotropic lines.

If Q is a point, then $\mathscr{L}[Q]$ stands for the star of lines with centre Q and

³There are, e.g., hyperplanes $\mathcal{H} \subset \mathcal{P}$ with $\mathcal{H} \neq X^{\pi}$ for all $X \in \mathcal{P}$. For all such hyperplanes $\mathcal{H}^{\pi} = \mathcal{P}^{\pi} = \emptyset$, although $\mathcal{H} \neq \mathcal{P}$.

 $\mathcal{F}[Q] := \mathcal{L}[Q] \cap \mathcal{F}$ for the set of all isotropic lines through Q. In the following Lemma 1 we state two simple properties of isotropic lines that are well known in case of finite dimension [3,p.181ff], [7,p.384ff] but hold as well for infinite dimension:

Lemma 1. If $Q \in \mathcal{P}$, then all isotropic lines through Q are given by

 $\mathcal{F}[Q] = \{ x \in \mathcal{L} \mid Q \in x \subset Q^{\pi} \}.$

Let $a \in \mathcal{L} \setminus \mathcal{F}$ be non-isotropic. The set of isotropic lines intersecting the line a equals the set of all lines intersecting both a and a^{π} .

Proof. Let a line x with $Q \in x \subset Q^{\pi}$ be given. This implies $Q^{\pi} \supset x^{\pi}$ so that x and x^{π} are in the same hyperplane Q^{π} . Since x^{π} is a co-line, x and x^{π} cannot be skew, i.e. $x \in \mathcal{F}[Q]$. On the other hand, from $x \in \mathcal{F}[Q]$ follows immediately that $x \subset x^{\pi} \subset Q^{\pi}$.

Next let $a \in \mathscr{L} \setminus \mathscr{F}$. If $b \in \mathscr{F}$ intersects a at a point Q, say, then $Q \in b \subset b^{\pi}$ implies $b^{\pi\pi} = b \subset Q^{\pi}$, whereas $Q \in a$ tells us $a^{\pi} \subset Q^{\pi}$. Thus, as before, b and a^{π} are not skew. Conversely, given points $Q \in a$ and $R \in a^{\pi}$ then $R \in a^{\pi} \subset Q^{\pi}$ and $Q \in a \subset R^{\pi}$, whence $Q \vee R \subset Q^{\pi} \cap R^{\pi} = (Q \vee R)^{\pi}$.

We apply this result to show

Lemma 2. Distinct lines $a, b \in \mathcal{L}$ with $a \cap b \neq \emptyset$ are related if, and only if, $a \in \mathcal{F}$ or $b \in \mathcal{F}$.

Proof. If one of the given lines is isotropic, then $a \sim b$. Conversely, if $a \sim b$ and $a \notin \mathcal{F}$, say, then $b \in \mathcal{F}$ by Lemma 1.

As an immediate consequence we obtain

Lemma 3. Let M be a set of mutually related lines. Then at most one line of M is non-isotropic.

Given lines $a, b \in \mathcal{L}$ then there is always a finite sequence

$$a \sim a_1 \sim \dots \sim a_n \sim b$$
:

This is trivial when a = b. If $a \cap b =: Q$ is a point, then there exists a line $a_1 \in \mathcal{F}[Q]$ so that $a \sim a_1 \sim b$ by Lemma 2. If a and b are skew then there exists a common transversal line of a and b, say c, whence repeating the previous construction for a, c and then for c, b gives the required sequence. Thus (\mathcal{L}, \sim)

is a **Plücker space**⁴ [1,p.199]. A (symplectic) **Plücker transformation** is a bijective mapping $\varphi : \mathcal{L} \to \mathcal{L}$ preserving the relation ~ in both directions. We say that φ is **induced** by a mapping $\kappa : \mathcal{P} \to \mathcal{P}$, if

$$(A \lor B)^{\varphi} = A^{\kappa} \lor B^{\kappa}$$
 for all $A, B \in \mathcal{P}$ with $A \neq B$.

The group $\Pr Sp(\mathcal{P}, \pi)$ consists of all collineations $\mathcal{P} \to \mathcal{P}$ commuting with π [7,p.388ff], [8,p.19]. Obviously, each $\kappa \in \Pr Sp(\mathcal{P}, \pi)$ is inducing a Plücker transformation.

