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Grassmannians

We consider a k-dimensional left vector space V over a (not
necessarily commutative) field F , and denote by

Gm(V )

the Grassmannian of all m-subspaces of the vector space V .

Thereby is always assumed that k and m are integers satisfying

1 ≤ m ≤ k − 1.

Since proper skew fields are included, we cannot use tools from
exterior algebra.
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Standard Transformations

The following mappings on vectors determine the standard
transformations of the Grassmannian Gm(V ).

Semilinear bijections f : V → V :

X 7→ X f := {v f |v ∈ X};

there is a unique automorphism of K accompanying f .

For k = 2m only: Semilinear bijections f : V → V ∗, where
V ∗ denotes the dual of V :

X 7→ annihilator of X f .

Any such f is accompanied by a unique antiautomorphism of
K . (There are skew fields admitting no antiautomorphism.)
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Problem

Characterise the standard transformations

of Grassmannians from the previous slide

by as few geometric invariants as possible.
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The Grassmann Graph

Subspaces X1,X2 ∈ Gm(V ) are called adjacent (in symbols:
X1 ∼ X2) if

dim(X1 ∩ X2) = m − 1.

We consider Gm(V ) as the set of vertices of an undirected
graph, called the Grassmann graph. Its edges are the
(unordered) pairs of adjacent m-subspaces.

The automorphisms of the Grassmann graph are precisely those
bijections of Gm(V ) that preserve adjacency in both directions.

We shall often assume 2 ≤ m ≤ k − 2 in order to avoid a
complete graph.
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Theorem (W. L. Chow (1949) [7])

Let 2 ≤ m ≤ k − 2.
A bijective mapping

ϕ : Gm(V )→ Gm(V ) : X 7→ Xϕ

preserves adjacency in both directions, i. e.,

X1 ∼ X2 ⇔ Xϕ
1 ∼ Xϕ

2 for all X1,X2 ∈ Gm(V ),

if, and only if, ϕ is a standard transformation.
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The Matrix Approach
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Projective Matrix Spaces

Each element of the Grassmannian Gm(F k) can be viewed as the
left row space of a matrix A|B with left row rank m, where
A ∈ Fm×(k−m), B ∈ Fm×m, and vice versa. We let n := k −m.

Let rk(A|B) = m. Then A|B and A′|B ′ have the same left row
space, if and only if, there is a T ∈ GLm(F ) with

A′ = TA and B ′ = TB.

One may consider a matrix pair

(A,B) ∈ Fm×n × Fm×m with rk(A|B) = m

as left homogeneous coordinates of an element of Gm(F k).
Gm(F k) is also called the point set of the projective space of
m × n matrices over F .
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An Embedding

We have an injective mapping:

Fm×n → Fm×k → Gm(F k)
A 7→ A|Im 7→ left rowspace of A|Im

Here Im denotes the m ×m identity matrix over F .

An m-subspace with coordinates (A,B) is in the image of this
embedding if, and only if, rkB = m.

Matrices A1,A2 ∈ Fm×n are called adjacent (in symbols:
A1 ∼ A2) if

rk(A1 − A2) = 1.

Matrices from Fm×n are adjacent precisely when their images
in Gm(F k) are adjacent.
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Standard Transformations

The following standard transformations Fm×n → Fm×n preserve
adjacency in both directions:

For arbitrary m, n:

A 7→ P · Aσ · Q + R,

where P ∈ GLm(F ), Q ∈ GLn(F ), R ∈ Fm×n, and σ is an
automorphism of F .

For m = n only:

A 7→ P · (AσT) · Q + R,

where P,Q,R are as above, σ is an antiautomorphisms of F ,
and T denotes transposition.
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Theorem (L. K. Hua (1951) [10])

Let m, n ≥ 2.
A bijective mapping ϕ : Fm×n → Fm×n : A 7→ Aϕ preserves
adjacency in both directions, i. e.,

A1 ∼ A2 ⇔ Aϕ1 ∼ Aϕ2 for all A1,A2 ∈ Fm×n,

if, and only if, ϕ is a standard transformation.

