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Divisible Designs

Assume that X is a finite set of points, endowed with an equivalence relation R; its
equivalence classes are called point classes. A subset Y of X is called R-transversal
if for each point class C we have

#(C ∩ Y ) ≤ 1.

Let us recall the following:

Definition. A triple D = (X,B,R) is called a t-(s, k, λt)-divisible design (DD) if there
exist positive integers t, s, k, λt such that the following axioms hold:

(A) B is a set of R-transversal subsets of X, called blocks, with #B = k for all
B ∈ B.

(B) Each point class has size s.
(C) For each R-transversal t-subset Y ⊂ X there exist exactly λt blocks containing

Y .
(D) t ≤ v

s
, where v := #X.



Constructions of t-DDs

• Construction of A. G. Spera (1992):

Uses a finite set X endowed with an equivalence relation on X, a base block
B ⊂ X, and a group G acting on X such that . . .

C. Cerroni, S. Giese, R. H. Schulz, and A. G. Spera obtained 2-DDs and 3-DDs in
this way.

Cf. D. R. Hughes (1965).

• Construction of S. Giese (2005) for t = 2:

Uses the dual space of PG(n + 1, q), a hyperplane H of PG(n + 1, q), an origin
(a point off H), a starter 2-DD embedded in the dual space such that . . . , and the
group of translations with respect to H.



t-Lifting
Theorem 1. Let X be a finite set, let t be a fixed positive integer, let (X,B,R), where
X ⊂ X, be a t-(s, k, λt)-divisible design, and let G be a group acting on X. Suppose,
furthermore, that the following properties hold:

1. For each x ∈ X there is a unique element of X, say x̂, such that xG = x̂G.

. . .

5. All setwise stabilizers GB, where B ∈ B is any block, have the same cardinality.

Define

B := BG = {Bg | B ∈ B, g ∈ G} and R := {(x, x′) ∈ X × X | (x̂, x̂′) ∈ R}.

Then (X,B,R) is a t-(s, k, λt)-divisible design, where

s = (#xG)s, λt := λt

#GY

#GB

with arbitrary x, Y , and B as above.



Geometric examples
Theorem 2. Let t be a fixed positive integer and let (X,B,R) be a t-(s, k, λt) divisible
design with the following properties:

1. X is a set of v points generating a finite projective space PG(d, q).

2. All R-transversal t-subsets of X are independent in PG(d, q).

3. All blocks in B generate subspaces of PG(d, q) with the same dimension β − 1.

Then for each non-negative integer c there exists a t-(qcs, k, qc(β−t)λt)-divisible de-
sign with qcv points.

Proof. Let n := d + c. Consider in PG(n, q) the cone with base X, whose vertex is a
PG(c − 1, q) skew to PG(d, q), and the group G of all matrices

(
Id+1 M

0 Ic

)
∈ GLn+1(q).

Put X := cone \ vertex. Now Theorem 1 can be applied. ¤



Small Witt design

The small Witt design W12 is a 5-(1, 6, 1)-DD (i.e. a design) with 12 points. By a result
of H. S. M. Coxeter (1958), W12 can be embedded in PG(5, 3) in such a way that the
following properties hold:

(i) The point set X of W12 generates PG(5, 3).

(ii) All 5-subsets of X are independent.

(iii) All blocks span hyperplanes of PG(5, 3).

We can apply Theorem 2 to construct 5-(3c, 6, 1)-DDs from W12 and (disregarding
the blocks of W12) transversal 5-(3c, 12, 3c)-DDs, each with with 12 · 3c points.



Large Witt design

The large Witt design W24 is a 5-(1, 8, 1)-DD (i.e. a design) with 24 points. By a result
of J. A. Todd (1959), W24 can be embedded in PG(11, 2) in such a way that the
following properties hold:

(i) The point set X of W24 generates PG(11, 2).

(ii) All 5-subsets of X are independent.

(iii) All blocks span 6-dimensional subspaces of PG(11, 2).

We can apply Theorem 2 to construct 5-(2c, 8, 1)-DDs from W24 and (disregarding
the blocks of W24) transversal 5-(2c, 24, 37c)-DDs, each with 24 · 2c points.



Veronese varieties

A Veronese variety Vm,t−1 is the image of PG(m, q) under the Veronese mapping

PG(m, q) → PG(d, q) with d =

(
m + t − 1

m

)
− 1, t ≥ 2.

The Veronesean Vm,t−1 has k := qm + qm−1 + · · · + 1 points and can be considered
as a t-design with just one block. The following properties hold:

(i) The Veronesean Vm,t−1 generates PG(d, q) if, and only if, t ≤ q + 1
(G. Tallini, 1961).

(ii) All t-subsets of X are independent.

For any t ≥ 2 there is a prime power q such that t ≤ q + 1.

So, we can apply Theorem 2 to construct transversal t-(qc, k, qc(d−t+1))-DDs.



Final remarks

• Also other point sets like elliptic quadrics, caps, . . . can be used to construct
transversal DDs.

• In affine terms, the DDs arising from Veroneseans are closely related with the
interpolation formula of Lagrange.
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