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Our Rings

All our rings are associative, with a unit element

1 6= 0 which is preserved by homomorphisms,
inherited by subrings, and acts unitally on modules.

The group of units (invertible elements) of a ring R

is denoted by R
∗.



The Projective Line over a Ring

Let R be a ring. We consider the free left R-module R2.

A pair (a, b) ∈ R2 is called admissible if (a, b) is the first row
of a matrix in GL2(R).
This is equivalent to saying that there exists (c , d) ∈ R2 such
that (a, b), (c , d) is a basis of R2.

Projective line over R (X. Hubaut [30]):

P(R) := {R(a, b) | (a, b) admissible}

The elements of P(R) are called points.

Two admissible pairs generate the same point if, and only if,
they are left proportional by a unit in R .

Note that R2 need not have an invariant basis number: There
may also be bases with cardinality 6= 2.



The Distant Graph

Distant points of P(R):

R(a, b) △ R(c , d) :⇔

(

a b
c d

)

∈ GL2(R)

(P(R),△) is called the distant graph of P(R).

Non-distant points are also called neighbouring.

The relation △ is invariant under the action of GL2(R) on
P(R).

The group GL2(R) acts transitively on the triples of mutually
distant points of P(R).

A. Blunck, A. Herzer: Kettengeometrien [12].
A. Herzer: Chain Geometries [25].



Examples: Rings with Four Elements

Ring

R = GF(4) (Galois field).

R = Z2 × Z2.

R = Z4.

R = Z2[ε], ε2 = 0
(dual numbers over Z2).

Distant graph

#P(R) = 5
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The Elementary Linear Group E2(R)

All elementary 2 × 2 matrices over R , i. e., matrices of the form

(

1 t
0 1

)

,

(

1 0
t 1

)

with t ∈ R ,

generate the elementary linear group E2(R). The group GE2(R) is
the subgroup of GL2(R) generated by E2(R) and all invertible
diagonal matrices.

Lemma (P. M. Cohn [17])

A 2 × 2 matrix over R is in E2(R) if, and only if, it can be written
as a finite product of matrices

E (t) :=

(

t 1
−1 0

)

with t ∈ R .



Connectedness

Theorem (A. Blunck, H. H. [8])

Let R be any ring.

(P(R),△) is connected precisely when GL2(R) = GE2(R).

A point p ∈ P(R) is in the connected component of R(1, 0) if,
and only if, it can be written as R(a, b) with

(a, b) = (1, 0) · E (tn) · E (tn−1) · · · E (t1).

for some n ∈ N and some t1, t2, . . . , tn ∈ R.

See A. Blunck [6] and [7] for the orbit of R(1, 0) under certain
subgroups of GL2(R).



Connectedness (cont.)

The formula

(a, b) = (1, 0) · E (tn) · E (tn−1) · · ·E (t1)

reads explicitly as follows:

n = 0 : (a, b) = (1, 0)

n = 1 : (a, b) = (t1, 1)

n = 2 : (a, b) = (t2t1 − 1, t2) (Cf. C. Bartolone [1]).

n = 3 : (a, b) = (t3t2t1 − t3 − t1, t3t2 − 1)
...

Recursive formulas for the entries of E (tn) · E (tn−1) · · · E (t1) can
be found in A. Blunck, H. H. [9].



Stable Rank 2

A ring has stable rank 2 (or: stable range 1) if for any unimodular
pair (a, b) ∈ R2, i.e., there exist u, v with au + bv ∈ R∗, there is a
c ∈ R with

ac + b ∈ R∗.

Surveys by F. Veldkamp [40] and [41].
H. Chen: Rings Related to Stable Range Conditions [16].



Examples

Rings of stable rank 2 are ubiquitous:

local rings;

matrix rings over fields;

finite-dimensional algebras over commutative fields;

finite rings;

direct products of rings of stable rank 2.

