#### Hans Havlicek



Research Group Differential Geometry and Geometric Structures Institute of Discrete Mathematics and Geometry

Workshop & Summer School on Finite Semifields, Padova, September 13th, 2013

Joint work with

Boris Odehnal (Vienna) and Metod Saniga (Tatranská Lomnica)

# Our Segre varieties

Let  $V_1, V_2, ..., V_m$  be  $m \ge 1$  two-dimensional vector spaces over a commutative field F.

$$\mathbb{P}(V_k) = \mathsf{PG}(1, F)$$
 are projective lines over  $F$  for  $k \in \{1, 2, \dots, m\}$ .

The non-zero decomposable tensors of  $\bigotimes_{k=1}^{m} V_k$  determine the Segre variety

$$\mathcal{S}_{\underbrace{1,1,...,1}_{m}}(F) = \mathcal{S}_{(m)}(F) = \left\{ \textit{F}\,\textit{\textbf{a}}_{1} \otimes \textit{\textbf{a}}_{2} \otimes \cdots \otimes \textit{\textbf{a}}_{m} \mid \textit{\textbf{a}}_{k} \in \textit{\textbf{V}}_{k} \setminus \{0\} \right\}$$

with ambient projective space  $\mathbb{P}(\bigotimes_{k=1}^{m} \mathbf{V}_{k}) = \mathsf{PG}(2^{m}-1, F)$ .

### **Bases**

Given a basis  $(\mathbf{e}_0^{(k)}, \mathbf{e}_1^{(k)})$  for each vector space  $\mathbf{V}_k$ ,  $k \in \{1, 2, \dots, m\}$ , the tensors

$$\mathbf{E}_{i_{1},i_{2},...,i_{m}} := \mathbf{e}_{i_{1}}^{(1)} \otimes \mathbf{e}_{i_{2}}^{(2)} \otimes \cdots \otimes \mathbf{e}_{i_{m}}^{(m)}$$
with  $(i_{1},i_{2},...,i_{m}) \in I_{m} := \{0,1\}^{m}$  (1)

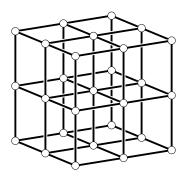
constitute a basis of  $\bigotimes_{k=1}^{m} \mathbf{V}_{k}$ .

For any multi-index  $\mathbf{i} = (i_1, i_2, \dots, i_m) \in I_m$  the *opposite* multi-index  $\mathbf{i}' \in I_m$  is characterised by

$$i_k \neq i'_k$$
 for all  $k \in \{1, 2, ..., m\}$ .

### Examples

- $S_1(F) = PG(1, F)$ .
- $S_{1,1}(F)$  is a hyperbolic quadric of PG(3, F).
- $S_{1,1,1}(2)$  has 27 points and contains precisely 27 lines (three through each point). The ambient PG(7,2) has 255 points.



### Collineations

The subgroup of  $GL(\bigotimes_{k=1}^{m} V_k)$  preserving decomposable tensors is generated by the following transformations:

$$f_1 \otimes f_2 \otimes \cdots \otimes f_m$$
 with  $f_k \in GL(\mathbf{V}_k)$  for  $k \in \{1, 2, \dots, m\}$ . (2)

$$f_{\sigma}$$
 with  $\boldsymbol{E}_{(i_1,i_2,...,i_m)} \mapsto \boldsymbol{E}_{(i_{\sigma^{-1}(1)},i_{\sigma^{-1}(2)},...,i_{\sigma^{-1}(m)})}$  for all  $\boldsymbol{i} \in I_m$ , (3) where  $\sigma \in S_m$  is arbitrary.

This subgroup induces the stabiliser  $G_{\mathcal{S}_{(m)}(F)}$  of the Segre  $\mathcal{S}_{(m)}(F)$  within the projective group  $PGL(\bigotimes_{k=1}^{m} \mathbf{V}_{k})$ .

#### Bilinear forms

Each of the vector spaces  $V_k$  admits a symplectic bilinear form

$$[\cdot,\cdot]: \mathbf{V}_k \times \mathbf{V}_k \to \mathbf{F}.$$

Consequently,  $\bigotimes_{k=1}^{m} \mathbf{V}_{k}$  is equipped with a bilinear form which is given by

$$[\mathbf{a}_1 \otimes \mathbf{a}_2 \otimes \cdots \otimes \mathbf{a}_m, \mathbf{b}_1 \otimes \mathbf{b}_2 \otimes \cdots \otimes \mathbf{b}_m] := \prod_{k=1}^m [\mathbf{a}_k, \mathbf{b}_k]$$
 for  $\mathbf{a}_k, \mathbf{b}_k \in \mathbf{V}_k$ , (4)

and extending bilinearly.

