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Part 1

Bridging the Gap

The Saniga-Planat Theorem links

• Kronecker products of Pauli matrices,

• symplectic polar spaces over GF(2),

• finite-dimensional vector spaces over GF(2)

which are endowed with a non-degenerate al-
ternating bilinear form.



Pauli Matrices

We consider the Pauli matrices

σ1 :=

(
0 1
1 0

)

, σ2 :=

(
0 −i
i 0

)

, σ3 :=

(
1 0
0 −1

)

(1)

with entries in C. Each σp is Hermitian, i. e. σp = σH
p (Hermitian transpose, conjugate

transpose) and unitary, i. e. σ−1
p = σH

p . Hence σ−1
p = σp.

Let (G, ·) be the subgroup of the unitary group (U2, ·) generated by σ1, σ2, σ3. This
group G consists of all finite products of Pauli matrices and their inverses.
(An empty product is, by definition, the identity matrix, which will be denoted by σ0.)



Problem

Problem 1. Given the group (G, ·) we aim at con-
structing “in a natural way”:

• The Galois field with two elements, i. e.
(
GF(2),+, ·),

• A two-dimensional vector space over the field
(
GF(2),+, ·).



Multiplication in G

Multiplication in G is governed by the following system of relations:

σpσp = σ0 for all p ∈ {1, 2, 3},

σpσq = iσr for all even permutations
(

1 2 3
p q r

)

,

σpσq = −iσr for all odd permutations
(

1 2 3
p q r

)

.

(2)



G is finite

The group G has precisely 16 = 24 elements:

G =
{
ijσk | j, k ∈ {0, 1, 2, 3}

}
(3)

It is a non-commutative group, because

σpσq = −σqσp for all p, q ∈ {1, 2, 3} with p 6= q.

So G cannot be isomorphic to the additive group of any vector space.

The additive group of any vector space is commutative.



The Centre of G

The centre of G equals

Z(G) =
{
ijσ0 | j ∈ {0, 1, 2, 3}

}
. (4)

It is isomorphic to the cyclic group (Z4,+), whence it cannot be isomorphic to the
additive group of a vector space.

Any non-zero vector ~v of a vector space over a field F generates (with respect to
addition) a cyclic group which is either isomorphic to (Z, +) or isomorphic to (Zp, +),
where p = Char F is a prime number.



The Commutator Subgroup of G

The group theoretic commutator of α, β ∈ G is defined as

[α, β] := αβα−1β−1.

It is not to be confused with their ring theoretic commutator αβ−βα, which is usually
also written as [α, β], but will not be used throughout this lecture!

Hence
[α, β]βα := αβ.

The commutator subgroup [G, G] of G is the subgroup generated by all commutators
[α, β], where α and β range in G. From (2), (3), and (4) one easily obtains

[G,G] = {σ0,−σ0} ∼= Z2. (5)

In fact, ([G,G], ·) is isomorphic to the additive group of GF(2) via σ0 7→ 0, −σ0 7→ 1.



Result

The commutator subgroup ([G,G], ·) can serve
as a model of the additive group of the Galois
field GF(2).
Note that multiplication in this field is trivial.



The Significance of [G,G]

Let Γ and Γ′ be arbitrary groups and f : Γ → Γ′ a homomorphism. The image f(Γ)
is a commutative subgroup of Γ′ if, and only if,

[Γ,Γ] ⊂ ker f.

Or, in other words: Given a normal subgroup Σ of Γ the factor group Γ/Σ is commu-
tative if, and only if, [Γ,Γ] ⊂ Σ.

Returning to our settings we obtain

G/[G, G] ∼= Z2 × Z2 × Z2.

Hence G/[G, G] is isomorphic to the additive group of a three-dimensional vector
space over GF(2).

What is the geometric meaning (if any) of the group G/[G, G]?



The Centre Revisited

Since Z(G) = {σ0,−σ0, iσ0,−iσ0} contains [G, G] = {σ0,−σ0}, the factor group

G/Z(G) = {Z(G)σ0, Z(G)σ1, Z(G)σ2, Z(G)σ3} (6)

is a commutative group of order 16 : 4 = 4. Each of its elements coincides with its
inverse, so we have

G/Z(G) ∼= Z2 × Z2.

