Lifting of Divisible Designs

Joint work with Andrea Blunck (Hamburg) and Corrado Zanella (Vicenza)

TECHNISCHE
UNIVERSITÄTHANS HAVLICEKTUUFORSCHUNGSGRUPPEDIFFERENTIALGEOMETRIE UND
VIVERSITY OF
TECHNOLOGYDIFFERENTIALGEOMETRIE UND
GEOMETRISCHE STRUKTURENDIFFERENTIALGEOMETRIE UND
CEOMETRISCHE STRUKTURENINSTITUT FÜR DISKRETE MATHEMATIK UND GEOMETRIEDIFFERENTIALGEOMETRIE UND
GEOMETRISCHE STRUKTURENInstitut für Diskrete Mathematik und GeometrieDIFFERENTIALGEOMETRIE UND
GEOMETRISCHE STRUKTURENHavicek@geometrie.tuwien.ac.at

Divisible Designs

Assume that X is a finite set of *points*, endowed with an equivalence relation \mathcal{R} ; its equivalence classes are called *point classes*. A subset Y of X is called \mathcal{R} -transversal if for each point class C we have

$$#(C \cap Y) \le 1.$$

Let us recall the following:

Definition. A triple $\mathcal{D} = (X, \mathcal{B}, \mathcal{R})$ is called a *t*-(*s*, *k*, λ_t)-*divisible design* (DD) if there exist positive integers *t*, *s*, *k*, λ_t such that the following axioms hold:

- (A) \mathcal{B} is a set of \mathcal{R} -transversal subsets of X, called *blocks*, with #B = k for all $B \in \mathcal{B}$.
- (B) Each point class has size *s*.
- (C) For each \mathcal{R} -transversal *t*-subset $Y \subset X$ there exist exactly λ_t blocks containing *Y*.

(D)
$$t \leq \frac{v}{s}$$
, where $v := \#X$.

Constructions of *t*-DDs

• Construction of A. G. Spera (1992):

Uses a finite set *X* endowed with an equivalence relation on *X*, a base block $B \subset X$, and a group *G* acting on *X* such that . . .

C. Cerroni, S. Giese, R. H. Schulz, and A. G. Spera obtained 2-DDs and 3-DDs in this way.

Cf. D. R. Hughes (1965).

• Construction of S. Giese (2005) for t = 2:

Uses the dual space of PG(n + 1, q), a hyperplane *H* of PG(n + 1, q), an origin (a point off *H*), a starter 2-DD embedded in the dual space such that ..., and the group of translations with respect to *H*.

t-Lifting

. . .

Theorem 1. Let *X* be a finite set, let *t* be a fixed positive integer, let $(\overline{X}, \overline{\mathcal{B}}, \overline{\mathcal{R}})$, where $\overline{X} \subset X$, be a t- $(\overline{s}, k, \overline{\lambda}_t)$ -divisible design, and let *G* be a group acting on *X*. Suppose, furthermore, that the following properties hold:

1. For each $x \in X$ there is a unique element of \overline{X} , say \hat{x} , such that $x^G = \hat{x}^G$.

5. All setwise stabilizers $G_{\overline{B}}$, where $\overline{B} \in \overline{B}$ is any block, have the same cardinality. Define

$$\mathcal{B} := \overline{\mathcal{B}}^G = \{ \overline{B}^g \mid \overline{B} \in \overline{\mathcal{B}}, g \in G \} \text{ and } \mathcal{R} := \{ (x, x') \in X \times X \mid (\widehat{x}, \widehat{x}') \in \overline{\mathcal{R}} \}.$$

Then $(X, \mathcal{B}, \mathcal{R})$ is a t- (s, k, λ_t) -divisible design, where

$$s = (\#\overline{x}^G)\overline{s}, \ \lambda_t := \overline{\lambda}_t \frac{\#G_{\overline{Y}}}{\#G_{\overline{B}}}$$

with arbitrary \overline{x} , \overline{Y} , and \overline{B} as above.

