Projective Ring Lines and Their Generalisations

Hans Havlicek

Research Group Differential Geometry and Geometric Structures Institute of Discrete Mathematics and Geometry

Combinatorics 2012, Perugia, September 10th, 2012

Our Rings

All our rings are associative, with a unit element $1 \neq 0$ which is preserved by homomorphisms, inherited by subrings, and acts unitally on modules. The group of units (invertible elements) of a ring R is denoted by R^* .

The Projective Line over a Ring

Let R be a ring. We consider the free left R-module R^2 .

- A pair (a, b) ∈ R² is called admissible if (a, b) is the first row of a matrix in GL₂(R). This is equivalent to saying that there exists (c, d) ∈ R² such that (a, b), (c, d) is a basis of R².
- Projective line over R (X. Hubaut [30]):

 $\mathbb{P}(R) := \{R(a, b) \mid (a, b) \text{ admissible}\}\$

The elements of $\mathbb{P}(R)$ are called *points*.

- Two admissible pairs generate the same point if, and only if, they are left proportional by a unit in *R*.
- Note that R² need not have an invariant basis number: There may also be bases with cardinality ≠ 2.

The Distant Graph

• *Distant* points of $\mathbb{P}(R)$:

$$R(a,b) riangle R(c,d) :\Leftrightarrow \left(egin{array}{c} a & b \ c & d \end{array}
ight) \in \operatorname{GL}_2(R)$$

- $(\mathbb{P}(R), \triangle)$ is called the *distant graph* of $\mathbb{P}(R)$.
- Non-distant points are also called *neighbouring*.
- The relation \triangle is invariant under the action of $GL_2(R)$ on $\mathbb{P}(R)$.
- The group GL₂(R) acts transitively on the triples of mutually distant points of P(R).
- A. Blunck, A. Herzer: *Kettengeometrien* [12]. A. Herzer: *Chain Geometries* [25].

Ring

- R = GF(4) (Galois field).
- $R = \mathbb{Z}_2 \times \mathbb{Z}_2$.
- $R = \mathbb{Z}_4$.
- $R = \mathbb{Z}_2[\varepsilon], \ \varepsilon^2 = 0$ (dual numbers over \mathbb{Z}_2).

$$\#\mathbb{P}(R) = 5$$

Ring

- R = GF(4) (Galois field).
- $R = \mathbb{Z}_2 \times \mathbb{Z}_2$.
- $R = \mathbb{Z}_4$.
- R = Z₂[ε], ε² = 0 (dual numbers over Z₂).

Distant graph

 $\#\mathbb{P}(R) = 9$

Ring

• R = GF(4) (Galois field).

• $R = \mathbb{Z}_2 \times \mathbb{Z}_2$.

- $R = \mathbb{Z}_4$.
- $R = \mathbb{Z}_2[\varepsilon], \ \varepsilon^2 = 0$ (dual numbers over \mathbb{Z}_2).

Distant graph

Ring

- R = GF(4) (Galois field).
- $R = \mathbb{Z}_2 \times \mathbb{Z}_2$.
- $R = \mathbb{Z}_4$.
- $R = \mathbb{Z}_2[\varepsilon], \ \varepsilon^2 = 0$ (dual numbers over \mathbb{Z}_2).

Distant graph

The Elementary Linear Group $E_2(R)$

All elementary 2×2 matrices over *R*, i. e., matrices of the form

generate the *elementary linear group* $E_2(R)$. The group $GE_2(R)$ is the subgroup of $GL_2(R)$ generated by $E_2(R)$ and all invertible diagonal matrices.

Lemma (P. M. Cohn [17])

A 2 \times 2 matrix over R is in E₂(R) if, and only if, it can be written as a finite product of matrices

$$E(t) := \left(egin{array}{cc} t & 1 \ -1 & 0 \end{array}
ight)$$
 with $t \in R$.

Connectedness

Theorem (A. Blunck, H. H. [8])

Let R be any ring.

- $(\mathbb{P}(R), \triangle)$ is connected precisely when $GL_2(R) = GE_2(R)$.
- A point p ∈ P(R) is in the connected component of R(1,0) if, and only if, it can be written as R(a, b) with

$$(a,b)=(1,0)\cdot E(t_n)\cdot E(t_{n-1})\cdots E(t_1).$$

for some $n \in \mathbb{N}$ and some $t_1, t_2, \ldots, t_n \in R$.

