A Three-Dimensional Laguerre Geometry

Hans Havlicek

Institut für Geometrie Technische Universität Wien Vienna, Austria

H.-J. Samaga. Dreidimensionale Kettengeometrien über \mathbb{R} . J. Geom. 8 (1976), 61–73.

H. Havlicek and K. List. A Three-Dimensional Laguerre Geometry and Its Visualization. *Proceedings "Dresden Symposium Geometry: Constructive and Kinematic*". Dresden February 2003 (in print).

Blaschke's Cylinder

A quadratic cylinder in the real affine 3-space is a point model for the *projective line* over the ring $\mathbb{R}[\varepsilon]$ of *real dual numbers*. Two points are called *parallel* exactly if they are on a common generator.

Under a stereographic projection (centre ∞) all points that are *distant*, i.e. non-parallel, to ∞ are mapped bijectively onto the affine plane of dual numbers (*isotropic plane*).

An Affine Description

The geometry of conics on Blaschke's cylinder is a model for the 2-dimensional Laguerre geometry.

It may be interpreted as an *extension* of the isotropic plane by *improper points*. They are represented as follows:

- The distinguished point ∞ : All non-isotropic lines.
- Any other improper point: All the translates of an isotropic circle.

The Laguerre Geometry $\Sigma(\mathbb{R}, \mathbb{L})$

Let \mathbb{L} be the 3-dimensional real commutative algebra with an \mathbb{R} -basis $1_{\mathbb{L}}, \varepsilon, \varepsilon^2$ and the defining relation $\varepsilon^3 = 0$. We shall identify $x \in \mathbb{R}$ with $x \cdot 1_{\mathbb{L}} \in \mathbb{L}$.

 \mathbb{L} is a *local ring*: Its non-invertible elements form the only maximal ideal $N := \mathbb{R}\varepsilon + \mathbb{R}\varepsilon^2$.

Laguerre geometry $\Sigma(\mathbb{R}, \mathbb{L})$:

- The point set is the *projective line* over \mathbb{L} : $\mathbb{P}(\mathbb{L}) := \{\mathbb{L}(a, b) \subset \mathbb{L}^2 \mid a \text{ or } b \text{ is invertible}\}$
- The *chains* are the images of P(R) ⊂ P(L) under the natural right action of GL₂(L) on L².

If two distinct points of $\mathbb{P}(\mathbb{L})$ can be joined by a chain then they are called *distant* (\triangle) or *non-parallel* ($\not|$).

There is a unique chain through any three mutually distant points.

Splitting the Point Set

We fix the point $\mathbb{L}(1,0) =: \infty \in \mathbb{P}(\mathbb{L})$.

- Proper points: $\mathbb{L}(z,1) \leftrightarrow z$ with $z \in \mathbb{L}$.
- Improper points: $\mathbb{L}(1, z) \leftrightarrow z$ with $z \in N$.

We can regard $\mathbb{P}(\mathbb{L})$ as the real affine 3-space on \mathbb{L} together with an extra "improper plane" which is just a copy of the maximal ideal N.

Problem: Geometric description of this extension.

The Absolute Flag

We shall also use the *projective extension* $\mathbb{P}_3(\mathbb{R})$ of the affine space on \mathbb{L} as follows:

$$\underbrace{\mathbb{R}(1, x_1, x_2, x_3)}_{\in \mathbb{P}_3(\mathbb{R})} \leftrightarrow \underbrace{x_1 + x_2\varepsilon + x_3\varepsilon^2}_{\in \mathbb{L}}$$

There is an *absolute flag* (f, F, Φ) :

$$f := \mathbb{R}(0, 0, 0, 1)$$

is the point at infinity of the affine line $\mathbb{R}\varepsilon^2$,

$$F := \mathbb{R}(0, 0, 0, 1) + \mathbb{R}(0, 0, 1, 0)$$

is the line at infinity of the affine plane N,

$$\Phi: x_0 = 0$$

is the plane at infinity.

Chains Through an Improper Point

For each chain C let C° be its *proper part*. Each chain has a unique improper point.

The proper part of a chain C is an algebraic curve which can be extended projectively . . . C^+ .

- $\mathbb{L}(1,0) = \infty \in \mathcal{C}$: \mathcal{C}^+ is a *line* with a point at infinity off the line F. All such lines arise from chains.
- L(1, x₃ε²) ∈ C, x₃ ≠ 0:
 C⁺ is a parabola through f with a tangent other than F.
 All such admissible parabolas arise from chains.
- L(1, x₂ε + x₃ε²) ∈ C, x₂ ≠ 0:
 C⁺ is a *cubic parabola* through f, with tangent F, and osculating plane Φ.
 Not all cubic parabolas of this form arise from

Not all cubic parabolas of this form arise from chains.

Admissible Parabolas

Theorem. Two admissible parabolas C_1^+ and C_2^+ represent the same improper point of $\mathbb{P}(\mathbb{L})$ if, and only if, the parallel projection of C_1^+ to the plane of C_2^+ , in the direction of the ε -axis, is a translate of C_2^+ .

Equivalent condition: The projection of C_1^+ and the parabola C_2^+ have second order contact at the point $f = \mathbb{R}(0, 0, 0, 1)$.

Admissible Cubic Parabolas

We say that a cubic parabola is *admissible* if it has the form \mathcal{C}^+ for a chain \mathcal{C} of $\Sigma(\mathbb{L}, \mathbb{R})$.

Theorem. A cubic parabola is admissible if, and only if, it has second order contact with the cubic parabola

 $\{\mathbb{R}(1, t, t^2, t^3) \mid t \in \mathbb{R}\} \cup \{\mathbb{R}(0, 0, 0, 1)\}\$

at the point $f = \mathbb{R}(0, 0, 0, 1)$.

Two admissible cubic parabolas represent the same improper point if, and only if, they have third order contact at $f = \mathbb{R}(0, 0, 0, 1)$.

Final Remarks

- Chains that *touch* each other at an improper point
 ⇔ parallel lines or parabolas (cubic parabolas)
 with contact of order 3 (order 4) at the point f.
- A purely "affine" description of higher order contact of twisted cubics is possible.
 Example: Twisted cubics with contact of order 4 at f on Cayley's ruled surface:

• Similar results should hold for other local algebras of finite dimension. For more general algebras the problem seems to be intricate.