If $\dim(\mathcal{P}, \mathscr{L}) = 3$, then for each duality τ with $\mathscr{F}^{\tau} = \mathscr{F}$ the restriction $\tau | \mathscr{L} : \mathscr{L} \to \mathscr{L}$ is a Plücker transformation. Moreover, in the three-dimensional case there are always Plücker transformations not arising from collineations or dualities: Let \mathscr{L}_1 be any subset of $\mathscr{L} \setminus \mathscr{F}$ such that $\mathscr{L}_1^{\pi} = \mathscr{L}_1$. Then define

$$\delta: \mathscr{L} \to \mathscr{L}, \begin{cases} x \mapsto x & \text{if } x \in \mathscr{L} \setminus \mathscr{L}_1, \\ x \mapsto x^{\pi} & \text{if } x \in \mathscr{L}_1. \end{cases}$$
(2)

Such a bijection δ will be called **partial** π -transformation (with respect to \mathscr{L}_1); it is a Plücker transformation of (\mathscr{L}, \sim) , since

$$a \sim b \iff a \sim b^{\pi} \iff a^{\pi} \sim b \iff a^{\pi} \sim b^{\pi}$$
 for all $a, b \in \mathcal{L}$, $a \neq b$.

The identity on \mathscr{L} and the restriction of π to \mathscr{L} are partial π -transformations, as follows from setting $\mathscr{L}_1 := \emptyset$ and $\mathscr{L}_1 := \mathscr{L} \setminus \mathscr{I}$, respectively. For every other choice of \mathscr{L}_1 (e.g., $\mathscr{L}_1 := \{a, a^{\pi}\}$) it is easily seen that there exist two nonisotropic concurrent lines $x \in \mathscr{L} \setminus \mathscr{L}_1$, $y \in \mathscr{L}_1$. Then $x^{\delta} = x$ and $y^{\delta} = y^{\pi}$ are skew lines. Such a Plücker transformation cannot arise from a collineation or duality.

3. The three-dimensional case

Theorem 1. Let $(\mathcal{P}, \mathcal{L}, \pi)$ be a 3-dimensional symplectic space and let $\beta : \mathcal{L} \to \mathcal{L}$ be a bijection such that

$$a \sim b$$
 implies $a^{\beta} \sim b^{\beta}$ for all $a, b \in \mathcal{L}$.

Then there exists a partial π -transformation $\delta: \mathcal{L} \to \mathcal{L}$ such that $\delta\beta$ is induced by a collineation $\kappa \in \Pr{Sp}(\mathcal{P}, \pi)$.

Theorem 1 is a consequence of the subsequent Propositions 1.1 - 1.4 in which β and $(\mathcal{P}, \mathcal{L}, \pi)$ are given as above.

Proposition 1.1. There exists an injective mapping $\kappa: \mathcal{P} \to \mathcal{P}$ such that

⁴Alternatively, \mathscr{L} may be seen as the set of vertices of a graph with two vertices joined by an edge if, and only if, the corresponding lines are distinct and related. We refrain, however, from using terminology of graph theory.

$$\mathcal{F}[Q]^{\beta} = \mathcal{F}[Q^{\kappa}] \text{ for all } Q \in \mathcal{P}.$$
(3)

Moreover, $\boldsymbol{\beta}$ is a Plücker transformation, since

$$\mathcal{F}^{\beta} = \mathcal{F}.$$
 (4)

Proof. By the invariance of ~ under β , the elements of $\mathcal{F}[Q]^{\beta}$ are mutually related. We infer from Lemma 3 that $\mathcal{F}[Q]^{\beta}$ contains at most one non-isotropic line. Thus $\mathcal{F}[Q]^{\beta} \cap \mathcal{F}$ has at least two distinct elements, whence it is a subset of a pencil of isotropic lines, say $\mathcal{F}[Q']$ with $Q' \in \mathcal{P}$.

We show $\mathcal{F}[Q'] \subset \mathcal{F}[Q]^{\beta}$: Assume, to the contrary, that there exists a line $x \notin \mathcal{F}[Q]$ with $x^{\beta} \in \mathcal{F}[Q']$. Recall that at most one line of $\mathcal{F}[Q]^{\beta}$ is non-isotropic. Therefore there is a point $X' \in x^{\beta}$ that is not incident with any line of $\mathcal{F}[Q]^{\beta}$. Thus we can draw a line $b' = b^{\beta}$ through X' that is not related to any line of $\mathcal{F}[Q]^{\beta}$. Hence b is not related to any line of $\mathcal{F}[Q]^{\beta}$. By dim $(\mathcal{P}, \mathcal{L}) = 3$, b and the plane Q^{π} have a common point lying on some line $c \in \mathcal{F}[Q]$, so that $c \sim b$, a contradiction.