See A. Blunck [6] and [7] for the orbit of R(1,0) under certain subgroups of $GL_2(R)$.

Connectedness (cont.)

The formula

$$(a,b) = (1,0) \cdot E(t_n) \cdot E(t_{n-1}) \cdots E(t_1)$$

reads explicitly as follows:

$$n = 0: (a, b) = (1, 0)$$

$$n = 1: (a, b) = (t_1, 1)$$

$$n = 2: (a, b) = (t_2t_1 - 1, t_2)$$
(Cf. C. Bartolone [1]).

$$n = 3: (a, b) = (t_3t_2t_1 - t_3 - t_1, t_3t_2 - 1)$$

Recursive formulas for the entries of $E(t_n) \cdot E(t_{n-1}) \cdots E(t_1)$ can be found in A. Blunck, H. H. [9].

A ring has *stable rank* 2 (or: stable range 1) if for any unimodular pair $(a, b) \in R^2$, i.e., there exist u, v with $au + bv \in R^*$, there is a $c \in R$ with

 $ac + b \in R^*$.

Surveys by F. Veldkamp [40] and [41]. H. Chen: *Rings Related to Stable Range Conditions* [16].

Examples

Rings of stable rank 2 are ubiquitous:

- local rings;
- matrix rings over fields;
- finite-dimensional algebras over commutative fields;
- finite rings;
- direct products of rings of stable rank 2.

 \mathbb{Z} is not of stable rank 2: Indeed, (5,7) is unimodular, but no number 5c + 7 is invertible in \mathbb{Z} .

Examples

 $\mathbb{P}(R)$ is connected if ...

- *R* is a ring of stable rank 2. Diameter ≤ 2 (C. Bartolone [1]).
- *R* is the endomorphism ring of an infinite-dimensional vector space. Diameter 3 (A. Blunck, H. H. [8]).
- *R* is a polynomial ring *F*[X] over a field *F* in a central indeterminate X. Diameter ∞ (A. Blunck, H. H. [8]).

However, in $R = F[X_1, X_2, ..., X_n]$ with $n \ge 2$ central indeterminates there holds

$$\left(egin{array}{ccc} 1+X_1X_2 & X_1^2 \ -X_2^2 & 1-X_1X_2 \end{array}
ight)\in \mathsf{GL}_2(R)\setminus\mathsf{GE}_2(R)$$

(J. R. Silvester [39]).

Chain Spaces

A *chain space* $\Sigma = (\mathbb{P}, \mathcal{C})$ is an incidence structure (consisting of *points* and *chains*) such that the following axioms hold:

- Each point is on at least one chain. Each chain contains at least one point.
- There is a unique chain through any three mutually distant points of P.
 Here two points p, q ∈ P are called *distant* (in symbols: p △ q) if they are distinct and on at least one common chain.
- **③** For each point $p \in \mathbb{P}$ the *residue* $\Sigma_p := (\triangle(p), \mathcal{C}_p)$, where

 $\triangle(p) := \{q \in \mathbb{P} \mid q \triangle p\} \text{ and } \mathcal{C}_p := \{C \setminus \{p\} \mid p \in C \in \mathcal{C}\},\$

is a *partial affine space*, i.e., an incidence structure resulting from an affine space by removing some (but not all) parallel classes of lines.

Example: The Chain Space on a Cylinder

An elliptic cylinder in the three-dimensional real affine space gives rise to a chain space $\Sigma = (\mathbb{P}, \mathcal{C})$ as follows:

The set \mathbb{P} is the set of points of the cylinder. The set of chains \mathcal{C} is the set of ellipses on the cylinder.

- Two points are distant precisely when they are not on a common generator.
- The point set of any residue Σ_p arises by removing the generator through p from P.
- All residues Σ_p are real affine planes from which precisely one parallel class of lines is removed.

Any projective quadric (up to some degenerate cases) determines a chain space in a similar way.

The Chain Geometry of an Algebra

Let *R* be an algebra over a commutative field *K*. By identifying $x \in K$ with $x \cdot 1_R \in R$ we may assume $K \subset R$.

• The injective mapping

$$\mathbb{P}(K) \to \mathbb{P}(R) : K(a, b) \mapsto R(a, b)$$

is used to identify $\mathbb{P}(K)$ with a subset of $\mathbb{P}(R)$.