For example, an isomorphism is given by

Z(G)σ0 7→ (0, 0), Z(G)σ1 7→ (1, 0), Z(G)σ2 7→ (0, 1), Z(G)σ3 7→ (1, 1).



Result

The factor group (G/Z(G), ·) is isomorphic to the
additive group of a two-dimensional vector space
over GF(2).



Problem

Problem 2. Endow the vector space G/Z(G)

with a non-degenerate alternating bilinear form
which reflects in some way if two elements of G

commute or not.



The Commutator Subgroup Revisited

Let Γ be an arbitrary group. The following properties hold for all α,α1, α2, β ∈ Γ:

[α,α] = ι (the identity in Γ).

[β, α] = βαβ−1α−1 = (αβα−1β−1)−1 = [α, β]−1.

[α1α2, β] = (α1α2)β(α1α2)
−1β−1

= α1 α2βα−1
2 β−1

︸ ︷︷ ︸
α−1

1 α1βα−1
1 β−1

︸ ︷︷ ︸

= α1[α2, β]α−1
1 · [α1, β].

We have [G, G] = {σ0,−σ0}, whence for G these formulas turn into

[α,α] = σ0.

[β, α] = [α, β]. (7)

[α1α2, β] = [α1, β] · [α2, β].



The Commutator Mapping

Let α, β ∈ G. Then

[Z(G)α, Z(G)β] = [Z(G), Z(G)] · [Z(G), β] · [α,Z(G)] · [α, β]

= [α, β].

Thus, [α, β] remains unaltered if α and β are replaced with any other element of
Z(G)α and Z(G)β, respectively.

Altogether we obtain a well defined mapping

G/Z(G) × G/Z(G) → [G, G] :
(
Z(G)α,Z(G)β

)
7→ [α, β]

which, by abuse of notation, will also be denoted by [·, ·]. For all α, β ∈ G we have

αβ = βα ⇔ [α, β] = σ0 ⇔
[
Z(G)α,Z(G)β

]
= σ0.



An Alternating Bilinear Form

The ultimate step merely amounts to applying the isomorphisms from the above:

G/Z(G) → GF(2)2 : Z(G)σ0 7→ (0, 0), Z(G)σ1 7→ (1, 0),

Z(G)σ2 7→ (0, 1), Z(G)σ3 7→ (1, 1).

[G, G] → GF(2) : σ0 7→ 0, −σ0 7→ 1.

By virtue of these isomorphisms, we obtain a mapping

[·, ·] : GF(2)2 × GF(2)2 → GF(2).

Due to (7) and the trivial multiplication in GF(2), this is an alternating bilinear form.



Result

The mapping [·, ·] : GF(2)2 × GF(2)2 → GF(2)

is an alternating bilinear form. Its matrix with re-
spect to the standard basis of GF(2)2 equals

(
0 1

1 0

)

,

i. e., we have a non-degenerate form.



Summary
We have an exact sequence of groups

{1} → Z(G) → G → G/Z(G)
︸ ︷︷ ︸
∼= GF(2)2

→ {1}

1 7→ σ0

α 7→ α
β 7→ Z(G)β

Z(G)γ 7→ 1

and the following commutative diagram:

G × G −−−−−−−−−−−→ G/Z(G) × G/Z(G)
︸ ︷︷ ︸

∼= GF(2)2×GF(2)2

[·,·] ց ւ [·,·]

[G, G]
︸ ︷︷ ︸
∼= GF(2)

(Koen Thas, 2007.)



Remark

The group G/[G, G] (without its identity element) may be illustrated as the smallest
projective plane. It is endowed with a degenerate symplectic polarity which assigns
to each point p 6= ±iσ0 the unique line through p and ±iσ0. The lines through ±iσ0

represent commuting elements of G \ {±σ0}.

±σ1 ±σ2

±σ3

±iσ3

±iσ2 ±iσ1

±iσ0



Part 2

Kronecker Products

We now extend our results from the first part of
this lecture to Kronecker products of Pauli matri-
ces.

This will be a straightforward task.



