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Grassmannians

Let F be a (not necessarily commutative) field and m, n ≥ 1.

Gn+m,m(F ) denotes the Grassmannian of all m-subspaces of
the left vector space F n+m.

Two m-subspaces W1 and W2 are called adjacent if
dimW1 ∩W2 = m − 1.

We consider Gn+m,m(F ) as the set of vertices of an undirected
graph, called the Grassmann graph. Its edges are the
(unordered) pairs of adjacent m-subspaces.

We shall frequently assume m, n ≥ 2 in order to avoid a
complete graph.
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Theorem (W. L. Chow (1949) [11])

Let m, n ≥ 2. A mapping ϕ : Gn+m,m(F ) → Gn+m,m(F ) : X 7→ Xϕ

is an automorphism of the Grassmann graph if, and only if, it has
the following form:

For arbitrary m, n:

X 7→ {y ∈ F n+m | y = xσP with x ∈ X},

where P ∈ GLn+m(F ) and σ is an automorphism of F .

For n = m and fields admitting an antiautomorphism only:

X 7→ {y ∈ F n+m | yP(xσ)T = 0 for all x ∈ X},

where P is as above, σ is an antiautomorphism of F , and T
denotes transposition.
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The Matrix Approach

Each element of the Grassmannian Gn+m,m(F ) can be viewed as
the left row space of a matrix A|B with rank m, where A ∈ Fm×n

and B ∈ Fm×m, and vice versa.

Let rk(A|B) = m. Then A|B and A′|B ′ have the same row
space, if and only if, there is a T ∈ GLm(F ) with

A′ = TA and B ′ = TB .

One may consider a matrix pair (A,B) ∈ Fm×n × Fm×m with
rk(A|B) = m as left homogeneous coordinates of an element
of Gn+m,m(F ).

Some authors call Gn+m,m(F ) the point set of the projective
space of m × n matrices over F .
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An Embedding

We have an injective mapping:

Fm×n → Fm×(n+m) → Gn+m,m(F )
A 7→ A|Im 7→ left rowspace of A|Im

Here Im denotes the m ×m identity matrix over F .

Two matrices A1,A2 ∈ Fm×n are adjacent, i. e.,
rk(A1 − A2) = 1, precisely when their images in Gn+m,m(F )
are adjacent.
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Related Work

A series of results in the spirit of Chow’s theorem have been
established for various (projective) matrix spaces.
Also, the assumptions in Chow’s original theorem can be relaxed.

Original work by L. K. Hua and others (1945 and later).

Z.-X. Wan: Geometry of Matrices [39].

L.-P. Huang: Geometry of Matrices over Ring [17].

M. Pankov: Grassmannians of Classical Buildings [36].

See also: Y. Y. Cai, L.-P. Huang, W.-l. Huang, P. Šemrl,
R. Westwick, S.-W. Zou [18], [19], [20], [21], [22], [23], [24],
[28], [40].
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Towards Ring Geometry

The set Fm×m of m ×m matrices over F is a ring with unit
element Im.

The case m 6= n will not be covered by our ring geometric
approach.

All our rings are associative, with a unit element 1 6= 0 which is
preserved by homomorphisms, inherited by subrings, and acts
unitally on modules. The group of units (invertible elements) of a
ring R is denoted by R∗.
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The Projective Line over a Ring

Let R be a ring. We consider the free left R-module R2.

A pair (a, b) ∈ R2 is called admissible if (a, b) is the first row
of a matrix in GL2(R).
This is equivalent to saying that there exists (c , d) ∈ R2 such
that (a, b), (c , d) is a basis of R2.

Projective line over R :

P(R) := {R(a, b) | (a, b) admissible}

The elements of P(R) are called points.

Two admissible pairs generate the same point if, and only if,
they are left proportional by a unit in R .
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Remarks

Our approach is due to X. Hubaut [29].

P(R) may also be described as the orbit of the “starter point”
R(1, 0) under the natural right action of GL2(R) on R2.

Note that R2 may also have bases with cardinality 6= 2.
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The Distant Graph

Distant points of P(R):

R(a, b) △ R(c , d) :⇔

(

a b
c d

)

∈ GL2(R)

(P(R),△) is called the distant graph of P(R).

Non-distant points are also called neighbouring.

The relation △ is invariant under the action of GL2(R) on
P(R).

Remark

For R = Fm×m distant points correspond to complementary
subspaces of G2m,m due to GL2(R) = GL2m(F ).
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Examples: Rings with Four Elements

Ring

R = GF(4) (Galois field).

R = Z2 × Z2.

R = Z4.

R = Z2[ε], ε
2 = 0

(dual numbers over Z2).