- The $GL_2(R)$ orbit of $\mathbb{P}(K)$ is called the set of *K*-chains in $\mathbb{P}(R)$ and will be denoted by $\mathcal{C}(K, R)$.
- For $K \neq R$ the incidence structure

$$\Sigma(K,R) := (\mathbb{P}(R), \mathcal{C}(K,R))$$

is the *chain geometry* on (K, R).

Properties of $\Sigma(K, R)$

Proposition

- The chain geometry $\Sigma(K, R)$ is a chain space.
- The distant relation of the chain space Σ(K, R) coincides with the distant relation of the projective line P(R).
- All residues of Σ(K, R) are isomorphic to the partial affine space which arises from the vector space R over K by removing all lines with a non-invertible direction vector.

A bijective correspondence between R and the residue at R(1,0) is given by $a \mapsto R(a,1)$.

W. Benz: Vorlesungen über Geometrie der Algebren [2]. A. Herzer: Chain Geometries [25].

A. Blunck, A. Herzer: Kettengeometrien [12].

Example: The Blaschke Cylinder

The chain space on the cylinder which we exhibited before is actually a model for the chain geometry

 $\Sigma(\mathbb{R},\mathbb{R}[\varepsilon]),$

where $\mathbb{R}[\varepsilon]$ denotes the real dual numbers (W. Blaschke [3]).

Example

Let $R = K^{n \times n}$ be the K-algebra of $n \times n$ matrices over a commutative field K. There is the a bijective correspondence:

Chain geometry $\Sigma(K, R)$	Vector space K^{2n}
Point	Subspace with dimension <i>n</i>
Chain	Regulus
Δ	Complementarity relation

Theorem (A. Blunck and H. H. [11])

The K-chains of $\Sigma(K, K^{n \times n})$ are definable in terms of the distant relation of $\mathbb{P}(K^{n \times n})$.

Actually, in [11] a more general result is shown.

Cf. also M. Pankov [38] and Z.-X. Wan [42] for relations with Grassmann spaces and the geometry of matrices.

Let $(\mathbb{P}, \mathcal{C})$ be a chain space. Given any subset \mathbb{S} of \mathbb{P} we denote by $\mathcal{C}(\mathbb{S})$ the set of all chains which are entirely contained in \mathbb{S} .

The set S is called a *subspace* of the chain space $(\mathbb{P}, \mathcal{C})$ if it satisfies the following conditions:

- O \mathbb{S} has at least three mutually distant points.
- Por any three mutually distant points of S the unique chain through them belongs to C(S).
- $(\mathbb{S}, \mathcal{C}(\mathbb{S}))$ is a chain space.

Subspaces of $\Sigma(K, R)$

Examples:

- Any connected component of the distant graph on $\mathbb{P}(R)$ is a subspace.
- Let S is a K-subalgebra of R which is *inversion invariant*, i. e., for all x ∈ S ∩ R* holds x⁻¹ ∈ S. Then P(S) (embedded in P(R)) is a subspace.
- There are various "sporadic" examples of subspaces.

Problem

Find all subspaces of a chain geometry $\Sigma(K, R)$ containing R(1, 0), R(0, 1), and R(1, 1) with a neat algebraic description.

Jordan Systems of (K, R)

A Jordan System J of (K, R) is K-subspace of R satisfying the following conditions:

 $1 \in J.$

2 For all $x \in J \cap R^*$ holds $x^{-1} \in J$.

A Jordan system *J* is called *strong* provided that the following extra condition holds:

So For all $x \in J$ we have

$$\#(k \in K|x+k \notin R^*) < \#(k \in K|x+k \in R^*).$$

A. Herzer [24], H. J. Kroll [31].

See O. Loos [35] for relations with Jordan algebras and Jordan pairs.

Examples

- Let R be the algebra of n × n matrices over a commutative field K. Then the subset of symmetric matrices is a Jordan system. It is strong if #K > 2n. This may be generalised to Hermitian matrices.
- For commutative algebras (K, R) with Char K ≠ 2, any strong Jordan system is necessarily a subalgebra (H. J. Kroll [32], [33]).
- Many examples, even for commutative algebras, can be found in A. Blunck, A. Herzer [12], A. Herzer [26].
- All inversion invariant additive subgroups of a field *R* were determined by D. Goldstein et al. [19] and A. Mattarei (*R* commutative) [36].