All these bilinear forms are unique up to a non-zero factor in *F*.

# Bilinear forms (cont.)

Given  $i, j \in I_m$  we have

$$[\mathbf{E}_{i}, \mathbf{E}_{i'}] = \prod_{k=1}^{m} [\mathbf{e}_{i_k}^{(k)}, \mathbf{e}_{i_k'}^{(k)}] = (-1)^m [\mathbf{E}_{i'}, \mathbf{E}_{i}] \neq 0,$$
 (5)

$$[\boldsymbol{E}_{\boldsymbol{i}}, \boldsymbol{E}_{\boldsymbol{j}}] = 0 \text{ for all } \boldsymbol{j} \neq \boldsymbol{i}'.$$
 (6)

Hence the form  $[\cdot,\cdot]$  on  $\bigotimes_{k=1}^{m} V_k$  is non-degenerate. Furthermore, it is

- symmetric when m is even and Char  $F \neq 2$ ;
- alternating otherwise (i. e., when m is odd or Char F = 2).

# The fundamental polarity

In projective terms the form  $[\cdot,\cdot]$  on  $\bigotimes_{k=1}^m \boldsymbol{V}_k$  (or any proportional one) determines the fundamental polarity of the Segre  $\mathcal{S}_{(m)}(F)$ , *i.* e., a polarity of  $\mathbb{P}(\bigotimes_{k=1}^m \boldsymbol{V}_k)$  which sends  $\mathcal{S}_{(m)}(F)$  to its dual.

#### This polarity is

- associated with a regular quadric when m is even and Char F ≠ 2;
- null otherwise (i. e., when m is odd or Char F = 2).

### The associated quadric

Let *m* be even and Char  $F \neq 2$ .

The mapping

$$Q: \bigotimes_{k=1}^{m} \boldsymbol{V}_k \to \boldsymbol{F}: \boldsymbol{X} \mapsto [\boldsymbol{X}, \boldsymbol{X}]$$

is a quadratic form with Witt index  $2^{m-1}$  and rank  $2^m$ .

The fundamental polarity of the Segre  $S_{(m)}(F)$  is the polarity of the regular quadric given by Q.

The Segre coincides with this quadric precisely when m = 2.

#### Characteristic two

Let Char F=2.

Here  $[\cdot, \cdot]$  is a symplectic bilinear form on  $\bigotimes_{k=1}^{m} \mathbf{V}_k$  for all  $m \ge 1$ , whence the fundamental polarity of the Segre  $\mathcal{S}_{(m)}(F)$  is always null.

Furthermore, (5) simplifies to

$$[\mathbf{E}_{i}, \mathbf{E}_{i'}] = \prod_{k=1}^{m} [\mathbf{e}_{0}^{(k)}, \mathbf{e}_{1}^{(k)}] = [\mathbf{E}_{i'}, \mathbf{E}_{i}] \neq 0.$$
 (7)

### A quadratic form

#### **Proposition**

Let  $m \ge 2$  and Char F = 2. Then there is a unique quadratic form

$$Q: \bigotimes_{k=1}^{m} \mathbf{V}_k \to \mathbf{F}$$

satisfying the following two properties:

- Q vanishes for all decomposable tensors.
- The symplectic bilinear form

$$[\cdot,\cdot]:\bigotimes_{k=1}^m \mathbf{V}_k \times \bigotimes_{k=1}^m \mathbf{V}_k \to \mathbf{F}$$

is the polar form of Q.

### **Proof**

We denote by  $I_{m,0}$  the set of all multi-indices  $(i_1, i_2, \dots, i_m) \in I_m$  with  $i_1 = 0$ .

In terms of our basis (1) a quadratic form is given by

$$Q: \bigotimes_{k=1}^{m} \mathbf{V}_{k} \to F: \mathbf{X} \mapsto \sum_{\mathbf{i} \in I_{m,0}} \frac{[\mathbf{E}_{\mathbf{i}}, \mathbf{X}][\mathbf{E}_{\mathbf{i}'}, \mathbf{X}]}{[\mathbf{E}_{\mathbf{i}}, \mathbf{E}_{\mathbf{i}'}]}. \tag{8}$$

