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Spreads

Let P3(K) be the 3-dimensional projective space over a field K, and let L be its set
of lines.

Definition. Let S ⊂ L be a set of lines satisfying some of the following conditions:

1. Any two distinct lines of S are skew.

2. Each point is incident with at least one line of S.

3. Each plane is incident with at least one line of S.

A partial spread is characterised by condition 1.

A spread is characterised by conditions 1 and 2.

A dual spread is characterised by conditions 1 and 3.



Reguli

On each hyperbolic quadric there are two families of generators. Each of them forms
a regulus. From an affine point of view there are two possibilities for a regulus R:

Hyperboloid:
R has no line at infinity.

Hyperbolic paraboloid:
R has precisely one line at infinity.



Extra Conditions

It is possible to construct very bizarre spreads, e. g. by transfinite induction, when K

is infinite (M. Bernardi, 1973). Thus little can be said about spreads in general.

• A regular spread is closed under reguli.

• A spread is algebraic if its image under the Klein mapping is an algebraic variety.



Examples

A regular spread is an elliptic linear
congruence of lines.

A subregular spread arises from a
regular spread by replacing “some”

reguli with their opposite reguli.



Examples

R. Riesinger built this nice model of a regular spread some years ago.



Regular Spreads

• Regular spreads exist in P3(K) if, and only if, K is not quadratically closed.

• In P3(K) there is only one regular spread to within projective collineations if, and
only if, K admits only one quadratic extension.

• Any regular spread of P3(K) is algebraic. It is also a dual spread.

• Regular spreads do not exist in P3(C), because C is quadratically closed.
(A hyperbolic quadric in P3(C) has no exterior lines.)



Applications

Applications of spreads to be found in the literature:

• Foundations of geometry.
Construction of translation planes. Uses a spread in the hyperplane at infinity of
a 4-dimensional affine space . . .
J. André (1956), R. H. Bruck and R. C. Bose (1963), . . .

• Parallelisms.
Generalizations of the Clifford-parallelism.
W. K. Clifford (1873), . . .

• Descriptive geometry, computer vision.
Non linear mappings on a plane. Parallel projection in 3-dimensional elliptic
space. Non-central cameras, . . .
L. Tuschel (1911), . . .



Cayley’s Surface
Cayley’s ruled cubic surface or, for short, the Cayley surface is, to within projective
collineations, the point set

F := V
(

f(X)
)

:=
{

K(p0, p1, p2, p3)
T ∈ P3(K) | f(p0, p1, p2, p3) = 0

}

,

where
f(X) := X0X1X2 − X3

1 − X2
0X3 ∈ K[X] = K[X0,X1,X2,X3].

We shall consider ω := V(X0) as plane at infinity. Hence the affine part of the Cayley
surface is given by the parametrisation

K2 → P3(K) : (u1, u2) 7→ K(1, u1, u2, u1u2 − u3
1)

T =: P (u1, u2).

The intersection of F with the plane ω is the line

V(X0, X1) =: g∞.



Pictures

All pictures illustrate the case K = R, but in varying affine charts.

Affine point of view.
All points of F \ ω are simple.

g∞

ω
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Intersection with the plane at infinity.
All points of g∞ are double points.
Z := K(0, 0, 0, 1)T is a pinch point.



The Collineation Group

• The set of all matrices

Ma,b,c :=









1 0 0 0
a c 0 0
b 3 ac c2 0

ab − a3 bc ac2 c3









where a, b ∈ K and c ∈ K \ {0} is a group, say G, under multiplication.

• Each matrix in G leaves invariant the cubic form f(X) = X0X1X2 − X3
1 − X2

0X3

to within the factor c3 6= 0.

• The group G yields all projective automorphic collineations of F unless #K ≤ 3.

• Under the action of the group G, the points of F fall into three orbits:
F \ ω, g∞ \ {Z}, and {Z}.
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Osculating Tangents

If a line t meets F at a simple point P with multiplicity ≥ 3 then it is called an oscu-
lating tangent at P . Such a tangent line is either a generator or it meets F at P only.
In the latter case it will be called a proper osculating tangent of F .

Lemma. At each point P (u1, u2) ∈ F\g∞ there is a unique proper osculating tangent,
namely the line which joins P (u1, u2) with the point K(0, 1, 3u1, u2)

T.

Proof. The tangent plane of F at P (0, 0) is V(X3); this plane meets F along the line
V(X1, X3) and the parabola given by

V
(

X1(X0X2 − X2
1),X3

)

. (1)

The tangent t of this parabola at P (0, 0) is easily seen to be the only proper osculat-
ing tangent at P (0, 0). The point at infinity of t is K(0, 1, 0, 0)T. By the action of the
matrix Mu1,u2,1 ∈ G the assertion follows for any point P (u1, u2) ∈ F \ g∞. �



Main Theorem (cont.)