For #F = 2 the result was established by Z.-X. Wan and
Y.-X. Wang (1962, in Chinese); cf. [27].

A link between the theorems of Chow and Hua is provided by the
theory of spine spaces; see K. Prażmowski and M. Żynel [24].
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Other Matrix Spaces

and Related Topics
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Transformations on Symmetric Matrices

Similar results hold (up to certain exceptions) for bijections that
preserve adjacency in both directions for the following spaces:

For any commutative field F :

The space of m ×m symmetric matrices over F .

The space of maximal totally isotropic subspaces of F 2m w.r.t.
a symplectic form.
This is also called the projective space of m ×m symmetric
matrices over F .
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Transformations on σ-Hermitian Matrices

Similar results hold (up to certain exceptions) for bijections that
preserve adjacency in both directions for the following spaces:

For any field F that admits an antiautomorphism σ of order two:

The space of m ×m σ-Hermitian matrices over F .

The space of maximal totally isotropic subspaces of F 2m w.r.t.
a particular skew σ-Hermitian sesquilinear form.
This is also called the projective space of m ×m σ-Hermitian
matrices over F .
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Transformations on Alternating Matrices

Similar results hold (up to certain exceptions) for bijections that
preserve adjacency in both directions for the following spaces:

For any commutative field F :

The space of m ×m alternating matrices over F .
Adjacency is not inherited from F n×n.

The space of maximal totally singular subspaces of F 2n w.r.t.
a particular quadratic form.
This is also called the projective space of m ×m alternating
matrices over F .
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Monographs and Surveys

W. Benz: Geometrische Transformationen (1992) [1].

W. Benz: Real Geometries (1994) [2].

J. Lester: Distance preserving transformations (1995) [19].

M. Pankov: Grassmannians of Classical Buildings (2010) [21].

P. Šemrl: Maps on matrix and operator algebras (2006) [26].

Z.-X. Wan: Geometry of Matrices (1996) [27].

Applications: light cone preservers, Jordan homomorphisms, . . .
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Chow’s Theorem
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Key Questions

1 How does this work?

2 Is it possible to further weaken the assumptions?

3 Why adjacency, why not . . . ?

4 Is there a unified theory?
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Grassmannians Revisited

Recall that Gm(V ) denotes the Grassmannian of all m-subspaces of
the left vector space V ∼= F k , where 1 ≤ m ≤ k − 1.

We shall frequently adopt the projective point of view:

The elements of Gm(V ) are the (m − 1)-flats of the projective
space on V .
0-flats are called points.
1-flats are called lines.
2-flats are called planes.
. . .

(k − 2)-flats are called hyperplanes.
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Techniques: Maximal Cliques

For 2 ≤ m ≤ k − 2 the maximal cliques of the Grassmann graph
(Gm(V ),∼) fall into two classes.

A star is the set of all
(m − 1)-flats through
a fixed (m − 2)-flat,
called the centre of
the star.
A top is the set of all
(m − 1)-flats within a
fixed m-flat, called
the carrier of the top.
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Techniques: Intersection of Maximal Cliques

The intersection of
two distinct stars
(tops) is either empty
or it contains a single
(m − 1)-flat.

The intersection of a
star and a top is
either empty or it
contains at least three
(m − 1)-flats.

k = 4, m = 2

The second case characterises stars
(tops) with adjacent centres (carriers).
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Techniques: Collineations

Fundamental Theorem of Projective Geometry
All collineations between the point sets of projective spaces on

vector spaces V ,V ′ of dimension ≥ 3 stem from semilinear

bijections V → V ′, and vice versa.
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Proof of Chow’s Theorem

The proof of Chow’s theorem is essentially based on:

the intersection properties of maximal cliques,

an recursion argument,

the fundamental theorem of projective geometry.
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Theorem (R. Westwick (1974) [28], W. l. Huang (1998) [13])

Let 2 ≤ m ≤ k − 2.
A bijective mapping

ϕ : Gm(V )→ Gm(V ) : X 7→ Xϕ

preserves adjacency, i. e.,

X1 ∼ X2 ⇒ Xϕ
1 ∼ Xϕ

2 for all X1,X2 ∈ Gm(V ),

if, and only if, ϕ is a standard transformation.