Z is not of stable rank 2: Indeed, (5, 7) is unimodular, but no
number 5c + 7 is invertible in Z.



Examples

P(R) is connected if . . .

R is a ring of stable rank 2. Diameter ≤ 2 (C. Bartolone [1]).

R is the endomorphism ring of an infinite-dimensional vector
space. Diameter 3 (A. Blunck, H. H. [8]).

R is a polynomial ring F [X ] over a field F in a central
indeterminate X . Diameter ∞ (A. Blunck, H. H. [8]).

However, in R = F [X1,X2, . . . ,Xn] with n ≥ 2 central
indeterminates there holds

(

1 + X1X2 X 2
1

−X 2
2 1 − X1X2

)

∈ GL2(R) \ GE2(R)

(J. R. Silvester [39]).



Chain Spaces

A chain space Σ = (P, C) is an incidence structure (consisting of
points and chains) such that the following axioms hold:

1 Each point is on at least one chain. Each chain contains at
least one point.

2 There is a unique chain through any three mutually distant
points of P.
Here two points p, q ∈ P are called distant (in symbols: p △ q)
if they are distinct and on at least one common chain.

3 For each point p ∈ P the residue Σp := (△(p), Cp), where

△(p) := {q ∈ P | q △ p} and Cp := {C \ {p} | p ∈ C ∈ C},

is a partial affine space, i.e., an incidence structure resulting
from an affine space by removing some (but not all) parallel
classes of lines.



Example: The Chain Space on a Cylinder

An elliptic cylinder in the three-dimensional real affine space gives
rise to a chain space Σ = (P, C) as follows:

The set P is the set of points of the cylinder. The set of chains C
is the set of ellipses on the cylinder.

Two points are distant precisely when they
are not on a common generator.

The point set of any residue Σp arises by
removing the generator through p from P.

All residues Σp are real affine planes from
which precisely one parallel class of lines is
removed.

Any projective quadric (up to some degenerate cases) determines a
chain space in a similar way.



The Chain Geometry of an Algebra

Let R be an algebra over a commutative field K . By identifying
x ∈ K with x · 1R ∈ R we may assume K ⊂ R .

The injective mapping

P(K ) → P(R) : K (a, b) 7→ R(a, b)

is used to identify P(K ) with a subset of P(R).

The GL2(R) orbit of P(K ) is called the set of K-chains in
P(R) and will be denoted by C(K ,R).

For K 6= R the incidence structure

Σ(K ,R) := (P(R), C(K ,R))

is the chain geometry on (K ,R).



Properties of Σ(K , R)

Proposition

The chain geometry Σ(K ,R) is a chain space.

The distant relation of the chain space Σ(K ,R) coincides with
the distant relation of the projective line P(R).

All residues of Σ(K ,R) are isomorphic to the partial affine
space which arises from the vector space R over K by
removing all lines with a non-invertible direction vector.

A bijective correspondence between R and the residue at R(1, 0) is
given by a 7→ R(a, 1).

W. Benz: Vorlesungen über Geometrie der Algebren [2].
A. Herzer: Chain Geometries [25].
A. Blunck, A. Herzer: Kettengeometrien [12].



Example: The Blaschke Cylinder

The chain space on the cylinder which we
exhibited before is actually a model for
the chain geometry

Σ(R, R[ε]),

where R[ε] denotes the real dual numbers
(W. Blaschke [3]).



Example

Let R = Kn×n be the K -algebra of n × n matrices over a
commutative field K . There is the a bijective correspondence:

Chain geometry Σ(K ,R) Vector space K 2n

Point Subspace with dimension n
Chain Regulus
△ Complementarity relation

Theorem (A. Blunck and H. H. [11])

The K-chains of Σ(K ,Kn×n) are definable in terms of the distant
relation of P(Kn×n).

Actually, in [11] a more general result is shown.

Cf. also M. Pankov [38] and Z.-X. Wan [42] for relations with
Grassmann spaces and the geometry of matrices.



