Matrix Spaces vs. Projective Lines over Rings

Hans Havlicek

Research Group Differential Geometry and Geometric Structures Institute of Discrete Mathematics and Geometry

University of Hamburg, June 5th, 2012

Grassmannians

Let F be a (not necessarily commutative) field and $m, n \ge 1$.

- $\mathcal{G}_{n+m,m}(F)$ denotes the Grassmannian of all *m*-subspaces of the left vector space F^{n+m} .
- Two *m*-subspaces W₁ and W₂ are called *adjacent* if dim W₁ ∩ W₂ = m − 1.
- We consider $\mathcal{G}_{n+m,m}(F)$ as the set of vertices of an undirected graph, called the *Grassmann graph*. Its edges are the (unordered) pairs of adjacent *m*-subspaces.
- We shall frequently assume m, n ≥ 2 in order to avoid a complete graph.

Theorem (W. L. Chow (1949) [11])

Let $m, n \ge 2$. A mapping $\varphi : \mathcal{G}_{n+m,m}(F) \to \mathcal{G}_{n+m,m}(F) : X \mapsto X^{\varphi}$ is an automorphism of the Grassmann graph if, and only if, it has the following form:

• For arbitrary m, n:

$$X \mapsto \{y \in F^{n+m} \mid y = x^{\sigma}P \text{ with } x \in X\},\$$

where $P \in GL_{n+m}(F)$ and σ is an automorphism of F.

• For *n* = *m* and fields admitting an antiautomorphism only:

$$X \mapsto \{y \in F^{n+m} \mid yP(x^{\sigma})^{\mathsf{T}} = 0 \text{ for all } x \in X\},$$

where P is as above, σ is an antiautomorphism of F, and T denotes transposition.

The Matrix Approach

Each element of the Grassmannian $\mathcal{G}_{n+m,m}(F)$ can be viewed as the left row space of a matrix A|B with rank m, where $A \in F^{m \times n}$ and $B \in F^{m \times m}$, and vice versa.

Let rk(A|B) = m. Then A|B and A'|B' have the same row space, if and only if, there is a T ∈ GL_m(F) with

$$A' = TA$$
 and $B' = TB$.

- One may consider a matrix pair (A, B) ∈ F^{m×n} × F^{m×m} with rk(A|B) = m as left homogeneous coordinates of an element of G_{n+m,m}(F).
- Some authors call $\mathcal{G}_{n+m,m}(F)$ the point set of the *projective* space of $m \times n$ matrices over F.

An Embedding

We have an injective mapping: $\begin{array}{ccccc}
F^{m \times n} & \rightarrow & F^{m \times (n+m)} & \rightarrow & \mathcal{G}_{n+m,m}(F) \\
A & \mapsto & A | I_m & \mapsto & \text{left rowspace of } A | I_m \\
\text{Here } I_m \text{ denotes the } m \times m \text{ identity matrix over } F.\end{array}$

• Two matrices $A_1, A_2 \in F^{m \times n}$ are *adjacent*, i. e., $rk(A_1 - A_2) = 1$, precisely when their images in $\mathcal{G}_{n+m,m}(F)$ are adjacent.

Related Work

A series of results in the spirit of Chow's theorem have been established for various (projective) matrix spaces. Also, the assumptions in Chow's original theorem can be relaxed.

- Original work by L. K. Hua and others (1945 and later).
- Z.-X. Wan: Geometry of Matrices [39].
- L.-P. Huang: Geometry of Matrices over Ring [17].
- M. Pankov: Grassmannians of Classical Buildings [36].
- See also: Y. Y. Cai, L.-P. Huang, W.-I. Huang, P. Šemrl, R. Westwick, S.-W. Zou [18], [19], [20], [21], [22], [23], [24], [28], [40].

Towards Ring Geometry

- The set $F^{m \times m}$ of $m \times m$ matrices over F is a ring with unit element I_m .
- The case $m \neq n$ will not be covered by our ring geometric approach.

All our rings are associative, with a unit element $1 \neq 0$ which is preserved by homomorphisms, inherited by subrings, and acts unitally on modules. The group of units (invertible elements) of a ring R is denoted by R^* .

