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Divisible Designs

Assume that X is a finite set of points, endowed with an equivalence relation R; its
equivalence classes are called point classes. A subset Y of X is called R-transversal
if for each point class C we have

#(C ∩ Y ) ≤ 1.

Definition. A triple D = (X,B,R) is called a t-(s, k, λt)-divisible design (DD) if there
exist positive integers t, s, k, λt such that the following axioms hold:

(A) B is a set of R-transversal subsets of X , called blocks, with #B = k for all
B ∈ B.

(B) Each point class has size s.
(C) For each R-transversal t-subset Y ⊂ X there exist exactly λt blocks containing

Y .
(D) t ≤ v

s
, where v := #X .



Spera’s Construction

Theorem (A. G. Spera 1992). Let X be a finite set with v elements and R an
equivalence relation on X . Suppose, moreover, that G is a group acting on X , and
assume that the following properties hold:

• The equivalence relation R is G-invariant.
• All equivalence classes of R have the same cardinality, say s.
• The group G acts transitively on the set of R-transversal t-subsets of X for some

positive integer t ≤ v
s
.

Finally, let B0 be an R-transversal k-subset of X with t ≤ k. Then

(X,B,R) with B := BG
0

= {Bg
0
| g ∈ G}

is a t-(s, k, λt)-divisible design, where

λt :=
#G

#GB0

(
k
t

)

(
vs−1

t

)

st

, (1)

and where GB0
⊂ G denotes the setwise stabilizer of B0.



Examples

A. G. Spera, C. Cerroni, S. Giese, and R.-H. Schulz obtained many 2-DDs and 3-DDs
in this way using various geometric structures, like

• finite translation planes,

• finite analogues of Minkowski space-time,

• projective spaces over finite local algebras,

together with appropriate groups.

Cf. also D. R. Hughes (1965) for a similar construction of designs.



Projective Lines

Let R be a finite local ring with unity 1 6= 0, and denote by I := R \ R∗ its unique
maximal ideal. The projective line P(R) over R is the set of all submodules

R(a, b) ∈ R2

such that a /∈ I or b /∈ I. Hence

P(R) = {R(a, 1) | a ∈ R} ∪ {R(1, b) | b ∈ I}.

Two points p = R(a, b) and q = R(c, d) are called parallel (in symbols: p ‖ q) if

(
a b
c d

)

/∈ GL2(R).



DDs are Ubiquitous

Theorem. Spera’s construction can be carried out for

(X,R, G) :=
(
P(R), ‖,GL2(R)

)

and any transversal k-subset B0. Provided that k ≥ 3, this gives a divisible design
with parameters

t = 3, s = #I, k = #B0, v = #R + #I,

and λ3 as given by (1).

Proof. The equivalence relation ‖ is invariant under the natural action (from the right
hand side) of GL2(R) on P(R). GL2(R) acts transitively on the set of ‖-transversal
triads (ordered triples) of P(R). Thus all point classes have the same size. �

But, in order to calculate λ3 one has to know the order of the stabilizer GL2(R)B0
.



Chain Geometries

Suppose that K ⊂ R is a subfield of R. As P(K) ⊂ P(R) is ‖-transversal, it can be
chosen as base block B0.

• Let K be in the centre of R, i. e., R is an algebra over K. Then a chain geom-
etry Σ(K, R) is obtained by Spera’s construction. Cf. W. Benz (1972), A. Herzer
(1995). Hence

λ3 = 1.

• Let K be arbitrary. Then a generalized chain geometry Σ(K, R) is obtained by
Spera’s construction. Cf. C. Bartolone (1989), A. Blunck and H. H. (2000). Let

N = {n ∈ R∗ | n−1K∗n = K∗}

be the normalizer of K∗ in R∗. After some calculations, one obtains

λ3 =
#R∗

#N
.



Twisted Dual Numbers
Let R be a finite local ring and K a subfield such that dimK R = 2. Assume that R is
not a field. Then there exists an element ε ∈ R \ R∗ such that

R = {x + yε | x, y ∈ K} and ε2 = 0.

Furthermore, there is an automorphism σ : K → K satisfying

εx = xσε for all x ∈ K.

Conversely, each automorphism σ of K gives rise to such a ring K(ε; σ) of twisted
dual numbers.

General assumption. R = K(ε; σ) is given as follows:

K = GF(q) and xσ = xm for all x ∈ K.

Hence q is a power of m, F := Fix(σ) = GF(m), and #R = q2.



The Normalizer

Lemma. Let N be the normalizer of K∗ in R∗. Then

N =

{

R∗ if σ = id,

K∗ if σ 6= id .

Proof. For σ = id the assertion is clear. So let σ 6= id and n = a + bε ∈ N with
a, b ∈ K. Take an element x ∈ K with x 6= xσ. Using

n−1 = a−1 − a−1b(aσ)−1ε

we get n−1xn = x + a−1b(x − xσ)ε, which must belong to K since n ∈ N . Because
of our choice of x we have x − xσ 6= 0, whence b = 0, as desired. �



Main Result

Theorem. The chain geometry Σ(K, R) = (P,B, ‖) is a transversal 3-divisible design
with parameters v = q2 + q, s = q, k = q + 1, and

λ3 =

{

1 if σ = id,

q if σ 6= id .

Remarks.

• Blocks are called chains or, more precisely, K-chains.

• For σ = id the well known Miquelian Laguerre plane over the K-algebra of dual
numbers is obtained.

• For σ 6= id the parameter λ3 does not depend on m.



Intersection of Blocks

Proposition. Let p1, p2, p3 ∈ P(R) be mutually non-parallel, let T be the intersection
of all blocks through p1, p2, p3, and let x ∦ p1, p2, p3. Then the number of blocks
through p1, p2, p3, x is

• q, if x ∈ T ,
• 0, if x /∈ T , but x ‖ x′ for some x′ ∈ T ,
• 1, otherwise.

Furthermore, the subset T is an F -chain, i. e. the image of P(F ) under the action of
GL2(R).

p1 p2 p3







q

︸ ︷︷ ︸

m + 1



Final Remarks

• Let q be even and m = 2, i.e., xσ = x2 for all x ∈ K. By the previous Proposition,
the 3-DD Σ(K, R) is even a 4-DD with

λ4 = 1.

• Let σ 6= id. The point set of the DD (chain geometry) Σ(K, R) can be identified
with a cone in PG(4, q), but without its (one-point) vertex. The base of this cone
depends on the automorphism σ.
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