Next $\mathcal{F}[Q]^{\beta} \subset \mathcal{F}[Q']$ will be established: Suppose there is a line $a \in \mathcal{F}[Q]$ such that $a^{\beta} \notin \mathcal{F}[Q']$. Then $a^{\beta} \sim \mathcal{F}[Q']$ forces that a^{β} is a non-isotropic line either through the point Q' or in the plane Q'^{π} . Let $d \in \mathcal{L}[Q]$ be non-isotropic, whence $\mathcal{F}[Q]^{\beta} \cup \{d^{\beta}\}$ is a set of mutually related lines containing the non-isotropic line a^{β} . Since $d^{\beta} \notin \mathcal{F}[Q]^{\beta}$ and $\mathcal{F}[Q'] \subset \mathcal{F}[Q]^{\beta}$, the line $d^{\beta} \neq a^{\beta}$ also has to be non-isotropic in contradiction to Lemma 3.

To sum up, there is a mapping κ satisfying formula (3). The injectivity of κ follows from the bijectivity of β together with (3).

Finally, we prove (4): $\mathcal{I}^{\beta} \subset \mathcal{I}$ is a consequence of (3). Conversely, assume that $e \in \mathcal{L} \setminus \mathcal{I}$. Choose a point $R \in e$. Then $\mathcal{I}[R]^{\beta} \cup \{e^{\beta}\} = \mathcal{I}[R^{\kappa}] \cup \{e^{\beta}\}$ is a set of mutually related lines. Therefore e^{β} is a non-isotropic line either through R^{κ} or in $R^{\kappa \pi}$. Lemma 2 and $\mathcal{I}^{\beta} = \mathcal{I}$ imply that β is a Plücker transformation.

Proposition 1.2. Let $a \in \mathcal{L}$. Then

$$a^{\beta\pi} = a^{\pi\beta},\tag{5}$$

$$Q^{\kappa} \in a^{\beta} \cup a^{\pi\beta} \text{ for all } Q \in a.$$
(6)

If $a \in \mathcal{L} \mathcal{F}$, then either

$$Q^{\kappa} \in a^{\beta} \text{ for all } Q \in a \tag{7}$$

or

$$Q^{\kappa} \in a^{\pi\beta} \text{ for all } Q \in a.$$
 (8)

Proof. If $a \in \mathcal{F}$, then $a^{\beta} \in \mathcal{F}$, whence (5) follows from $a = a^{\pi}$ and $a^{\beta} = a^{\beta\pi}$. If $a \in \mathcal{X} \setminus \mathcal{F}$, then, by Lemma 1,

$\mathcal{C} := \{ x \in \mathcal{L} | x \neq a, x \sim a \}$

is a hyperbolic linear congruence of lines with axes a and a^{π} ; moreover $\mathcal{C} \subset \mathcal{F}$. We infer from β being a Plücker transformation and (4), that $\mathcal{C}^{\beta} \subset \mathcal{F}$ is also a hyperbolic linear congruence with $a^{\beta}, a^{\pi\beta}$ being its axes. Obviously, only a^{β} and $a^{\pi\beta}$ are meeting all lines of \mathcal{C}^{β} . On the other hand, by Lemma 1, the axes of \mathcal{C}^{β} are a^{β} and $a^{\beta\pi}$. This completes the proof of (5).

If $a \in \mathcal{F}$, then (6) holds true, since $Q^{\kappa} \in a^{\beta} = a^{\pi\beta}$. If $a \in \mathcal{L} \setminus \mathcal{F}$ and $Q^{\kappa} \notin a$, then $a^{\beta} \sim \mathcal{F}[Q]^{\beta} = \mathcal{F}[Q^{\kappa}]$, whence $Q^{\kappa\pi} \supset a^{\beta}$ and therefore $Q^{\kappa} \in a^{\beta\pi} = a^{\pi\beta}$, as required to establish (6).

Now let $a \in \mathscr{L} \mathcal{I}$. Assume to the contrary that there exist points $Q_0, Q_1 \in a$ such that $Q_0^{\kappa} \in a^{\beta}$ and $Q_1^{\kappa} \in a^{\pi\beta}$. Then $a \notin \mathcal{I}$ implies $\mathcal{I}[Q_0] \cap \mathcal{I}[Q_1] = \emptyset$ whereas, by Lemma 1 and (3), $Q_0^{\kappa} \vee Q_1^{\kappa} \in \mathcal{I}[Q_0]^{\beta} \cap \mathcal{I}[Q_1]^{\beta}$. This is a contradiction to β being injective.