The Projective Line over a Ring

Let R be a ring. We consider the free left R-module R^2 .

- A pair (a, b) ∈ R² is called admissible if (a, b) is the first row of a matrix in GL₂(R). This is equivalent to saying that there exists (c, d) ∈ R² such that (a, b), (c, d) is a basis of R².
- *Projective line* over *R*:

 $\mathbb{P}(R) := \{R(a, b) \mid (a, b) \text{ admissible}\}\$

The elements of $\mathbb{P}(R)$ are called *points*.

• Two admissible pairs generate the same point if, and only if, they are left proportional by a unit in *R*.

Remarks

- Our approach is due to X. Hubaut [29].
- P(R) may also be described as the orbit of the "starter point" R(1,0) under the natural right action of GL₂(R) on R².
- Note that R^2 may also have bases with cardinality $\neq 2$.

The Distant Graph

• *Distant* points of $\mathbb{P}(R)$:

$$R(a,b) riangle R(c,d) \iff \left(egin{array}{c} a & b \ c & d \end{array}
ight) \in \operatorname{GL}_2(R)$$

- $(\mathbb{P}(R), \triangle)$ is called the *distant graph* of $\mathbb{P}(R)$.
- Non-distant points are also called *neighbouring*.
- The relation \triangle is invariant under the action of $GL_2(R)$ on $\mathbb{P}(R)$.

Remark

For $R = F^{m \times m}$ distant points correspond to complementary subspaces of $\mathcal{G}_{2m,m}$ due to $GL_2(R) = GL_{2m}(F)$.

Ring

- R = GF(4) (Galois field).
- $R = \mathbb{Z}_2 \times \mathbb{Z}_2$.
- $R = \mathbb{Z}_4$.
- $R = \mathbb{Z}_2[\varepsilon], \ \varepsilon^2 = 0$ (dual numbers over \mathbb{Z}_2).

Distant graph

Ring

- R = GF(4) (Galois field).
- $R = \mathbb{Z}_2 \times \mathbb{Z}_2$.
- $R = \mathbb{Z}_4$.
- $R = \mathbb{Z}_2[\varepsilon], \ \varepsilon^2 = 0$ (dual numbers over \mathbb{Z}_2).

Distant graph

 $\#\mathbb{P}(R) = 9$

Ring

- R = GF(4) (Galois field).
- $R = \mathbb{Z}_2 \times \mathbb{Z}_2$.
- $R = \mathbb{Z}_4$.
- $R = \mathbb{Z}_2[\varepsilon], \ \varepsilon^2 = 0$ (dual numbers over \mathbb{Z}_2).

Distant graph

Ring

- R = GF(4) (Galois field).
- $R = \mathbb{Z}_2 \times \mathbb{Z}_2$.
- $R = \mathbb{Z}_4$.
- $R = \mathbb{Z}_2[\varepsilon], \ \varepsilon^2 = 0$ (dual numbers over \mathbb{Z}_2).

Distant graph

Properties of the Distant Relation

- $(\mathbb{P}(R), \triangle)$ is a complete graph $\Leftrightarrow \not \triangle$ equals the identity relation $\Leftrightarrow R$ is a field.
- A. Herzer (survey) [16].
- A. Blunck, A. Herzer: Kettengeometrien [9].

The Elementary Linear Group $E_2(R)$

All elementary 2×2 matrices over *R*, i. e., matrices of the form

$$\left(egin{array}{cc} 1 & t \\ 0 & 1 \end{array}
ight), \ \left(egin{array}{cc} 1 & 0 \\ t & 1 \end{array}
ight) \ ext{with} \ t \in R,$$

generate the *elementary linear group* $E_2(R)$. The group $GE_2(R)$ is the subgroup of $GL_2(R)$ generated by $E_2(R)$ and all invertible diagonal matrices.

Lemma (P. M. Cohn [12])

A 2 \times 2 matrix over R is in E₂(R) if, and only if, it can be written as a finite product of matrices

$$E(t) := \left(egin{array}{cc} t & 1 \ -1 & 0 \end{array}
ight)$$
 with $t \in R$.