Main Theorem. The set

O := {t ∈ L | t is a proper osculating tangent of F} ∪ {g∞}

has the following properties:

1. O is a partial spread of P3(K) if, and only if, Char K 6= 3 and K does not contain
a third root of unity other than 1.

2. If O is a partial spread then it is maximal, i.e., it is not a proper subset of any
partial spread of P3(K).

3. O is a covering of P3(K) if, and only if, CharK 6= 3 and each element of K has a
third root in K.



Proof
Ad 1. All proper osculating tangents are skew to g∞. The osculating tangents at
P (0, 0) 6= P (u1, u2) are skew if, and only if,

∆(u1, u2) := det









1 0 1 0
0 1 u1 1
0 0 u2 3u1

0 0 u1u2 − u3
1 u2









= u2
2 − 3u2

1u2 + 3u4
1 6= 0.

For u1 = 0 we have u2 6= 0 so that ∆(u1, u2) 6= 0.

For u1 6= 0 we substitute u2 = (2 + y)u2
1 with y ∈ K and obtain the equivalent

condition u4
1(y

2 + y + 1) 6= 0. But the polynomial

X2 + X + 1 ∈ K[X ]

has a zero in K precisely when:

• CharK = 3, since in this case X2 + X + 1 = (X − 1)2;
• CharK 6= 3 and there exists a third root of unity w 6= 1 in K.



Proof (cont.)

Ad 2. It suffices to show that each point at infinity is on a line of O.

This is obviously true for any point on g∞ ∈ O.

As (u1, u2) varies in K2, the osculating tangent at P (u1, u2) contains the point

K(0, 1, 3u1, u2)
T ∈ ω.

By part 1, we have CharK 6= 3. This means that each point of ω \ g∞ is incident with
a line of O.



Proof (cont.)

Ad 3.

• Let CharK = 3.
By part 2, O is not even a covering of the plane at infinity.

• Let CharK 6= 3.
A point K(1, p1, p2, p3) is on a line of O if, and only if, there is a pair (u1, u2) ∈ K2

and an s ∈ K such that

(1, p1, p2, p3)
T = (1, u1, u2, u1u2 − u3

1)
T + s(0, 1, 3u1, u2)

T.

So we obtain the following system of equations in the unknowns u1, u2, s ∈ K:

u1 = p1 − s, u2 = p2 − 3s(p1 − s), s3 = p3 − (p1p2 − p3
1).

This system has a solution, because p3 − (p1p2 − p3
1) has a third root in K. �



Remarks

The line set O has the following further properties.

• Let CharK 6= 3.
O admits a projective correlation which leaves O invariant, as a set. Hence O is
a spread if, and only if, it is a dual spread.

• Let CharK = 3.
Here O is part of a parabolic linear congruence. The axis of this congruence is a
line of nuclei of the Cayley surface.

(Cf. M. de Finis, M.-J. de Resmini, 1983.)



Covering O with Reguli
The following assertions can be verified by straightforward calculations:

• All osculating tangents at the points of a genera-
tor g 6= g∞ together with g∞ form a regulus R−

g ,
say. In affine terms this regulus is one family of
generators on a hyperbolic paraboloid Hg.

• The hyperbolic paraboloid Hg is the Lie quadric of
F along the generator g.

• Given generators g, g′ 6= g∞ the reguli R−

g and R−

g′

have only the line g∞ in common.

• Given generators g, g′ 6= g∞ the Lie quadrics Hg

and Hg′ have the same tangent plane at each point
of g∞.

V(X1)

F

R−

g

g

Michael Walker (1976) used the reguli R−

g together with their opposite reguli R+
g to

construct and describe the spread O over certain finite fields.



Covering O with Reguli
Here is another picture, where V(X3) appears at infinity:

g∞

V(X0)



Betten’s Approach

We choose the plane π = V(X1) and the plane at infinity ω = V(X0). The lines of O
other than g∞ define (by intersection) a bijection

τ : ω \ g∞ → π \ g∞.

ω

π

Conversely, τ can be used to generate O \ g∞ by joining corresponding points.

Dieter Betten (1973) used a dual approach to construct the spread O.



Final Remarks

• The Betten-Walker spread O appears in the literature under various names.

• The Betten-Walker spread in P3(R) yields a 4-dimensional translation plane.
(D. Betten).

• Let K be infinite. The union of O with the pencil L(Z,ω) is the smallest algebraic
set of lines containing O.

So, for example, the Betten-Walker spread in P3(R) is not an algebraic spread,
but it is very “close” to being algebraic.

• Only few algebraic spreads of P3(R) seem to be known. Non-regular examples
are due to R. Riesinger.

• For further details see: H. H. and R. Riesinger, The Betten-Walker spread and
Cayley’s ruled cubic surface, Beitr. Algebra Geometrie 47 (2006), 527–541.
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