Geometric examples

Theorem 2. Let *t* be a fixed positive integer and let $(\overline{X}, \overline{\mathcal{B}}, \overline{\mathcal{R}})$ be a t- $(\overline{s}, k, \overline{\lambda}_t)$ divisible design with the following properties:

- 1. \overline{X} is a set of \overline{v} points generating a finite projective space PG(d,q).
- 2. All $\overline{\mathcal{R}}$ -transversal *t*-subsets of \overline{X} are independent in PG(d, q).
- 3. All blocks in $\overline{\mathcal{B}}$ generate subspaces of PG(d,q) with the same dimension $\beta 1$.

Then for each non-negative integer c there exists a $t - (q^c \overline{s}, k, q^{c(\beta-t)} \overline{\lambda}_t)$ -divisible design with $q^c \overline{v}$ points.

Proof. Let n := d + c. Consider in PG(n,q) the cone with base \overline{X} , whose vertex is a PG(c-1,q) skew to PG(d,q), and the group G of all matrices

$$\left(\begin{array}{cc} I_{d+1} & M\\ 0 & I_c \end{array}\right) \in \mathrm{GL}_{n+1}(q).$$

Put $X := \text{cone} \setminus \text{vertex}$. Now Theorem 1 can be applied.

The *small Witt design* W_{12} is a 5-(1,6,1)-DD (i.e. a design) with 12 points. By a result of H. S. M. Coxeter (1958), W_{12} can be embedded in PG(5,3) in such a way that the following properties hold:

- (i) The point set \overline{X} of W_{12} generates PG(5,3).
- (ii) All 5-subsets of \overline{X} are independent.

(iii) All blocks span hyperplanes of PG(5,3).

We can apply Theorem 2 to construct $5-(3^c, 6, 1)$ -DDs from W_{12} and (disregarding the blocks of W_{12}) transversal $5-(3^c, 12, 3^c)$ -DDs, each with with $12 \cdot 3^c$ points.

The *large Witt design* W_{24} is a 5-(1,8,1)-DD (i.e. a design) with 24 points. By a result of J. A. Todd (1959), W_{24} can be embedded in PG(11,2) in such a way that the following properties hold:

- (i) The point set \overline{X} of W_{24} generates PG(11, 2).
- (ii) All 5-subsets of \overline{X} are independent.

(iii) All blocks span 6-dimensional subspaces of PG(11, 2).

We can apply Theorem 2 to construct $5-(2^c, 8, 1)$ -DDs from W_{24} and (disregarding the blocks of W_{24}) transversal $5-(2^c, 24, 3^{7c})$ -DDs, each with $24 \cdot 2^c$ points.

A Veronese variety $\mathcal{V}_{m,t-1}$ is the image of PG(m,q) under the Veronese mapping

$$\operatorname{PG}(m,q) \to \operatorname{PG}(d,q)$$
 with $d = \binom{m+t-1}{m} - 1, t \ge 2.$

The Veronesean $\mathcal{V}_{m,t-1}$ has $k := q^m + q^{m-1} + \cdots + 1$ points and can be considered as a *t*-design with just one block. The following properties hold:

- (i) The Veronesean $\mathcal{V}_{m,t-1}$ generates PG(d,q) if, and only if, $t \leq q+1$ (G. Tallini, 1961).
- (ii) All *t*-subsets of \overline{X} are independent.

For any $t \ge 2$ there is a prime power q such that $t \le q+1$.

So, we can apply Theorem 2 to construct transversal $t-(q^c, k, q^{c(d-t+1)})$ -DDs.

- Also other point sets like elliptic quadrics, caps, ... can be used to construct transversal DDs.
- In affine terms, the DDs arising from Veroneseans are closely related with the interpolation formula of Lagrange.

A. Blunck, H. Havlicek, and C. Zanella: Lifting of divisible designs. *Designs, Codes and Cryptography* (to appear).