Connectedness

Theorem (A. Blunck, H. H. [4])

Let R be any ring.

- $(\mathbb{P}(R), \triangle)$ is connected precisely when $GL_2(R) = GE_2(R)$.
- A point p ∈ P(R) is in the connected component of R(1,0) if, and only if, it can be written as R(a, b) with

$$(a, b) = (1, 0) \cdot E(t_n) \cdot E(t_{n-1}) \cdots E(t_1).$$

for some $n \in \mathbb{N}$ and some $t_1, t_2, \ldots, t_n \in R$.

Connectedness (cont.)

The formula

$$(a,b) = (1,0) \cdot E(t_n) \cdot E(t_{n-1}) \cdots E(t_1)$$

reads explicitly as follows:

$$n = 0: (a, b) = (1, 0)$$

$$n = 1: (a, b) = (t_1, 1)$$

$$n = 2: (a, b) = (t_2t_1 - 1, t_2)$$

$$n = 3: (a, b) = (t_3t_2t_1 - t_3 - t_1, t_3t_2 - 1)$$

$$\vdots$$

Stable Rank 2

A ring has *stable rank* 2 (or: stable range 1) if for any unimodular pair $(a, b) \in R^2$, i.e., there exist u, v with $au + bv \in R^*$, there is a $c \in R$ with

 $ac + b \in R^*$.

- Surveys by F. Veldkamp [37] and [38].
- H. Chen: Rings Related to Stable Range Conditions [10].

Examples

Rings of stable rank 2 are ubiquitous:

- local rings;
- matrix rings over fields;
- finite-dimensional algebras over commutative fields.
- direct products of rings of stable rank 2.

 \mathbb{Z} is not of stable rank 2: Indeed, (5,7) is unimodular, but no number 5c + 7 is invertible in \mathbb{Z} .

Examples

 $\mathbb{P}(R)$ is connected if ...

- R is a ring of stable rank 2. Diameter ≤ 2
- *R* is the endomorphism ring of an infinite-dimensional vector space. Diameter 3.
- *R* is a polynomial ring *F*[X] over a field *F* in a central indeterminate X. Diameter ∞.

However, in $R = F[X_1, X_2, ..., X_n]$ with $n \ge 2$ central indeterminates there holds

$$\left(egin{array}{ccc} 1+X_1X_2 & X_1^2 \ -X_2^2 & 1-X_1X_2 \end{array}
ight)\in \mathsf{GL}_2(R)\setminus\mathsf{GE}_2(R).$$

A Parallelism

Let $\triangle(p)$ be the set of all points distant to $p \in \mathbb{P}(R)$.

- Points with △(p) ⊂ △(q) are called (Jacobson) parallel, in symbols p || q.
- Despite its asymmetric definition, || is an equivalence relation on ℙ(R). Hence

$$p \parallel q \iff \bigtriangleup(p) = \bigtriangleup(q).$$

• The relation \parallel is invariant under the action of $GL_2(R)$ on $\mathbb{P}(R)$.

A Parallelism (cont.)

• For all $p \in \mathbb{P}(R)$ holds:

$$p \parallel R(1,0) \iff p = R(1,b) \text{ with } b \in \operatorname{rad} R,$$

i. e. the Jacobson radical of R. Indeed,

$$b\in \operatorname{\mathsf{rad}} R \ \Leftrightarrow \ \left(egin{array}{cc} 1 & b \\ a & 1 \end{array}
ight)\in \operatorname{\mathsf{GL}}_2(R) ext{ for all } a\in R.$$

- All parallel classes of $\mathbb{P}(R)$ have cardinality $\# \operatorname{rad} R$.
- Parallel points of $\mathbb{P}(R)$ are non-distant.

Ring

Distant graph

•
$$R = \mathbb{Z}_4$$
.

R = Z₂[ε], ε² = 0 (dual numbers over Z₂).