Distant graph

#P(R) = 5
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Examples: Rings with Four Elements

Ring

R = GF(4) (Galois field).

R = Z2 × Z2.

R = Z4.

R = Z2[ε], ε
2 = 0

(dual numbers over Z2).

Distant graph

#P(R) = 9



Matrix Spaces The Projective Line over a Ring Distant Homomorphisms Conclusion

Examples: Rings with Four Elements

Ring

R = GF(4) (Galois field).

R = Z2 × Z2.

R = Z4.

R = Z2[ε], ε
2 = 0

(dual numbers over Z2).

Distant graph

#P(R) = 6
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Examples: Rings with Four Elements

Ring

R = GF(4) (Galois field).

R = Z2 × Z2.

R = Z4.

R = Z2[ε], ε
2 = 0

(dual numbers over Z2).

Distant graph

#P(R) = 6
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Properties of the Distant Relation

(P(R),△) is a complete graph ⇔ 6△ equals the identity
relation ⇔ R is a field.

The relation 6△ is an equivalence relation ⇔ R is a local ring,
i.e., R \ R∗ is an ideal of R .

A. Herzer (survey) [16].
A. Blunck, A. Herzer: Kettengeometrien [9].
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The Elementary Linear Group E2(R)

All elementary 2× 2 matrices over R , i. e., matrices of the form

(

1 t
0 1

)

,

(

1 0
t 1

)

with t ∈ R ,

generate the elementary linear group E2(R). The group GE2(R) is
the subgroup of GL2(R) generated by E2(R) and all invertible
diagonal matrices.

Lemma (P. M. Cohn [12])

A 2× 2 matrix over R is in E2(R) if, and only if, it can be written
as a finite product of matrices

E (t) :=

(

t 1
−1 0

)

with t ∈ R .
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Connectedness

Theorem (A. Blunck, H. H. [4])

Let R be any ring.

(P(R),△) is connected precisely when GL2(R) = GE2(R).

A point p ∈ P(R) is in the connected component of R(1, 0) if,
and only if, it can be written as R(a, b) with

(a, b) = (1, 0) · E (tn) · E (tn−1) · · · E (t1).

for some n ∈ N and some t1, t2, . . . , tn ∈ R.
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Connectedness (cont.)

The formula

(a, b) = (1, 0) · E (tn) · E (tn−1) · · ·E (t1)

reads explicitly as follows:

n = 0 : (a, b) = (1, 0)

n = 1 : (a, b) = (t1, 1)

n = 2 : (a, b) = (t2t1 − 1, t2)

n = 3 : (a, b) = (t3t2t1 − t3 − t1, t3t2 − 1)

...
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Stable Rank 2

A ring has stable rank 2 (or: stable range 1) if for any unimodular
pair (a, b) ∈ R2, i.e., there exist u, v with au + bv ∈ R∗, there is a
c ∈ R with

ac + b ∈ R∗
.

Surveys by F. Veldkamp [37] and [38].

H. Chen: Rings Related to Stable Range Conditions [10].



Matrix Spaces The Projective Line over a Ring Distant Homomorphisms Conclusion

Examples

Rings of stable rank 2 are ubiquitous:

local rings;

matrix rings over fields;

finite-dimensional algebras over commutative fields.

direct products of rings of stable rank 2.

Z is not of stable rank 2: Indeed, (5, 7) is unimodular, but no
number 5c + 7 is invertible in Z.
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Examples

P(R) is connected if . . .

R is a ring of stable rank 2. Diameter ≤ 2

R is the endomorphism ring of an infinite-dimensional vector
space. Diameter 3.

R is a polynomial ring F [X ] over a field F in a central
indeterminate X . Diameter ∞.

However, in R = F [X1,X2, . . . ,Xn] with n ≥ 2 central
indeterminates there holds

(

1 + X1X2 X 2
1

−X 2
2 1− X1X2

)

∈ GL2(R) \ GE2(R).
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A Parallelism

Let △(p) be the set of all points distant to p ∈ P(R).

Points with △(p) ⊂ △(q) are called (Jacobson) parallel, in
symbols p ‖ q.

Despite its asymmetric definition, ‖ is an equivalence relation
on P(R). Hence

p ‖ q ⇔ △(p) = △(q).

The relation ‖ is invariant under the action of GL2(R) on
P(R).
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A Parallelism (cont.)

For all p ∈ P(R) holds:

p ‖ R(1, 0) ⇔ p = R(1, b) with b ∈ radR ,

i. e. the Jacobson radical of R . Indeed,

b ∈ radR ⇔

(

1 b
a 1

)

∈ GL2(R) for all a ∈ R .

All parallel classes of P(R) have cardinality # radR .

Parallel points of P(R) are non-distant.

