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Basic notions

Let P3(K) be the 3-dimensional projective space over a commutative field K.

Given a homogeneous polynomial g(X) ∈ K[X] = K[X0, X1, X2, X3] then

V
(
g(X)

)
:=

{
Kp ∈ P3(K) | g(p) = 0

}

denotes the set of K-rational points of the variety given by this form.

We regard ω := V(X0) as the plane at infinity.
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Cayley’s ruled cubic surface

The Cayley surface is given by F := V
(
f(X)

)
, where

f(X) := X0X1X2 − X3

1
− X2

0
X3. (1)

The parametrization

K2 → P3(K) : (u1, u2) 7→ K(1, u1, u2, u1u2 − u3

1
)T =: P (u1, u2) (2)

is injective, and its image coincides with F \ ω (the affine part of F ).
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Two pictures
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Automorphic collineations

The set of all matrices

Ma,b,c :=





1 0 0 0
a c 0 0
b 3 ac c2 0

ab − a3 bc ac2 c3



 (3)

where a, b ∈ K and c ∈ K \ {0} is a group, say G(F ), under multiplication.

Each matrix in G(F ) leaves invariant the cubic form f(X) to within the factor c3.
Consequently, the group G(F ) acts on F as a group of projective collineations.

Theorem 1. There are no automorphic projective collineations of the Cayley

surface F other than the ones given by (3) if, and only if, |K| ≥ 4.
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A distance function on F \ ω

From now on we shall assume |K| ≥ 4.

We define a function

δ : (F \ ω) × (F \ ω) → K ∪ {∞}

as follows. Let A = P (u1, u2) and B = P (v1, v2), where u1, u2, v1, v2 ∈ K.

• u1 = v1 ⇔ A, B are on a common generator of F : δ(A, B) := ∞
(A ‖ B . . . parallel points)

• u1 6= v1, AB ∩ F =: {A, B, C}, AB ∩ ω := {I}:

δ(A, B) := CR(C, B, A, I) =
2u2

1
− u2 − u1v1 + v2 − v2

1

(u1 − v1)2
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Properties of the distance function

The following properties hold for all A, B ∈ F \ ω:

• δ(A, A) = ∞.

• There exists a point C ∈ F \ ω with C 6= A and δ(A, C) = ∞.

• δ(A, B) = 1 − δ(B, A) (with 1 −∞ := ∞).

• δ(A, B) ∈ {0, 1} ⇔ AB is a tangent of F .

H. Brauner (1964), K = R using differential geometry and Lie groups:

δ̂(A, B) := 3

2

(
1

2
− δ(A, B)

)
−1

, δ̂(A, A) = 0, and δ̂(A, B) = −δ̂(B, A).
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Circles

Given a point A ∈ F \ ω and an element ρ ∈ K ∪ {∞} we define the circle with

midpoint A and radius ρ in the obvious way as

C(A, ρ) := {Y ∈ F \ ω | δ(A, Y ) = ρ}.

By the extended circle E(A, ρ) we mean the circle C(A, ρ) together with its
midpoint A.
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A family of curves

For all α, β, γ ∈ K the rationally parameterized curve

Rα,β,γ :=
{
K(1, t, α + βt + (γ + 1)t2, αt + βt2 + γt3)T | t ∈ K ∪ {∞}

}
(4)

is lying on F . It is

• a parabola for γ = 0,
• a planar cubic for γ = −1,
• a twisted cubic parabola (i.e. a twisted cubic having the plane at infinity as

an osculating plane) otherwise.

Remark. F \ ω together with the affine traces of the curves (4) is isomorphic
to the affine chain geometry on the ring K[ε] of dual numbers over K. An
isomorphism is given by P (u1, u2) 7→ u1 + εu2.
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Description of extended circles

Proposition 2. Suppose that a point A = P (a1, a2), a1, a2 ∈ K, and an

element ρ ∈ K ∪ {∞} are given.

• If ρ ∈ K then the extended circle E(A, ρ) equals the set of affine points

of Rα,β,γ, where

α := (ρ − 2)a2

1
+ a2, β := (1 − 2ρ)a1, γ := ρ.

• If ρ = ∞ then C(A, ρ) = E(A, ρ) is the unique generator of F through

A, but without its point at infinity.
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Proposition 3. Given a curve Rα,β,γ, with α, β, γ ∈ K, there are three

possibilities.

(a) 1− 2γ 6= 0 : Rα,β,γ \ω coincides with the extended circle E(A, ρ), where

A := P

(
β

1 − 2γ
, α −

(γ − 2)β2

(1 − 2γ)2

)
and ρ := γ.

(b) 1 − 2γ = 0 6= β : Rα,β,γ \ ω is not an extended circle.

(c) 1 − 2γ = 0 = β : Rα,β,γ \ ω is an extended circle E(A, 1

2
) for all points

A ∈ Rα,β,γ \ ω.

CharK 6= 2: All cases occur.

CharK = 2: 1− 2γ = 1 6= 0. There are no circles with more than one midpoint.
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Transitivity of G(F )

Theorem 4. The matrix group G(F ) has the following properties:

(a) G(F ) acts on F \ ω as a group of isometries.

(b) G(F ) acts regularly on the set of antiflags of F \ ω.

(c) For each d ∈ K the group G(F ) acts regularly on the set

∆d := {(A, B) ∈ (F \ ω)2 | δ(A, B) = d}.

(d) Given A = P (u1, u2) ‖ B = P (u1, v2) and A′ = P (u′

1
, u′

2
) ‖ B′ =

P (u′

1
, v′

2
), with u1, u2, . . . , v

′

2
∈ K, the number of matrices in G(F ) map-

ping (A, B) to (A′, B′) equals the number of distinct elements c ∈ K\{0}
such that

c2(v2 − u2) = (v′

2
− u′

2
).
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All isometries

Following W. Benz an isometry of F \ ω is just a mapping µ : F \ ω → F \ ω

such that
δ(A, B) = δ

(
µ(A), µ(B)

)
for all A, B ∈ F \ ω.

Theorem 5. Each isometry µ : F \ω → F \ω is induced by a unique matrix

in G(F ). Consequently, µ is bijective and it can be extended in a unique

way to a projective collineation of P3(K) fixing the Cayley surface F .
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