Distant Homomorphisms

Conclusion

Distant Homomorphisms

Given rings R and R' a mapping

$$\varphi: \mathbb{P}(R) \to \mathbb{P}(R')$$

is said to be a *distant homomorphism* if

 $p \vartriangle q \Rightarrow p^{\varphi} \bigtriangleup' q^{\varphi}$ for all $p,q \in \mathbb{P}(R)$.

Examples: The Easy Ones

• Let $\sigma: R \to R'$ be a ring homomorphism. Then

$$\varphi: \mathbb{P}(R) \to \mathbb{P}(R'): R(a,b) \mapsto R'(a^{\sigma},b^{\sigma})$$

is a distant homomorphism.

• Let $\sigma : R \to R'$ be a ring antihomomorphism. Then the mapping $\varphi : \mathbb{P}(R) \to \mathbb{P}(R')$ given by

$$R(a,b)^{\varphi} := \{(x',y') \in R'^2 \mid -x'b^{\sigma} + y'a^{\sigma} = 0\}$$

is a distant homomorphism.

• Let $\alpha \in GL_2(R)$. Then

 $\varphi: \mathbb{P}(R) \to \mathbb{P}(R): R(a,b) \mapsto R((a,b) \cdot \alpha) =: R(a,b)^{\alpha}$

is a distant automorphism.

Examples: Some Ugly Ones

The following mappings $\varphi : \mathbb{P}(R) \to \mathbb{P}(R)$ are distant automorphisms:

- Let R be a field, and let $\varphi : \mathbb{P}(R) \to \mathbb{P}(R)$ be any bijection.
- Let $GE_2(R) \neq GL_2(R)$. With $\alpha := E(0) \in E_2(R)$ define:

$$p^{arphi} := egin{cases} p^lpha & ext{if } p ext{ is in the conneced component of } R(1,0) \ p & ext{otherwise} \end{cases}$$

• Let rad $R \neq 0$. With any bijection σ : rad $R \rightarrow$ rad R define:

$$p^{arphi} := egin{cases} R(1,b^{\sigma}) & ext{if } p = R(1,b) \parallel R(1,0) \ p & ext{otherwise} \end{cases}$$

Let R = F[X] with F commutative ...
C. Bartolone, F. Bartolozzi [2].

Jordan Homomorphisms

A mapping $\sigma : R \to R'$ is called a *Jordan homomorphism* if it satisfies the following conditions for all $x, y \in R$:

$$\begin{aligned} (x+y)^{\sigma} &= x^{\sigma} + y^{\sigma}, \\ (xyx)^{\sigma} &= x^{\sigma}y^{\sigma}x^{\sigma}, \\ 1^{\sigma} &= 1'. \end{aligned}$$

- Homomorphisms and antihomomorphisms are Jordan homomorphisms.
- Example: Let R be the direct product $\mathbb{R}^{2 \times 2} \times \mathbb{R}^{2 \times 2}$ and define

$$\sigma: R \to R: (A, B) \mapsto (A, B^{\mathsf{T}}).$$

Theorem (C. Bartolone [1], A. Blunck, H. H. [6])

Each Jordan homomorphism $\sigma : R \to R'$ gives rise to a distant preserving mapping which is defined on the connected component of R(1,0) as follows:

$$R(1,0) \cdot E(t_n) \cdot E(t_{n-1}) \cdots E(t_1)$$

is mapped to

$$R'(1',0') \cdot E(t_n^{\sigma}) \cdot E(t_{n-1}^{\sigma}) \cdots E(t_1^{\sigma}).$$

So, if $(\mathbb{P}(R), \triangle)$ is connected, we obtain a distant homomorphism.

Two Characterisations

Let $R = F^{m \times m}$, $m \ge 1$. Below we do not distinguish between the projective line $\mathbb{P}(R)$ and the Grassmannian $\mathcal{G}_{2m,m}(F)$.

Theorem (A. Blunck, H. H. [7])

For all $p, q \in \mathbb{P}(R)$ the following assertions hold:

- p △ q ⇔ The distance of p and q in the Grassmann graph equals the diameter of this graph.
- ② p and q are adjacent ⇔ There exists a point $r \in \mathbb{P}(R)$ other than p and q such that $\triangle(r) \subset (\triangle(p) \cup \triangle(q))$.