Given an arbitrary decomposable tensor we have

$$Q(\mathbf{a}_{1} \otimes \cdots \otimes \mathbf{a}_{m}) = \sum_{\mathbf{i} \in I_{m,0}} \frac{[\mathbf{E}_{\mathbf{i}}, \mathbf{a}_{1} \otimes \cdots \otimes \mathbf{a}_{m}][\mathbf{E}_{\mathbf{i}'}, \mathbf{a}_{1} \otimes \cdots \otimes \mathbf{a}_{m}]}{[\mathbf{E}_{\mathbf{i}}, \mathbf{E}_{\mathbf{i}'}]}$$

$$= \sum_{\mathbf{i} \in I_{m,0}} \frac{[\mathbf{e}_{0}^{(1)}, \mathbf{a}_{1}][\mathbf{e}_{1}^{(1)}, \mathbf{a}_{1}] \cdots [\mathbf{e}_{0}^{(m)}, \mathbf{a}_{m}][\mathbf{e}_{1}^{(m)}, \mathbf{a}_{m}]}{[\mathbf{e}_{0}^{(1)}, \mathbf{e}_{1}^{(1)}] \cdots [\mathbf{e}_{0}^{(m)}, \mathbf{e}_{1}^{(m)}]}$$

$$= 2^{m-1} \frac{[\mathbf{e}_{0}^{(1)}, \mathbf{a}_{1}][\mathbf{e}_{1}^{(1)}, \mathbf{a}_{1}] \cdots [\mathbf{e}_{0}^{(m)}, \mathbf{a}_{m}][\mathbf{e}_{1}^{(m)}, \mathbf{a}_{m}]}{[\mathbf{e}_{0}^{(1)}, \mathbf{e}_{1}^{(1)}] \cdots [\mathbf{e}_{0}^{(m)}, \mathbf{e}_{1}^{(m)}]}$$

$$= 0,$$

where we used (7),# $I_{m,0} = 2^{m-1}$ ,  $m \ge 2$ , and Char F = 2. This verifies property 1.

Let  $j, k \in I$  be arbitrary multi-indices. Polarising Q gives

$$Q(\mathbf{E}_{j} + \mathbf{E}_{k}) + Q(\mathbf{E}_{j}) + Q(\mathbf{E}_{k}) = Q(\mathbf{E}_{j} + \mathbf{E}_{k}) + 0 + 0$$

$$= \sum_{i \in I_{m,0}} \frac{[\mathbf{E}_{i}, \mathbf{E}_{j} + \mathbf{E}_{k}][\mathbf{E}_{i'}, \mathbf{E}_{j} + \mathbf{E}_{k}]}{[\mathbf{E}_{i}, \mathbf{E}_{j'}]}.$$

The numerator of a summand of the above sum can only be different from zero if

$$i \in \{j', k'\}$$
 and  $i' \in \{j', k'\}$ .

These conditions can only be met for  $\mathbf{k} = \mathbf{j}'$ , whence in fact at most one summand, namely the one with  $\mathbf{i} \in \{\mathbf{j}, \mathbf{j}'\} \cap I_{m,0}$  can be non-zero.

So

$$\label{eq:continuous} \mathsf{Q}(\boldsymbol{\textit{E}}_{\boldsymbol{j}} + \boldsymbol{\textit{E}}_{\boldsymbol{k}}) + \mathsf{Q}(\boldsymbol{\textit{E}}_{\boldsymbol{j}}) + \mathsf{Q}(\boldsymbol{\textit{E}}_{\boldsymbol{k}}) = 0 = [\boldsymbol{\textit{E}}_{\boldsymbol{j}}, \boldsymbol{\textit{E}}_{\boldsymbol{k}}] \ \ \text{for} \ \ \boldsymbol{\textit{k}} \neq \boldsymbol{\textit{j}}'.$$

Irrespective of whether i = j or i = j', we have

$$Q(E_{j}+E_{j'})+Q(E_{j})+Q(E_{j'})=\frac{[E_{j},E_{j}+E_{j'}][E_{j'},E_{j}+E_{j'}]}{[E_{j},E_{j'}]}=[E_{j},E_{j'}].$$

This implies that the quadratic form Q polarises to  $[\cdot,\cdot]$ , i. e., also the second property is satisfied.

Let  $\widetilde{Q}$  be a quadratic form satisfying properties 1 and 2. Hence the polar form of  $Q - \widetilde{Q} = Q + \widetilde{Q}$  is zero.

We consider F as a vector space over its subfield  $F^{\square}$  comprising all squares in F. So

$$(Q + \widetilde{Q}) : \bigotimes_{k=1}^{m} \mathbf{V}_k \to F$$

is a semilinear mapping with respect to the field isomorphism  $F \to F^{\square} : x \mapsto x^2$ .