Properties

An essential tool in the investigation of strong Jordan systems is Hua's identity: Let a, b and a - b be invertible elements of a ring R. Then $a^{-1} - b^{-1}$ is invertible too, and there holds

$$(a^{-1}-b^{-1})^{-1}=a-a(a-b)^{-1}a.$$

Theorem (A. Herzer [24])

Any strong Jordan-System J is closed under the Jordan triple product:

$$xyx \in J$$
 for all $x, y \in J$.

Easy consequences:

- $x^n \in J$ for all $x \in J$ and all $n \in \mathbb{N}$.
- $xy + yx \in J$ for all $x, y \in J$.

The Projective Line over a Strong Jordan System

Let J be a strong Jordan system in R. The *projective line* over J is defined as

$$\mathbb{P}(J) = \{ R(t_2t_1 - 1, t_2) \mid t_1, t_2 \in J \}.$$

Theorem (A. Herzer [24])

The projective line over any strong Jordan-System J in R is a connected subspace of $\Sigma(K, R)$.

Under certain technical conditions the theorem describes all connected subspaces containing R(1,0), R(0,1), and R(1,1) (A. Herzer [24]).

See also A. Blunck [4], H.-J. Kroll [31], [32], [33].

Final Remarks

- Strong Jordan systems of the matrix algebra R = K^{n×n} (K commutative) yield subsets of Grassmannians which are closed under reguli (A. Herzer [24]).
- Chain spaces on quadrics (with quadratic form Q) can be described algebraically via strong Jordan systems of the Clifford algebra of Q (A. Blunck [5]).

Question

Is it possible to replace the strongness condition for Jordan systems by closedness under triple multiplication without affecting the known results about projective lines?

Cf. [10] for an affirmative answer concerning Hermitian matrices, using results about dual polar spaces (see P. J. Cameron [15]) and matrix spaces (see Z.-X. Wan [42]) rather than ring geometry.

The bibliography focusses on the presented material and recent related work. The books and surveys [2], [12], [20], [25], [29], [41], [42] contain a wealth of further references.

Refer to [13], [14], [18], [21], [22], [23], [34] for deviating definitions of projective lines which we could not present in our lecture.

[1] C. Bartolone.

Jordan homomorphisms, chain geometries and the fundamental theorem.

Abh. Math. Sem. Univ. Hamburg, 59:93–99, 1989.

[2] W. Benz.

Vorlesungen über Geometrie der Algebren. Springer, Berlin, 1973.

[3] W. Blaschke.

Uber die Laguerresche Geometrie der Speere in der Euklidischen Ebene. *Mh. Math. Phys.*, 21:3–60, 1910.

[4] A. Blunck.

Chain spaces over Jordan systems. Abh. Math. Sem. Univ. Hamburg, 64:33–49, 1994.

[5] A. Blunck.

Chain spaces via Clifford algebras. *Monatsh. Math.*, 123:98–107, 1997.

[6] A. Blunck.

Geometries for Certain Linear Groups over Rings — Construction and Coordinatization. Habilitationsschrift, Technische Universität Darmstadt, 1997.

[7] A. Blunck. Projective groups over rings.

J. Algebra, 249:266–290, 2002.

[8] A. Blunck and H. Havlicek.

The connected components of the projective line over a ring. *Adv. Geom.*, 1:107–117, 2001.

- [9] A. Blunck and H. Havlicek. Jordan homomorphisms and harmonic mappings. *Monatsh. Math.*, 139:111–127, 2003.
- [10] A. Blunck and H. Havlicek.

Projective lines over Jordan systems and geometry of Hermitian matrices.

Linear Algebra Appl., 433:672-680, 2010.

[11] A. Blunck and H. Havlicek.

Geometric structures on finite- and infinite-dimensional Grassmannians.

Beitr. Algebra Geom., online first, 2012.

[12] A. Blunck and A. Herzer. Kettengeometrien – Eine Einführung. Shaker Verlag, Aachen, 2005.

[13] U. Brehm.

Algebraic representation of mappings between submodule lattices.

J. Math. Sci. (N. Y.), 153(4):454–480, 2008. Algebra and geometry.

[14] U. Brehm, M. Greferath, and S. E. Schmidt.
 Projective geometry on modular lattices.
 In F. Buekenhout, editor, *Handbook of Incidence Geometry*.
 Elsevier, Amsterdam, 1995.

P. J. Cameron.
 Dual polar spaces.
 Geom. Dedicata, 12(1):75–85, 1982.

[16] H. Chen.