Consequently, the Grassmann graph and the distant graph on $\mathbb{P}(R)$ have the same group of automorphisms.

Chow's Theorem for m = n

Corollary

Let $m \ge 2$. A mapping

$$\varphi:\mathcal{G}_{2m,m}(F)\to\mathcal{G}_{2m,m}(F)$$

is an automorphism of the Grassmann graph if, and only if, it is the product of a linear bijection acting on $\mathcal{G}_{2m,m}(F)$ and a mapping which in terms of homogeneous coordinates has the form

$$(BA - I_m, B) \mapsto (B^{\sigma}A^{\sigma} - I_m, B^{\sigma}),$$

with σ being an automorphism or an antiautomorphism of F.

Related Work

- All distant automorphisms of projective lines over semisimple rings (Segre products of Grassmannians) can be described "algebraically" provided that no simple component is a field.
- Similar characterisations have been established for other spaces of matrices and spaces of linear operators.
- Characterisations of mappings preserving a bounded distance.
- See the papers by A. Blunck, H. H., L.-P. Huang, W.-I. Huang, J. Kosiorek, M. Kwiatkowski, M. H. Lim, A. Matraś, A. Naumowicz, M. Pankov, K. Prażmowski, P. Šemrl, J. J.-H. Tan: [5], [8], [14], [15], [21], [25], [26], [27], [30], [31], [32], [33], [34], [35].

References

The bibliography focusses on the presented material and recent related work. The books and surveys [3], [9], [13], [16], [17], [38], [39] contain a wealth of further references.

[1] C. Bartolone.

Jordan homomorphisms, chain geometries and the fundamental theorem.

Abh. Math. Sem. Univ. Hamburg, 59:93–99, 1989.

- [2] C. Bartolone and F. Bartolozzi. Topics in geometric algebra over rings. In R. Kaya, P. Plaumann, and K. Strambach, editors, *Rings* and Geometry, pages 353–389. Reidel, Dordrecht, 1985.
- [3] W. Benz.

Vorlesungen über Geometrie der Algebren. Springer, Berlin, 1973.

[4] A. Blunck and H. Havlicek.

The connected components of the projective line over a ring. *Adv. Geom.*, 1:107–117, 2001.

- [5] A. Blunck and H. Havlicek. The dual of a chain geometry. J. Geom., 72:27–36, 2001.
- [6] A. Blunck and H. Havlicek. Jordan homomorphisms and harmonic mappings. *Monatsh. Math.*, 139:111–127, 2003.
- [7] A. Blunck and H. Havlicek.
 On bijections that preserve complementarity of subspaces. *Discrete Math.*, 301:46–56, 2005.

- [8] A. Blunck and H. Havlicek.
 On distant-isomorphisms of projective lines.
 Aequationes Math., 69:146–163, 2005.
- [9] A. Blunck and A. Herzer. Kettengeometrien – Eine Einführung. Shaker Verlag, Aachen, 2005.

[10] H. Chen.

Rings related to stable range conditions, volume 11 of Series in Algebra. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.

[11] W.-L. Chow.

On the geometry of algebraic homogeneous spaces. *Ann. of Math.*, 50(1):32–67, 1949.

[12] P. M. Cohn.

On the structure of the GL₂ of a ring. *Inst. Hautes Etudes Sci. Publ. Math.*, 30:365–413, 1966.

[13] H. Havlicek.

From pentacyclic coordinates to chain geometries, and back. *Mitt. Math. Ges. Hamburg*, 26:75–94, 2007.

H. Havlicek, A. Matraś, and M. Pankov.
 Geometry of free cyclic submodules over ternions.
 Abh. Math. Semin. Univ. Hambg., 81(2):237–249, 2011.

[15] H. Havlicek and P. Šemrl.

From geometry to invertibility preservers. *Studia Math.*, 174:99–109, 2006.

[16] A. Herzer.

Chain geometries.

In F. Buekenhout, editor, *Handbook of Incidence Geometry*, pages 781–842. Elsevier, Amsterdam, 1995.