The kernel of  $Q + \widetilde{Q}$  is a subspace of  $\bigotimes_{k=1}^{m} V_k$  which contains all decomposable tensors and, in particular, our basis (1). Hence  $Q + \widetilde{Q}$  vanishes on  $\bigotimes_{k=1}^{m} V_k$ , and  $Q = \widetilde{Q}$  as required.  $\square$ 

### **Explicit equation**

From (8) and (7), the quadratic form Q can be written in terms of tensor coordinates  $x_i \in F$  as

$$Q\left(\sum_{j\in I_{m}}x_{j}\mathbf{E}_{j}\right) = \sum_{i\in I_{m,0}}[\mathbf{E}_{i},\mathbf{E}_{i'}]x_{i}x_{i'} = \prod_{k=1}^{m}[\mathbf{e}_{0}^{(k)},\mathbf{e}_{1}^{(k)}] \cdot \sum_{i\in I_{m,0}}x_{i}x_{i'}.$$
(9)

#### Remarks

The previous results may be slightly simplified by taking symplectic bases, *i. e.*,

$$[\mathbf{e}_0^{(k)}, \mathbf{e}_1^{(k)}] = 1$$
 for all  $k \in \{1, 2, \dots, m\}$ ,

whence also

$$[\boldsymbol{E_i}, \boldsymbol{E_{i'}}] = 1$$
 for all  $i \in I_m$ .

Proposition 1 fails to hold for m = 1: A quadratic form Q vanishing for all decomposable tensors of  $V_1$  is necessarily zero, since any element of  $V_1$  is decomposable. Hence the polar form of such a Q cannot be non-degenerate.

### Main result

#### Theorem

Let  $m \ge 2$  and Char F = 2. There exists in the ambient space of the Segre  $S_{(m)}(F)$  a regular quadric Q(F) with the following properties:

- The projective index of Q(F) is  $2^{m-1} 1$ .
- $\mathcal{Q}(F)$  is invariant under the group of projective collineations stabilising the Segre  $\mathcal{S}_{(m)}(F)$ .

### **Proof**

Any  $f_k \in GL(V_k)$ ,  $k \in \{1, 2, ..., m\}$ , preserves the symplectic form  $[\cdot, \cdot]$  on  $V_k$  up to a non-zero factor.

Any linear bijection  $f_{\sigma}$  as in (3) is a symplectic transformation of  $\bigotimes_{k=1}^{m} \mathbf{V}_{k}$ .

Hence any transformation from the stabiliser group  $G_{\mathcal{S}_{(m)}(F)}$  preserves the symplectic form (4) up to a non-zero factor.

By the proposition, also Q is invariant up to a non-zero factor under the action of  $G_{\mathcal{S}_{(m)}(F)}$ .

From (9) the linear span of the tensors  $E_j$  with j ranging in  $I_{m,0}$  is a singular subspace with respect to Q.

So the Witt index of Q equals  $\#I_{m,0} = 2^{m-1}$ , because  $[\cdot, \cdot]$  being non-degenerate implies that a greater value is impossible.

We conclude that the quadric with equation  $Q(\mathbf{X}) = 0$  has all the required properties.  $\square$ 

### Conclusion

We call Q(F) the *invariant quadric* of the Segre  $S_{(m)}(F)$ .

The case m=2 deserves special mention, as the Segre  $S_{1,1}(F)$  coincides with its invariant quadric Q(F) given by

$$Q(\sum_{j\in I_2} x_j E_j) = x_{00}x_{11} + x_{01}x_{10} = 0.$$

This result parallels the situation for Char  $F \neq 2$ .

Problem: Is there a "better" definition of the quadratic form Q?

### References

#### This presentation:



H. Havlicek, B. Odehnal, and M. Saniga.

On invariant notions of Segre varieties in binary projective spaces.

Des. Codes Cryptogr. 62 (2012), 343-356.

# References (cont.)

### Related Work (F = GF(2), m = 3):

- R. M. Green and M. Saniga.
  The Veldkamp space of the smallest slim dense near hexagon.

  Int. J. Geom. Methods Mod. Phys. 10(2) (2013), 1250082, 15 pp.
- R. Shaw, N. Gordon, and H. Havlicek. Aspects of the Segre variety  $S_{1,1,1}(2)$ . Des. Codes Cryptogr. 62 (2012), 225–239.
- R. Shaw, N. Gordon, and H. Havlicek. Tetrads of lines spanning PG(7, 2). Simon Stevin, in print.