Proposition 1.3. Write \mathcal{L}_1 for the set of all lines $a \in \mathcal{L} \setminus \mathcal{F}$ satisfying (8). Then

$$\delta: \mathcal{L} \to \mathcal{L}, \begin{cases} x \mapsto x & \text{if } x \in \mathcal{L} \setminus \mathcal{L}_1, \\ x \mapsto x^{\pi} & \text{if } x \in \mathcal{L}_1, \end{cases}$$
(9)

is a partial π -transformation. The Plücker transformation $\delta\beta: \mathcal{L} \to \mathcal{L}$ takes intersecting lines to intersecting lines.

Proof. In order to show that δ is a well-defined partial π -transformation, we just have to establish that $a \in \mathscr{L}_1$ implies $a^{\pi} \in \mathscr{L}_1$: Given $Q_0 \in a$ and $Q_1 \in a^{\pi}$ then $Q_0 \vee Q_1$ and $(Q_0 \vee Q_1)^{\beta} = Q_0^{\kappa} \vee Q_1^{\kappa}$ are isotropic lines. Therefore

$$Q_0^{\kappa} \vee Q_1^{\kappa} \neq a^{\beta \pi} = a^{\pi \beta} \notin \mathcal{I}$$

so that $Q_1^{\kappa} \notin a^{\pi\beta}$. Now, by (8), $a^{\pi} \in \mathcal{L}_1$.

If distinct lines b and c intersect at a point R, then $b^{\delta\beta} \cap c^{\delta\beta} = R^{\kappa}$ follows from (7), (8) and (9).

Proposition 1.4. The mapping $\kappa: \mathcal{P} \to \mathcal{P}$ defined in (3) belongs to $\Pr Sp(\mathcal{P}, \pi)$. The Plücker transformation $\delta\beta$ is induced by this collineation κ .

Proof. The bijection $\delta\beta$ is taking intersecting lines to intersecting lines. Every star of lines is mapped under $\delta\beta$ either onto a star of lines or onto a ruled plane [4], [10, Theorem 1]. The latter possibility does not occur, since $\delta\beta$ is induced by κ . Because of dim $(\mathcal{P}, \mathcal{L})$ being finite, the mapping κ is a collineation [10, Theorem 3]. Finally, $\mathcal{I}^{\beta} = \mathcal{I}$ implies $\kappa \in P\Gamma Sp(\mathcal{P}, \pi)$.

4. The higher-dimensional case

Theorem 2. Let $(\mathcal{P}, \mathcal{L}, \pi)$ be an n-dimensional symplectic space $(5 \le n \le \infty)$ and let $\beta: \mathcal{L} \to \mathcal{L}$ be a bijection such that

$$a \sim b$$
 implies $a^{\beta} \sim b^{\beta}$ for all $a, b \in \mathcal{L}$.

Then β is induced by a collineation $\kappa \in \Pr Sp(\mathcal{P}, \pi)$.

As before, the Theorem will be split into several Propositions subject to the assumptions stated above.

Proposition 2.1. The bijection β takes intersecting lines to intersecting lines. There exists an injective mapping $\kappa: \mathcal{P} \to \mathcal{P}$ inducing β . This κ is preserving collinearity and non-collinearity of points. Moreover

$$\mathscr{L}[Q]^{\beta} = \mathscr{L}[Q^{\kappa}] \text{ for all } Q \in \mathcal{P}.$$
(10)

Proof. Suppose that $a, b \in \mathcal{L}$ meet at a point Q. If $a \sim b$, then a^{β} and b^{β} are intersecting. Otherwise, by Lemma 2, $a \notin \mathcal{F}$ and $b \notin \mathcal{F}$. Then $\mathcal{F}[Q] \cup \{a\}$ and $\mathcal{F}[Q] \cup \{b\}$ are, respectively, sets of mutually related lines. Each line of \mathcal{L} is related to at least one line in $\mathcal{F}[Q]$, since Q^{π} is a hyperplane covered by $\mathcal{F}[Q]$. If $\mathcal{F}[Q]^{\beta}$ would be a set of coplanar lines, then all lines in \mathcal{L} would meet a fixed plane in contradiction to $n \geq 5$. Thus $\mathcal{F}[Q]^{\beta}$ is not contained in a plane, whence there exists a point Q' with $\mathcal{F}[Q]^{\beta} \subset \mathcal{L}[Q']$. Since the elements of $\mathcal{F}[Q]^{\beta} \cup \{a^{\beta}\}$ are mutually related, $Q' \in a^{\beta}$. Repeating this for b yields $Q' \in b^{\beta}$.

