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The Segre variety S1,1,1(2)

Let Vk , k ∈ {1,2,3}, be two-dimensional vector spaces over
F2 = GF(2).

P(Vk ) = PG(1,2) are projective lines over F2.

The non-zero decomposable tensors of
⊗3

k=1 Vk determine the
Segre variety

S1,1,1(2) =
{

a1 ⊗ a2 ⊗ a3 | ak ∈ Vk \ {0}
}

with ambient projective space P
(⊗3

k=1 Vk
)
= PG(7,2).

(Over F2 we identify projective points and non-zero vectors.)
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Orbits

The ambient PG(7,2) of the Segre S1,1,1(2) =: S has
255 points that fall into five orbits O1,O2, . . . ,O5 under the
subgroup GS < GL(8,2) stabilising S.

S has 27 points and
contains 27 lines.

O5: 27 points of the Segre S,
O2: 54 points on bisecants (sums of
two points of S at distance 2),
O4: 54 points on the 27
distinguished tangents of S,
O3: 108 points on bisecants (sums
of two points of S at distance 3),
O1: 12 points (sums of triads of S at
distance 3).
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Orbits (cont.)

The results from the previous slide and generalisations thereof
were established by various authors:

D. Glynn, T. A. Gulliver, J. G. Maks, and M. K. Gupta
(2006) [2].

B. Odehnal, M. Saniga, and H. H. (2012) [3].

R. Shaw, N. Gordon, and H. H. (2012) [5].

M. R. Bremner and St. G. Stavrou (2013) [1].

M. Lavrauw and J. Sheekey (2014) [4].
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Orbits (cont.)

Two sets deserve special mention:

The union O2 ∪ O4 ∪ O5 (135 points) is a hyperbolic
quadric H7 of PG(7,2).

The orbit O1 (12 points) comprises a tetrad of lines
spanning PG(7,2).
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Basic assumption

We start out from a(ny) direct sum decomposition

V8 = Va ⊕ Vb ⊕ Vc ⊕ Vd

of V8 := V (8,2) into 2-dimensional spaces Va,Vb,Vc ,Vd .

So we obtain the tetrad of lines

L4 := {La,Lb,Lc ,Ld},

where
Lh := P(Vh), h ∈ {a,b, c,d};

P(V8) = PG(7,2) is the span of this tetrad of lines.
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The stabiliser group G(L4)

Let G(L4) be that subgroup of GL(8,2) which preserves the
foregoing tetrad L4 of lines.

The group G(L4) has the semi-direct product structure

G(L4) = N o Sym(4),

where

N := GL(Va)×GL(Vb)×GL(Vc)×GL(Vd),

and where
Sym(4) = Sym({a,b, c,d}).
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Line weight

Let us define the line-weight lw(p) of a point p ∈ PG(7,2) as
follows: Write

p = va + vb + vc + vd with vh ∈ Vh, h ∈ {a,b, c,d}.

Then
lw(p) = r

whenever precisely r of the vectors va, vb, vc , vd are non-zero.
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Orbits

The 255 points of PG(7,2) fall into just four G(L4)-orbits ω1, ω2,
ω3, ω4, where

ωr = {p ∈ PG(7,2) | lw(p) = r}.

The lengths of these orbits are accordingly

|ω1| = 12, |ω2| =
(4

2

)
× 32 = 54,

|ω3| =
(4

3

)
× 33 = 108, |ω4| = 34 = 81.
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The symplectic form of L4

There is a unique symplectic form B on V8 such that the

subspaces Va,Vb,Vc ,Vd are hyperbolic 2-dimensional spaces

which are pairwise orthogonal.
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The quadric of L4

The tetrad L4 also determines a particular non-degenerate
quadric Q in PG(7,2). Such a quadric Q is uniquely
determined by the two conditions

(i) it has equation Q(x) = 0 such that the quadratic form Q
polarises to give the foregoing symplectic form B;

(ii) the 12-set of points

ω1 = La ∪ Lb ∪ Lc ∪ Ld ⊂ PG(7,2)

supporting the tetrad L4 is external to Q.

The quadric Q is seen to be ω2 ∪ ω4 (54 + 81 = 135 points),
and so it is hyperbolic.



Background results Tetrads of Lines References

The quadric of L4

The tetrad L4 also determines a particular non-degenerate
quadric Q in PG(7,2). Such a quadric Q is uniquely
determined by the two conditions

(i) it has equation Q(x) = 0 such that the quadratic form Q
polarises to give the foregoing symplectic form B;

(ii) the 12-set of points

ω1 = La ∪ Lb ∪ Lc ∪ Ld ⊂ PG(7,2)

supporting the tetrad L4 is external to Q.

