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Abstract

A conic of the Veronese surface in PG(5, 3) is a quadrangle. If one such
quadrangle is replaced with its diagonal triangle, then one obtains a point
model K for Witt’s 5–(12, 6, 1) design, the blocks being the hyperplane
sections containing more than three (actually six) points of K. As such
a point model is projectively unique, the present construction yields an
easy coordinate–free approach to some results obtained independently by
H.S.M. Coxeter and G. Pellegrino, including a projective representation of
the Mathieu group M12 in PG(5, 3).

∗Research supported by the Austrian FWF, project P12353–MAT.
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1 Introduction

Throughout this paper V is a 3–dimensional vector space over F := GF(3) and W
denotes the symmetric tensor product V∨V. Occasionally, it will be convenient
to use coordinates. We fix an ordered basis (e0, e1, e2) of V. It yields the ordered
basis

(e0 ∨ e0, 2e0 ∨ e1, 2e0 ∨ e2, e1 ∨ e1, 2e1 ∨ e2, e2 ∨ e2)

of W. All coordinate vectors are understood with respect to one of these bases.
The projective plane on V is PG(2, 3) = (P(V),L(V),∈), where P(V) and L(V)
denote the sets of points and lines, respectively. Likewise we have PG(5, 3) =
(P(W),L(W),∈). The Veronese mapping is given by

ϕ : P(V)→ P(W), Fa 7→ F (a ∨ a)

or, in terms of coordinates, by

F (x0, x1, x2) 7→ F (x2
0, x0x1, x0x2, x

2
1, x1x2, x

2
2). (1)

The set imϕ is the well–known Veronese surface. See, among others, [6, Chapter
V], [8], [11, Chapter 25]. Recall three major properties of the Veronese mapping:
Firstly, ϕ is injective. Secondly, the ϕ–image of each line l of PG(2, 3) is a (non–
degenerate) conic or, in other words, a planar quadrangle in PG(5, 3). The plane
of this conic meets imϕ in exactly four points. Each conic of imϕ arises in
this way. Thirdly, the pre–image under ϕ of each hyperplane H of PG(5, 3) is a
(possibly degenerate) quadric of PG(2, 3). Each quadric of PG(2, 3) arises in this
way.

If we are given a quadrangle Γ in a projective plane of order 3, then its diagonal
points form a triangle ∆, say. On the other hand, if ∆ is a triangle in such a
plane, then there are exactly four points which are not on any side of ∆. Those
four points form a quadrangle, say Γ, which in turn has ∆ as its diagonal triangle
[9, 391–392]. This one–one correspondence between quadrangles and triangles in
a projective plane of order three is the backbone of this paper.

There is also another interpretation of this correspondence: We may consider
the quadrangle Γ as a conic. It will be called the associated conic of the triangle
∆. The internal points of the conic Γ comprise the triangle ∆. Moreover, ∆ is
a self polar triangle of Γ [9, Theorem 8.3.4.]. Finally, the sides of ∆ are all the
external lines of Γ.

2 Variations on 13− 4 + 3 = 12

In the sequel an arbitrarily chosen line l∞ of PG(2, 3) will be regarded as line
at infinity. Its Veronese image lϕ∞ =: Γ∞ is a planar quadrangle with diagonal
triangle ∆∞, say. The plane spanned by Γ∞ is denoted by E∞.

The following Theorem describes the essential construction:
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Theorem 1 Write K for that set of points in PG(5, 3) which is obtained from
the Veronese surface imϕ by replacing the planar quadrangle Γ∞, i.e. the ϕ–
image of the line at infinity, with its diagonal triangle ∆∞. Then the following
hold true:

dH := #(H ∩K) ∈ {0, 3, 6} for all hyperplanes H of PG(5, 3). (2)
#K = 12. (3)

Proof. The pre–image of H under ϕ is a quadric of PG(2, 3), say Q. There are
four cases [9, 140].

1. E∞ ⊂ H: Hence dH = #Q − 4 + 3. As l∞ ⊂ Q, we obtain that Q is
the repeated line l∞ or a cross of lines. Thus dH = 4 − 4 + 3 = 3 or
dH = 7− 4 + 3 = 6.

2. E∞ ∩ H is an external line of Γ∞: Hence dH = #Q − 0 + 2. As Q is
either a single affine point or a conic without points at infinity, we infer
dH = 1− 0 + 2 = 3 or dH = 4− 0 + 2 = 6.

3. E∞ ∩ H is a tangent of Γ∞: A tangent carries no internal points so that
dH = #Q − 1 + 0. The quadric Q is a repeated line l with l 6= l∞, or a
cross of lines with double point at infinity, but each line other than l∞, or
a conic touching l∞. Thus dH = 4 − 1 + 0 = 3 or dH = 7 − 1 + 0 = 6 or
dH = 4− 1 + 0 = 3.

