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The Real Möbius Plane

Algebraic definition

Points: C ∪ {∞} (complex projective line)
Circles: Images of R ∪ {∞} under PGL2(C)

Other models

Elliptic quadric / conics
Euclidean plane + one point / circles and lines
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The Projective Line over a Ring

All our rings are associative, with unit element 1 which is inherited by subrings
and acts unitally on modules.

Let GL2(A) be the group of invertible (2 × 2)-matrices with entries in a ring A.

A pair (a, b) ∈ A2 is called admissible if (a, b) is the first row of a matrix in
GL2(A).

Projective line over A: P(A) := {A(a, b) | (a, b) admissible}
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Real Chain Geometries

Assume that A is a real algebra. We identify a ∈ R and a · 1A. There is the
natural embedding

P(R) → P(A) : R(a, b) 7→ A(a, b).

The images of P(R) under PGL2(A) are the chains of the chain geometry

Σ(R, A).

PGL2(A) is a group of automorphisms of Σ(R, A).
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Two-dimensional Real Chain Geometries

A = C = R[i], i2 = −1 complex numbers Möbius

A = R × R double numbers Minkowski

A = D = R[ε], ε2 = 0 dual numbers Laguerre
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Blaschke’s Cone

A quadratic cone (without its vertex) in the real projective
3-space is a point model for the projective line over R[ε].
Two points are parallel (non-distant) if they are on a
common generator.

Under a stereographic projection all points that are distant
to the centre of projection are mapped bijectively onto the
affine plane of dual numbers (isotropic plane).
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Three-dimensional Real Chain Geometries

A1 = C × R

A2 = D × R

A3 = R × R × R

A4 = R[ε], ε3 = 0

A5 = R[ε1, ε2], εiεj = 0

A6 = R[j, ε], j2 = 1, ε2 = 0, jε = −εj = ε
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The Chain Geometry on A4

A := A4 = R[ε], ε3 = 0. z = z0 + z1ε + z2ε
2, zi ∈ R.

N := Rε + Rε2 is the only maximal ideal of A.

P(A) = {A(z, 1)
︸ ︷︷ ︸
=z∈A

| a ∈ A} ∪ {A(1, u)
︸ ︷︷ ︸
=u∈N

| u ∈ N}

proper and improper points; ∞ := A(1, 0).
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Projectivities fixing the Improper Plane

Let γ =
(

a b

c d

)

∈ GL2(A). Then γ fixes the improper plane if, and only if,

b ∈ N = Rε + Rε2.

In this case, γ yields the bijections

A → A : z 7→
za + c

zb + d
and N → N : u 7→

b + ud

a + uc
,

since the denominators are invertible for all z ∈ A and all u ∈ N .
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Dilative Rotations

γ =

(
a 0
0 1

)

∈ GL2(A) :

We get the dilative rotation

A → A : z 7→ za

and the shear

N → N : u 7→
u

a
.

z0
z1

z2

A N
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Translations

γ =

(
1 0
c 1

)

∈ GL2(A) :

We get the translation

A → A : z 7→ z + c

and the quadratic Cremona transformation

N → N : u 7→
u

1 + uc
.

z0
z1

z2

A N
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Vertical shears and translations

γ =

(
a 0
c 1

)

∈ GL2(A)

with a = 1 + a2ε and c = c2ε
2: We get a shear or

a translation

A → A : z 7→ za + c

and the identity

N → N : u 7→ u .

z0
z1

z2

A N
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Quadratic and Cubic Cremona Transformations

γ =

(
1 b

0 1

)

∈ GL2(A) :

We get the Cremona transformation

A → A : z 7→
z

zb + 1

and the translation

N → N : u 7→ b + u .

z0
z1

z2

A N
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The Flag Space

We consider the projective closure of the affine space on A. Its plane at infinity,
the line at infinity of N = Rε + Rε2 and the point of infinity of Rε2 comprise the
absolute flag.

All dilative rotations z 7→ az (when extended projectively) fix the absolute flag,
so they are similarities of the flag space (“zweifach isotroper Raum”).

In particular, we obtain a motion of the flag space if, and only if,

a = 1 + a1ε + a2 with ai ∈ R.

However, neither all motions nor all similarities arise in this way.
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The Chains

A chain is either:

• a line of A together with ∞ = A(1, 0);

• a parabola of A together with a point A(1, b2ε
2), b2 6= 0.

• a cubic parabola of A together with a point A(1, b1ε + b2ε
2), b1 6= 0.

More precisely, . . .
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