The quadric Q is seen to be ω2 ∪ ω4 (54 + 81 = 135 points),
and so it is hyperbolic.



Background results Tetrads of Lines References

The quadric of L4

The tetrad L4 also determines a particular non-degenerate
quadric Q in PG(7,2). Such a quadric Q is uniquely
determined by the two conditions

(i) it has equation Q(x) = 0 such that the quadratic form Q
polarises to give the foregoing symplectic form B;

(ii) the 12-set of points

ω1 = La ∪ Lb ∪ Lc ∪ Ld ⊂ PG(7,2)

supporting the tetrad L4 is external to Q.

The quadric Q is seen to be ω2 ∪ ω4 (54 + 81 = 135 points),
and so it is hyperbolic.



Background results Tetrads of Lines References

The normal subgroup G81 of G(L4)

For each h ∈ {a,b, c,d} let us choose an element ζh ∈ GL(Vh)
of order 3 that effects a cyclic permutation of the points of Lh.

We define

Aijkl := (ζa)
i ⊕ (ζb)

j ⊕ (ζc)
k ⊕ (ζd)

l for i , j , k , l ∈ {0,1,2}.

Then
G81 :=

{
Aijkl | i , j , k , l ∈ {0,1,2}

}
is a normal subgroup of G(L4).

Observe that ω4 is a single G81-orbit.
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A GF(3) view of G81

By viewing 0,1,2 as the elements of F3 = GF(3) the map

(F3)
4 → G81 : ijkl 7→ Aijkl

is an isomorphism of the additive group (F3)
4 onto the

multiplicative group G81.

Example: The elements I = A0000, A1000, and A2
1000 = A2000

constitute that subgroup of G81 which fixes pointwise each of
the three lines Lb, Lc , and Ld .
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Z3 subgroups of G81

Any Z3 subgroup of G81 is of the form {I,Aσ,A2σ} for some
non-zero σ ∈ (F3)

4 and vice versa. Thus:

The group G81 contains 40 subgroups ∼= Z3 which are in
bijective correspondence with the 40 points of the projective
space PG(3,3).

Under the action by conjugacy of G(L4) on G81 the particular
4-set of Z3 subgroups corresponding to

T := {〈1000〉, 〈0100〉, 〈0010〉, 〈0001〉}

is fixed. So T is a G(L4)-distinguished tetrahedron of reference
in PG(3,3).
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Triplets of 27-sets

Let us choose a point u ∈ ω4. Consider any Z3 × Z3 × Z3
subgroup H < G81.

If G81 = H ∪ H ′ ∪ H ′′ denotes the decomposition of G81 into the
cosets of H then we define subsets of ω4 by

RH := {hu | h ∈ H},
R′

H := {h′u | h′ ∈ H ′},
R′′

H := {h′′u | h′′ ∈ H ′′}.
(1)

Each such subgroup H < G81 gives rise to a decomposition

ω4 = RH ∪R′
H ∪R

′′
H

of ω4 into a triplet of 27-sets.
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Classification of subgroups of G81

Theorem

The normal subgroup G81 < G(L4) contains precisely 40
subgroups H ∼= Z3 × Z3 × Z3. These fall into four conjugacy
classes of G(L4), of respective sizes 8,16,12,4.

Proof. Any such H corresponds to one of the 40 projective
planes in PG(3,3). These planes fall into four kinds P0, P1, P2,
P3, where Pr denotes those planes which contain precisely r of
the vertices of the tetrahedron T . From

|P0| = 8, |P1| = 16, |P2| = 12, |P3| = 4

the theorem now follows, since planes of the same kind are
seen to correspond to conjugate Z3 × Z3 × Z3 subgroups.
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Segre varieties from L4

Theorem

A triplet of 27-sets {RH ,R′
H ,R

′′
H} in (1) which arises from a

Z3 × Z3 × Z3 subgroup H will consist of Segre varieties S1,1,1(2)
if, and only if, the corresponding projective plane in PG(3,3) is
of kind P0.

Our approach yields precisely 24 copies of a Segre variety
S1,1,1(2) which are contained in ω4.
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Final Remarks

The five GS-orbits are related to the four G(L4)-orbits in the
following simple manner:

ω1 = O1, ω2 = O2, ω3 = O3, ω4 = O4 ∪ O5 = S ∪ S ′ ∪ S ′′.

The article [6] contains a detailed description of the
non-Segre-27-sets and their intersection properties.
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