4. E∞ ∩ H is a bisecant of Γ∞: A bisecant carries exactly one internal point,
whence dH = #Q − 2 + 1. Now Q is a cross of lines with double point
not at infinity, or a conic with two distinct points at infinity. Hence dH =
7− 2 + 1 = 6 or dH = 4− 2 + 1 = 3.

Finally, imϕ ∩ E∞ = Γ∞ implies #K = 13− 4 + 3 = 12. 2

Remark 1 If l∞ is chosen to be the line x0 = 0, then ∆∞ can easily be expressed
in terms of coordinates as

{F (0, 0, 0, 1, 0, 1), F (0, 0, 0, 2, 1, 1), F (0, 0, 0, 2, 2, 1)}. (4)

Thus, by virtue of (1) and (4), one may describe K in terms of coordinates.

Before we are going to reverse the construction of Theorem 1, we prove the
following

Lemma 1 Let K be a set of points in PG(5, 3). Then (2) and (3) together are
equivalent to the conjunction of the following three conditions:

Any 5–subset of K is independent. (5)
#(H ∩K) ≥ 5 implies #(H ∩K) = 6 for all hyperplanes H of PG(5, 3). (6)

#K ≥ 7. (7)
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Proof. (2) and (3) =⇒ (5) and (6) and (7): Choose any 5–set M ⊂ K and
P ∈ K \M. At first we are going to show that

dim span (M∪ {P})) ≥ 4; (8)

here “dim” denotes the projective dimension. Assume to the contrary that
dim span (M ∪ {P}) < 4. Then each hyperplane of PG(5, 3) passing through
M∪{P} meets K in exactly six points, by (2). All those hyperplanes are cover-
ing K, whence K =M∪ {P}, in contradiction to (3).

We infer from (8) that dim spanM≥ 3. This dimension cannot equal three,
since then K would only have nine points, namely the five points inM plus one
more point in each of the four hyperplanes through M. Consequently, M is
independent. By (2) and (3), conditions (6) and (7) follow immediately.

(5) and (6) and (7) =⇒ (2) and (3): By our assumptions, K contains a basis
S of PG(5, 3). Each of the six hyperplane faces of that basis contains exactly
one more point of K; it is in general position with respect to the remaining five.
Thus we have #K ≥ 12. On the other hand choose four points in S. Each of
the four hyperplanes passing through them meets K in at most six points. Hence
#K ≤ 12. Thus (3) holds true.

If we fix one 3–set ∆ ⊂ K, then the number hyperplanes through ∆ is 13, and
the number of 2–sets in K \∆ is 36. By (5) and (6), the number of hyperplanes
through ∆, meeting K in exactly six points, is 36/3 = 12. Hence there is a unique
hyperplane H∆, say, with

∆ = K ∩H∆. (9)

Next fix one point P ∈ K. There are 330 4–subsets of K \ {P}. They give
rise to the 330/5 = 66 hyperplanes through P meeting K in six points. Likewise
one finds

(
11
2

)
= 55 triangles in K containing P . Each of those triangles yields

exactly one hyperplane through P meeting K in three points only. There are,
however, only 121 = 66 + 55 hyperplanes through P , whence (2) follows. 2

Theorem 1 can be reversed now as follows:

Theorem 2 Let K be a set of points in PG(5, 3) satisfying (2) and (3). Suppose
that V is obtained from K by replacing one triangle ∆ ⊂ K with its associated
conic Γ. Then V is projectively equivalent to the Veronese surface imϕ.

Proof. By Lemma 1, there is a triangle ∆ ⊂ K. The plane spanned by ∆ is
denoted by E . According to [11, Theorem 25.3.14] it is sufficient to verify the
following conditions:

cH := #(H ∩ V) ∈ {1, 4, 7} for all hyperplanes H of PG(5, 3). (10)
cH0 = 7 for some hyperplane H0 of PG(5, 3). (11)

In order to establish (10) choose a hyperplane H and put dH := #(H ∩ K).
There are four cases.
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1. E ⊂ H: By (2), cH = dH − 3 + 4 ∈ {1, 4, 7}.

2. E ∩H is an external line of Γ: Thus #(H∩∆) = 2 and cH = dH − 2 + 0 ∈
{1, 4}.

3. E ∩H is a tangent of Γ: Thus #(H∩∆) = 0 and cH = dH−0+1 ∈ {1, 4, 7}.

4. E ∩H is a bisecant of Γ: Thus #(H∩∆) = 1 and cH = dH− 1 + 2 ∈ {4, 7}.

Two points in K\∆ together with ∆ generate a hyperplane H0 meeting K in six
distinct points by (5). According to case 1, cH0 = 7. 2

All properties of the Veronese surface that are used in the following proof can be
read off, e.g., from [11, Section 25.1].