For m = 2 (Grassmannians of lines) see also H. Brauner [6] in
combination with H. H. [8].

A (rather intricate) example of an adjacency preserving bijection
G2(F 4)→ G2(F ′3) is due to A. Kreuzer [18].
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Techniques: Distances

Westwick’s proof runs along the lines of Chow. Huang’s reasoning
is quite different. Her proof is based on a detailed study of maximal
distances between a single element and certain subsets of the
Grassmannian Gm(V ).

The graph theoretic distance between X ,Y ∈ Gm(V ), which is also
called the arithmetic distance, will be denoted by dist(X ,Y ).

Its basic properties are:
dist(X ,Y ) = s ⇔ dim(X ∩ Y ) = m − s.

The diameter of the Grassmann graph Gm(V ) equals

diamGm(V ) = min{m, k −m}.
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Theorem (M.-H. Lim (2010) [20])

Let 2 ≤ m ≤ k − 2 and chose an integer s such that

1 ≤ s < diamGm(V ).

A surjective mapping

ϕ : Gm(V )→ Gm(V ) : X 7→ Xϕ

satisfies

dist(X1,X2) ≤ s ⇔ dist(Xϕ
1 ,X

ϕ
2 ) ≤ s for all X1,X2 ∈ Gm(V ),

if, and only if, ϕ is a standard transformation.
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Techniques: Balls of Radius s

For each subset T ⊂ Gm(V ) let

T [s] := {X ∈ Gm(V ) | dist(X ,Y ) ≤ s for all Y ∈ T }.

Then for all X1,X2 ∈ Gm(V ) with 1 ≤ dist(X1,X2) ≤ s the
following characterisations hold:

dist(X1,X2) 6= 1 ⇔
({X1,X2}[s])[s] = {X1,X2}.

dist(X1,X2) = 1 ⇔
({X1,X2}[s])[s] has at least three
elements. (It is a pencil).
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dist(X1,X2) = 2, s = 1

k = 4, m = 2
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Corollary (Lim’s theorem for s = d − 1)

Let 2 ≤ m ≤ k − 2 and define d := diamGm(V ). A surjective
mapping

ϕ : Gm(V )→ Gm(V ) : X 7→ Xϕ

satisfies

dist(X1,X2) = d ⇔ dist(Xϕ
1 ,X

ϕ
2 ) = d for all X1,X2 ∈ Gm(V ),

if, and only if, ϕ is a standard transformation.

Lim’s result generalises previous work on diameter preservers by
A. Blunck, W. l. Huang, M. Pankov, and H. H. [3], [15], [9].

It overlaps with a characterisation of (not necessarily surjective)
distance preserving mappings due to J. Kosiorek, A. Matraś, and
M. Pankov [17], [22].
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Final Remarks

W. l. Huang [14] generalised Lim’s result to wide class of
graphs satisfying certain axioms.

Adjacency may be replaced by the weaker notion of
ortho-adjacency if V has an appropriate extra structure.
Recent work is due to J. Konarzewski, K. Prażmowski, and
M. Żynel [16], [25].

There are also results for vector spaces of infinite dimension by
A. Blunck, H.H. [4], [5], M.-H. Lim [20], L. Plevnik and
P. Šemrl [23], preprint.

For Grassmannians over rings refer to L. P. Huang [11], [12].
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Serdecznie dziękuję
za zaproszenie

i za Państwa uwagę!
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The bibliography focusses on preserver problems for Grassmannians,
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