[17] L.-P. Huang. Geometry of Matrices over Ring. Science Press, Beijing, 2006.

[18] L.-P. Huang.

Adjacency preserving bijection maps of Hermitian matrices over any division ring with an involution. *Acta Math. Sin. (Engl. Ser.)*, 23(1):95–102, 2007.

[19] L.-P. Huang.

Geometry of $n \times n$ ($n \ge 3$) Hermitian matrices over any division ring with an involution and its applications. Comm. Algebra, 36(6):2410–2438, 2008.

[20] L.-P. Huang.

Geometry of 2×2 Hermitian matrices over any division ring. *Sci. China Ser. A*, 52(11):2404–2418, 2009.

[21] L.-P. Huang.

Geometry of self-dual flats over a PID on a polarity. *Adv. Geom.*, 10(4):683–697, 2010.

 [22] L.-P. Huang and Y.-Y. Cai.
 Geometry of block triangular matrices over a division ring. *Linear Algebra Appl.*, 416(2-3):643–676, 2006.

[23] L.-P. Huang and S.-W. Zou.
 Geometry of rectangular block triangular matrices.
 Acta Math. Sin. (Engl. Ser.), 25(12):2035–2054, 2009.

[24] W.-I. Huang.

Adjacency preserving transformations of Grassmann spaces. *Abh. Math. Sem. Univ. Hamburg*, 68:65–77, 1998.

[25] W.-I. Huang.

Bounded distance preserving surjections in the geometry of matrices.

Linear Algebra Appl., 433(11-12):1973-1987, 2010.

[26] W.-I. Huang.

Bounded distance preserving surjections in the projective geometry of matrices.

Linear Algebra Appl., 435(1):175–185, 2011.

[27] W.-I. Huang and H. Havlicek.

Diameter preserving surjections in the geometry of matrices. *Linear Algebra Appl.*, 429(1):376–386, 2008.

[28] W.-I. Huang and P. Šemrl.

Adjacency preserving maps on Hermitian matrices. *Canad. J. Math.*, 60(5):1050–1066, 2008.

[29] X. Hubaut.

Algèbres projectives. Bull. Soc. Math. Belg., 17:495–502, 1965.

- [30] J. Kosiorek, A. Matraś, and M. Pankov. Distance preserving mappings of Grassmann graphs. *Beiträge Algebra Geom.*, 49(1):233–242, 2008.
- [31] M. Kwiatkowski and M. Pankov.
 Opposite relation on dual polar spaces and half-spin Grassmann spaces.
 Results Math., 54(3-4):301–308, 2009.

[32] M.-H. Lim.

Surjections on Grassmannians preserving pairs of elements with bounded distance.

Linear Algebra Appl., 432(7):1703–1707, 2010.

[33] M. H. Lim and J. J.-H. Tan. Preservers of matrix pairs with bounded distance. *Linear Algebra Appl.*, 422(2-3):517–525, 2007.

[34] M. H. Lim and J. J.-H. Tan. Preservers of pairs of bivectors with bounded distance. *Linear Algebra Appl.*, 430(1):564–573, 2009.

[35] A. Naumowicz and K. Prażmowski.

On Segre's product of partial line spaces and spaces of pencils.

J. Geom., 71:128–143, 2001.

[36] M. Pankov.

Grassmannians of Classical Buildings, volume 2 of Algebra and Discrete Mathematics. World Scientific, Singapore, 2010.

[37] F. D. Veldkamp.

Projective ring planes and their homomorphisms.

In R. Kaya, P. Plaumann, and K. Strambach, editors, *Rings and Geometry*, pages 289–350. D. Reidel, Dordrecht, 1985.

[38] F. D. Veldkamp.

Geometry over rings.

In F. Buekenhout, editor, *Handbook of Incidence Geometry*, pages 1033–1084. Elsevier, Amsterdam, 1995.

[39] Z.-X. Wan.

Geometry of Matrices. World Scientific, Singapore, 1996.

[40] R. Westwick.

On adjacency preserving maps. *Canad. Math. Bull.*, 17:403–405, 1974. Correction, ibid. 623.