Theorem 3 Suppose that K, K′ are sets of points in PG(5, 3) subject to (2) and
(3). Choose five distinct points P0, . . . , P4 in K and five distinct points P ′0, . . . , P

′
4

in K′. Then there is a unique collineation κ of PG(5, 3) with Kκ = K′ and
P κ
i = P ′i for i = 0, . . . , 4.

Proof. Put ∆ := {P0, P1, P2}. Define Γ and V according to Theorem 2. Write
C for the set of all conics contained in V . Then (V , C,∈) is a projective plane of
order 3. Moreover, the Veronese mapping ϕ yields a collineation of PG(2, 3) onto
that projective plane. There is a unique conic in V joining P3 with P4. It meets Γ
in a single point, say G3. The line spanned by G3 and Pi (i = 0, 1, 2) is a bisecant
of Γ, as it contains the internal point Pi; hence it meets the conic Γ residually in
a point Gi, say. Thus Γ = {G0, . . . , G3}. The four points {P3, P4, G0, G1} form a
“quadrangle” of the projective plane (V , C,∈), i.e. a set of four points no three
of which are on a common conic ⊂ V .

Repeat the previous construction with K′ to obtain ∆′ etc. By Theorem 2,
there exists a collineation µ of PG(5, 3) with Vµ = V ′. Thus {P µ

3 , P
µ
4 , G

µ
0 , G

µ
1} is a

“quadrangle” of the projective plane (V ′, C ′,∈). There is a projective collineation
λ′ of (V ′, C ′,∈) with

P µ
3 7→ P ′3, P

µ
4 7→ P ′4, G

µ
0 7→ G′0, G

µ
1 7→ G′1.

This λ′ extends to a projective collineation λ of PG(5, 3). The product κ := µλ
has the required properties, since Gκ

3 = G′3 implies Gκ
2 = G′2, so that also

P κ
i = P ′i for i = 0, 1, 2.

If κ is a collineation subject to the conditions of the theorem, then κκ−1 re-
stricts to a collineation of (V , C,∈) fixing each point of a “quadrangle”. Now
Aut GF(3) = {id} forces κκ−1 to fix V pointwise, whence κ = κ. 2

In the sequel let K be the subset of PG(5, 3) described in Theorem 1.
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Remark 2 By Theorem 3, any set of points in PG(5, 3) satisfying (2) and (3)
is projectively equivalent to K. We infer from Lemma 1 and Theorem 3 that the
12–sets of points discussed in [7] and [14] are essentially our K. By [14, Teorema
4.3], conditions (3) and (5) characterize K to within projective collineations. The
set K has a lot of fascinating geometric properties [7], [14], [16].

Remark 3 Define a block of K as a hyperplane section ofK containing more than
three points. If B denotes the set of all such blocks, then the incidence structure
(K,B,∈) is Witt’s 5–(12, 6, 1) design W12; cf., e.g., [3, Chapter 4]. According to
Lemma 1, Theorem 2, and Theorem 3, such a point model of W12 in PG(5, 3) is
projectively unique.

Remark 4 The automorphism group of W12 is the Mathieu group M12, a spo-
radic simple group acting sharply 5–transitive on K; cf., e.g., [3, Chapter 4]. Each
automorphism of (K,B,∈) extends to a unique automorphic collineation of K [7],
[14]. Theorem 3 includes a short coordinate–free proof of that result.

Remark 5 The successive derivations ofW12 are a 4–(11,5,1) design, a 3–(10,4,1)
design (the Möbius plane over the field extension GF(9)/GF(3)), and a 2–(9,3,1)
design (the affine plane over GF(3)). One may obtain point models for them by
suitable projections of K. Projection through a point of K yields an 11–cap in a
hyperplane of PG(5, 3). See [10], [13], [14], [15]. If the centre of projection is a
bisecant of K, then one gets an elliptic quadric in a solid of PG(5, 3). Finally, if
the centre of projection is spanned by a triangle of K, then an affine subplane of a
projective plane of PG(5, 3) arises. If the triangle is chosen to be ∆∞, then there
exists an affinity of this affine plane onto P(V)\l∞. This is immediately seen from
(1) and (4) by projecting, e.g., onto the plane with equations x11 = x12 = x22 = 0.

Remark 6 Let FP(W) be the F–vector space of all functions P(W)→ F . Given
M⊂ P(W) denote by χ(M) ∈ FP(W) its characteristic vector (function). With
the notations of Theorem 1 we obtain

χ(imϕ)− χ(Γ∞) + χ(∆∞) = χ(K).