Subspaces of Chain Spaces

Let (P, C) be a chain space. Given any subset S of P we denote by
C(S) the set of all chains which are entirely contained in S.

The set S is called a subspace of the chain space (P, C) if it
satisfies the following conditions:

1 S has at least three mutually distant points.

2 For any three mutually distant points of S the unique chain
through them belongs to C(S).

3 (S, C(S)) is a chain space.



Subspaces of Σ(K , R)

Examples:

Any connected component of the distant graph on P(R) is a
subspace.

Let S is a K -subalgebra of R which is inversion invariant, i. e.,
for all x ∈ S ∩ R∗ holds x−1 ∈ S .
Then P(S) (embedded in P(R)) is a subspace.

There are various “sporadic” examples of subspaces.

Problem

Find all subspaces of a chain geometry Σ(K ,R) containing R(1, 0),
R(0, 1), and R(1, 1) with a neat algebraic description.



Jordan Systems of (K , R)

A Jordan System J of (K ,R) is K -subspace of R satisfying the
following conditions:

1 1 ∈ J.

2 For all x ∈ J ∩ R∗ holds x−1 ∈ J.

A Jordan system J is called strong provided that the following
extra condition holds:

3 For all x ∈ J we have

#(k ∈ K |x + k /∈ R∗) < #(k ∈ K |x + k ∈ R∗).

A. Herzer [24], H. J. Kroll [31].

See O. Loos [35] for relations with Jordan algebras and Jordan
pairs.



Examples

Let R be the algebra of n × n matrices over a commutative
field K . Then the subset of symmetric matrices is a Jordan
system. It is strong if #K > 2n.
This may be generalised to Hermitian matrices.

For commutative algebras (K ,R) with Char K 6= 2, any strong
Jordan system is necessarily a subalgebra (H. J. Kroll [32],
[33]).

Many examples, even for commutative algebras, can be found
in A. Blunck, A. Herzer [12], A. Herzer [26].

All inversion invariant additive subgroups of a field R were
determined by D. Goldstein et al. [19] and A. Mattarei (R
commutative) [36].



Properties

An essential tool in the investigation of strong Jordan systems is
Hua’s identity: Let a, b and a − b be invertible elements of a ring
R . Then a−1 − b−1 is invertible too, and there holds

(a−1 − b−1)−1 = a − a(a − b)−1a.

Theorem (A. Herzer [24])

Any strong Jordan-System J is closed under the Jordan triple
product:

xyx ∈ J for all x , y ∈ J.

Easy consequences:

xn ∈ J for all x ∈ J and all n ∈ N.

xy + yx ∈ J for all x , y ∈ J.



The Projective Line over a Strong Jordan System

Let J be a strong Jordan system in R . The projective line over J is
defined as

P(J) = {R(t2t1 − 1, t2) | t1, t2 ∈ J}.

Theorem (A. Herzer [24])

The projective line over any strong Jordan-System J in R is a
connected subspace of Σ(K ,R).

Under certain technical conditions the theorem describes all
connected subspaces containing R(1, 0), R(0, 1), and R(1, 1)
(A. Herzer [24]).

See also A. Blunck [4], H.-J. Kroll [31], [32], [33].



Final Remarks

Strong Jordan systems of the matrix algebra R = Kn×n (K
commutative) yield subsets of Grassmannians which are closed
under reguli (A. Herzer [24]).

Chain spaces on quadrics (with quadratic form Q) can be
described algebraically via strong Jordan systems of the
Clifford algebra of Q (A. Blunck [5]).

Question

Is it possible to replace the strongness condition for Jordan systems
by closedness under triple multiplication without affecting the
known results about projective lines?

Cf. [10] for an affirmative answer concerning Hermitian matrices,
using results about dual polar spaces (see P. J. Cameron [15]) and
matrix spaces (see Z.-X. Wan [42]) rather than ring geometry.
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