Rings Related to Stable Range Conditions, volume 11 of Series in Algebra. World Scientific, Singapore, 2011.

[17] P. M. Cohn.

On the structure of the GL₂ of a ring. Inst. Hautes Etudes Sci. Publ. Math., 30:365–413, 1966.

[18] C.-A. Faure.

Morphisms of projective spaces over rings. *Adv. Geom.*, 4(1):19–31, 2004.

[19] D. Goldstein, R. M. Guralnick, L. Small, and E. Zelmanov. Inversion invariant additive subgroups of division rings. *Pacific J. Math.*, 227(2):287–294, 2006.

[20] H. Havlicek.

From pentacyclic coordinates to chain geometries, and back. *Mitt. Math. Ges. Hamburg*, 26:75–94, 2007.

H. Havlicek, A. Matraś, and M. Pankov.
 Geometry of free cyclic submodules over ternions.
 Abh. Math. Semin. Univ. Hambg., 81(2):237–249, 2011.

[22] H. Havlicek, B. Odehnal, and J. Kosiorek. A point model for the free cyclic submodules over ternions. *Results Math.*, online first, 2012.

[23] H. Havlicek and M. Saniga.

Vectors, cyclic submodules, and projective spaces linked with ternions.

J. Geom., 92(1-2):79-90, 2009.

[24] A. Herzer.

On sets of subspaces closed under reguli. *Geom. Dedicata*, 41:89–99, 1992.

[25] A. Herzer.

Chain geometries.

In F. Buekenhout, editor, *Handbook of Incidence Geometry*, pages 781–842. Elsevier, Amsterdam, 1995.

[26] A. Herzer.

Konstruktion von Jordansystemen. *Mitt. Math. Ges. Hamburg*, 27:203–210, 2008.

[27] A. Herzer.Die kleine projektive Gruppe zu einem Jordansystem.*Mitt. Math. Ges. Hamburg*, 29:157–168, 2010.

[28] A. Herzer.

Korrektur und Ergänzung zum Artikel *Die kleine projektive Gruppe zu einem Jordansystem* in Mitt. Math. Ges. Hamburg 29, Armin Herzer.

Mitt. Math. Ges. Hamburg, 30:15–17, 2011.

[29] L.-P. Huang.

Geometry of Matrices over Ring. Science Press, Beijing, 2006.

[30] X. Hubaut.
 Algèbres projectives.
 Bull. Soc. Math. Belg., 17:495–502, 1965.

[31] H.-J. Kroll.

Unterräume von Kettengeometrien und Kettengeometrien mit Quadrikenmodell.

Resultate Math., 19:327-334, 1991.

[32] H.-J. Kroll.

Unterräume von Kettengeometrien.

In N. K. Stephanidis, editor, *Proceedings of the 3rd Congress of Geometry (Thessaloniki, 1991)*, pages 245–247, Thessaloniki, 1992. Aristotle Univ.

[33] H.-J. Kroll.

Zur Darstellung der Unterräume von Kettengeometrien. *Geom. Dedicata*, 43:59–64, 1992.

[34] A. Lashkhi.

Harmonic maps over rings.

Georgian Math. J., 4:41-64, 1997.

[35] O. Loos.

Jordan Pairs, volume 460 of Lecture Notes in Mathematics. Springer, Berlin, 1975.

[36] S. Mattarei.

Inverse-closed additive subgroups of fields. *Israel J. Math.*, 159:343–347, 2007.

[37] M. Özcan and A. Herzer.

Ein neuer Schließungssatz für Berührstrukturen. Bull. Belg. Math. Soc. Simon Stevin, 16(3):533–555, 2009.

[38] M. Pankov.

Grassmannians of Classical Buildings, volume 2 of Algebra and Discrete Mathematics. World Scientific, Singapore, 2010.

[39] J. R. Silvester. Introduction to Algebraic K-Theory. Chapman and Hall, London, 1981.

[40] F. D. Veldkamp.

Projective ring planes and their homomorphisms. In R. Kaya, P. Plaumann, and K. Strambach, editors, *Rings and Geometry*, pages 289–350. D. Reidel, Dordrecht, 1985.

[41] F. D. Veldkamp.

Geometry over rings.

In F. Buekenhout, editor, *Handbook of Incidence Geometry*, pages 1033–1084. Elsevier, Amsterdam, 1995.

[42] Z.-X. Wan.

Geometry of Matrices. World Scientific, Singapore, 1996.