The characteristic vectors of the hyperplanes H ⊂ P(W) are spanning a linear
[364, 22, 121]–code [2, Theorem 5.7.1]. By (2), χ(K) is a word of weight 12 in the
orthogonal (dual) code, where orthogonality is understood with respect to the
standard dot product. According to (10), the Veronese variety yields a word of
weight 13 which has dot product 1 ∈ F with each hyperplane. Thus, in terms
of characteristic vectors, K arises from the Veronese variety by adding a word of
weight 7 which has dot product 2 ∈ F with each hyperplane.

Next let w1, . . . ,w12 ∈W be vectors representing the points ofK. As f ranges
over the dual vector space W∗, the words (wf

1 , . . . ,w
f
12) ∈ F 12 give the extended

ternary Golay code G12. Cf. [1], where the dual point of view has been adopted.
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If we start instead with vectors v1 ∨ v1, . . . ,v13 ∨ v13 (vi ∈ V) representing the
points of the Veronese surface, then we obtain a ternary [13, 6, 6]–code C, as
follows from span imϕ = P(W) and (10).

Given f ∈W∗ then q : V→ F, a 7→ (a ∨ a)f is a quadratic form. The map-
ping f 7→ q is a linear bijection of W∗ onto the vector space of quadratic forms
V→ F . Thus, as q ranges over all quadratic forms on V, the words (vq1, . . . ,v

q
13)

too comprise the code C.
In order to identify the code C, let C(p) (p prime) be the linear code over

GF(p) which is spanned by the characteristic vectors of the lines of PG(2, p). The
dimension of C(p) is (p2 + p+ 2)/2, C(p)⊥ ⊂ C(p), and C(p)⊥ has codimension
1 in C(p) [2, 49]. Moreover, C(p)⊥ coincides with two other codes arising from
PG(2, p): One is the code E(p) spanned by the differences of characteristic vectors
of lines [2, Theorem 6.3.1], the other is the code C′(p) spanned by the charac-
teristic vectors of the complements of lines, as follows easily from C′(p) ⊂ C(p)⊥

and dim C′(p) = dim C(p)⊥ [5, 366].
If a quadratic form q : V→ F is applied to four vectors vi which represent

the points of a line, then one of the following (unordered) quadruples arises:
(0, 0, 0, 0), ±(1, 1, 1, 0), (1, 2, 0, 0), (1, 1, 2, 2). This is immediate from [9, Lemma
5.2.1]. Hence C ⊂ C(3)⊥ and, by dim C = dim C(3)⊥, the two codes turn out to
be the same.

So, the self–dual extended ternary Golay code G12 = G⊥12 is closely related
to a self–orthogonal code C ⊂ C⊥ = C(3) which belongs to an infinite family of
codes obtained from PG(2, p).

Remark 7 We aim at representing the points of ∆∞ on the line l∞ by making
use of the Veronese mapping ϕ: Each bijection of l∞ is a projectivity. There
are three elliptic involutions on l∞, each interchanging the points of l∞ in pairs.
Transformation under ϕ yields three elliptic involutions on the conic Γ∞. Each
of them extends uniquely to a harmonic homology of the plane E∞ leaving Γ∞
fixed, as a set [4, 2.4.4]. The centres of the three homologies are three distinct
internal points of Γ∞, whence they comprise the set ∆∞. Thus the points of ∆∞
are in one–one correspondence with the three elliptic involutions on l∞.

Now it is natural to ask for a description of W12 in terms of the nine points in
P(V) \ l∞ and the three elliptic involutions on l∞. It turns out that one obtains
Lüneburg’s description [12, Chapter 7], although from a different point of view.
A block is precisely one of the following:

1. An affine line plus all three elliptic involutions.

2. An ellipse together with those two elliptic involutions which are not the
involution of conjugate points on l∞ with respect to the ellipse.

3. A union of two distinct parallel affine lines.
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4. A cross of affine lines together with that elliptic involution which inter-
changes the points at infinity of the two lines.

Cf. the proof of Theorem 1. Thus each block arises from an affine quadric and
certain elliptic involutions which are affine invariants of the quadric. This obser-
vation was the starting point for the present paper.
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d. Wissenschaften, Berlin, 1961.

[7] H.S.M. Coxeter, Twelve points in PG(5, 3) with 95040 self–transformations,
Proc. Royal Soc. London A 427 (1958), 279–293.

[8] A. Herzer, Die Schmieghyperebenen an die Veronese–Mannigfaltigkeit bei
beliebiger Charakteristik, J. Geom. 18 (1982), 140–154.

[9] J.W.P. Hirschfeld, “Projective Geometries over Finite Fields,” Clarendon
Press, Oxford, 1979.

[10] J.W.P. Hirschfeld, Projective Spaces of Square Size, Simon Stevin 65 (1991),
319–329.

[11] J.W.P. Hirschfeld, J.A. Thas, “General Galois Geometries,” Oxford Univer-
sity Press, Oxford, 1991.
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