The relations ‖ and 6△ coincide precisely when R is local.
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Example: Local Rings with Four Elements

Ring

R = Z4.

R = Z2[ε], ε
2 = 0 (dual

numbers over Z2).

Distant graph

#P(R) = 6, # radR = 2.
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Distant Homomorphisms

Given rings R and R ′ a mapping

ϕ : P(R) → P(R ′)

is said to be a distant homomorphism if

p△ q ⇒ pϕ△′ qϕ for all p, q ∈ P(R).
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Examples: The Easy Ones

Let σ : R → R ′ be a ring homomorphism. Then

ϕ : P(R) → P(R ′) : R(a, b) 7→ R ′(aσ, bσ)

is a distant homomorphism.

Let σ : R → R ′ be a ring antihomomorphism. Then the
mapping ϕ : P(R) → P(R ′) given by

R(a, b)ϕ := {(x ′, y ′) ∈ R ′2 | −x ′bσ + y ′aσ = 0}

is a distant homomorphism.

Let α ∈ GL2(R). Then

ϕ : P(R) → P(R) : R(a, b) 7→ R
(

(a, b) · α
)

=: R(a, b)α

is a distant automorphism.
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Examples: Some Ugly Ones

The following mappings ϕ : P(R) → P(R) are distant
automorphisms:

Let R be a field, and let ϕ : P(R) → P(R) be any bijection.

Let GE2(R) 6= GL2(R). With α := E (0) ∈ E2(R) define:

pϕ :=

{

pα if p is in the conneced component of R(1, 0)

p otherwise

Let radR 6= 0. With any bijection σ : radR → radR define:

pϕ :=

{

R(1, bσ) if p = R(1, b) ‖ R(1, 0)

p otherwise

Let R = F [X ] with F commutative . . .
C. Bartolone, F. Bartolozzi [2].



Matrix Spaces The Projective Line over a Ring Distant Homomorphisms Conclusion

Jordan Homomorphisms

A mapping σ : R → R ′ is called a Jordan homomorphism if it
satisfies the following conditions for all x , y ∈ R :

(x + y)σ = xσ + yσ,

(xyx)σ = xσyσxσ,

1σ = 1′.

Homomorphisms and antihomomorphisms are Jordan
homomorphisms.

Example: Let R be the direct product R2×2 ×R
2×2 and define

σ : R → R : (A,B) 7→ (A,BT).
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Theorem (C. Bartolone [1], A. Blunck, H. H. [6])

Each Jordan homomorphism σ : R → R ′ gives rise to a distant
preserving mapping which is defined on the connected component
of R(1, 0) as follows:

R(1, 0) · E (tn) · E (tn−1) · · · E (t1)

is mapped to

R ′(1′, 0′) · E (tσ
n
) · E (tσ

n−1) · · ·E (t
σ

1 ).

So, if (P(R),△) is connected, we obtain a distant homomorphism.
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Two Characterisations

Let R = Fm×m, m ≥ 1. Below we do not distinguish between the
projective line P(R) and the Grassmannian G2m,m(F ).

Theorem (A. Blunck, H. H. [7])

For all p, q ∈ P(R) the following assertions hold:

1 p△ q ⇔ The distance of p and q in the Grassmann graph
equals the diameter of this graph.

2 p and q are adjacent ⇔ There exists a point r ∈ P(R) other
than p and q such that △(r) ⊂ (△(p) ∪△(q)).

Consequently, the Grassmann graph and the distant graph on P(R)
have the same group of automorphisms.
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Chow’s Theorem for m = n

Corollary

Let m ≥ 2. A mapping

ϕ : G2m,m(F ) → G2m,m(F )

is an automorphism of the Grassmann graph if, and only if, it is
the product of a linear bijection acting on G2m,m(F ) and a
mapping which in terms of homogeneous coordinates has the form

(BA− Im,B) 7→ (BσAσ − Im,B
σ),

with σ being an automorphism or an antiautomorphism of F .
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Related Work

All distant automorphisms of projective lines over semisimple
rings (Segre products of Grassmannians) can be described
“algebraically” provided that no simple component is a field.

Similar characterisations have been established for other
spaces of matrices and spaces of linear operators.

Characterisations of mappings preserving a bounded distance.

See the papers by A. Blunck, H. H., L.-P. Huang,
W.-l. Huang, J. Kosiorek, M. Kwiatkowski, M. H. Lim,
A. Matraś, A. Naumowicz, M. Pankov, K. Prażmowski,
P. Šemrl, J. J.-H. Tan: [5], [8], [14], [15], [21], [25], [26], [27],
[30], [31], [32], [33], [34], [35].
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References

The bibliography focusses on the presented material and recent
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