Now the assertions on κ follow from [10, Theorem 1].

Proposition 2.2. The bijection β is a Plücker transformation, since

$$\mathcal{F}^{\beta} = \mathcal{F}. \tag{11}$$

Proof. Given $a \in \mathcal{F}$ then choose a point $Q \in a$. We observe that $a \sim \mathcal{L}[Q]$, whence $a^{\beta} \sim \mathcal{L}[Q^{\kappa}]$ by (10). Since $\mathcal{L}[Q^{\kappa}]$ contains more than one non-isotropic line, $a^{\beta} \in \mathcal{F}$ follows from Lemma 2.

Given $b \in \mathcal{L} \setminus \mathcal{F}$ then choose a point $R \in b$. Assume to the contrary that $b^{\beta} \in \mathcal{F}$. Then for each line

$$x \in \mathscr{L}[R] \setminus (\mathscr{F}[R] \cup \{b\})$$

there exists a line $\overline{x} \in \mathcal{F}[R]$ such that b, x, \overline{x} are three distinct lines in one pencil. By the invariance of collinearity and non-collinearity of points under κ , as is stated in Proposition 2.1, $b^{\beta}, x^{\beta}, \overline{x}^{\beta}$ are again three distinct lines in one pencil. However, b^{β} and \overline{x}^{β} are isotropic, so that

$$x^{\beta} \in \mathcal{F}[R^{\kappa}].$$

Hence $\mathscr{L}[R]^{\beta} \subset \mathscr{F}[R^{\kappa}]$ which is impossible by (10).

Now (11) and Lemma 2 show that β is a Plücker transformation.

Proposition 2.3. The mapping $\kappa: \mathcal{P} \to \mathcal{P}$, described in Proposition 2.1, is a collineation belonging to $\Pr(\mathcal{P}, \pi)$.

Proof. Since β is a Plücker transformation of (\mathcal{L}, \sim) , Proposition 2.1 can be applied to β^{-1} . Therefore β and β^{-1} are preserving intersection of lines. By [10,Theorem 2], the mapping κ is a collineation and, by formula (11), $\kappa \in P\Gamma Sp(\mathcal{P}, \pi)$.

This completes the proof of Theorem 2.

References

- [1] W. BENZ: Geometrische Transformationen, BI-Wissenschaftsverlag, Mannheim Leipzig Wien Zürich, 1992.
- [2] W. BENZ E.M. SCHRÖDER: Bestimmung der orthogonalitätstreuen Permutationen euklidischer Räume, Geom. Dedicata 21 (1986), 265-276.
- [3] H. BRAUNER: Geometrie projektiver Räume I, BI-Wissenschaftsverlag, Mannheim Wien Zürich, 1976.
- [4] H. BRAUNER: Über die von Kollineationen projektiver Räume induzierten Geradenabbildungen, Sb. österr. Akad. Wiss. Abt. II., Math. Phys. Techn. Wiss. 197 (1988), 326-332.
- [5] H. BRAUNER: Eine Kennzeichnung der Ähnlichkeiten affiner Räume mit definiter Orthogonalitätsstruktur, Geom. Dedicata 29 (1989), 45-51.
- [6] F. BUEKENHOUT: A theorem of Parmentier characterizing projective spaces by polarities, in: F. DE CLERCK ET AL. (eds.): Finite Geometries and Combinatorics, Cambridge University Press, Cambridge, 1993, pp. 69-71.
- [7] W. BURAU: Mehrdimensionale projektive und höhere Geometrie, Berlin, Dt. Verlag d. Wissenschaften, 1961.
- [8] J.A. DIEUDONNÉ: La Géométrie des Groupes Classiques, Springer, 3rd ed., Berlin Heidelberg New York, 1971.
- [9] H. HAVLICEK: On Plücker transformations of generalized elliptic spaces, Rend. Mat. Roma, to appear.
- [10] H. HAVLICEK: On Isomorphisms of Grassmann spaces, Mitt. Math. Ges. Hamburg, to appear.
- [11] H. LENZ: Über die Einführung einer absoluten Polarität in die projektive und affine Geometrie des Raumes, Math. Ann. **128** (1954), 363-372.
- [12] H. LENZ: Axiomatische Bemerkung zur Polarentheorie, Math. Ann. 131 (1957), 39-40.