The Group GN

Let N ≥ 1 be a fixed integer. We consider N -fold Kronecker products of the identity
matrix σ0 and the Pauli matrices

σ1 :=

(
0 1
1 0

)

, σ2 :=

(
0 −i
i 0

)

, σ3 :=

(
1 0
0 −1

)

.

There are 4N such products, all of them unitary, and they form a basis of the space
of complex 2N × 2N matrices.

Let (GN , ·) be the subgroup of the unitary group (U2N , ·) generated by all products

σp1 ⊗ σp2 ⊗ · · · ⊗ σpN
with p1, p2, . . . pN ∈ {0, 1, 2, 3}.



Problem

Problem 3. Given the group (GN , ·) we aim at
constructing “in a natural way”:

• The Galois field with two elements, i. e.
(
GF(2),+, ·),

• A 2N-dimensional vector space over the field
(
GF(2),+, ·).



GN is finite

For all p1, p2, . . . pN , q1, q2, . . . , qN ∈ {0, 1, 2, 3} and all z ∈ C the following hold:

(σp1⊗σp2⊗ · · ·⊗σpN
)(σq1⊗σq2⊗ · · · ⊗σqN

) = (σp1σq1) ⊗ (σp2σq2) ⊗ · · · ⊗ (σpN
σqN

)

(σp1 ⊗ σp2 ⊗ · · · ⊗ σpN
)−1 = σ−1

p1
⊗ σ−1

p2
⊗ · · · ⊗ σ−1

pN

σp1 ⊗ · · · ⊗ (zσpk
) ⊗ · · · ⊗ σpN

= z(σp1 ⊗ · · · ⊗ σpk
⊗ · · · ⊗ σpN

)

The last equation will only be used for z ∈ {1,−1, i,−i}.

The group GN has precisely 4N+1 elements,

GN =
{
ij(σp1 ⊗ σp2 ⊗ · · · ⊗ σpN

) | j, p1, p2, . . . pN ∈ {0, 1, 2, 3}
}
, (8)

and it is a non-commutative group, because G ⊗ σ0 ⊗ · · · ⊗ σ0 is a subgroup of GN

isomorphic to G. So GN cannot be isomorphic to the additive group of any vector
space.



The Centre of GN

Fix an index k ∈ {1, 2, . . . , N}. An arbitrary element of GN , say

ij(σp1 ⊗ · · · ⊗ σpk
⊗ · · · ⊗ σpN

),

is permutable with all elements of

σ0 ⊗ · · ·σ0 ⊗ G︸︷︷︸
k

⊗ σ0 ⊗ · · · ⊗ σ0 ⊂ GN

if, and only if, σpk
= σ0. As k varies, we obtain:

The centre of GN equals the cyclic group

Z(GN) =
{
ij(σ0 ⊗ σ0 ⊗ · · · ⊗ σ0) | j ∈ {0, 1, 2, 3}

} ∼= Z4, (9)

whence it cannot be isomorphic to the additive group of a vector space.



The Commutator Subgroup of GN

It is easy to calculate commutators in GN , since we have

[ij(σp1 ⊗ · · · ⊗ σpN
), ik(σq1 ⊗ · · · ⊗ σqN

)] = [σp1, σq1] ⊗ · · · ⊗ [σpN
, σqN

]. (10)

From (10) one immediately obtains

[GN , GN ] = {σ0 ⊗ σ0 ⊗ · · · ⊗ σ0,−(σ0 ⊗ σ0 ⊗ · · · ⊗ σ0)} ∼= Z2. (11)

In fact, ([GN , GN ], ·) is isomorphic to the additive group of GF(2) via

σ0 ⊗ σ0 ⊗ · · · ⊗ σ0 7→ 0, −(σ0 ⊗ σ0 ⊗ · · · ⊗ σ0) 7→ 1.



Result

The commutator subgroup ([GN , GN ], ·) can
serve as a model of the additive group of the
Galois field GF(2).
Note that multiplication in this field is trivial.



Factoring through [GN , GN ]

Now we exhibit the factor group GN/[GN , GN ]. From

ij(σp1 ⊗ σp2 ⊗ · · · ⊗ σpN
) · ij(σp1 ⊗ σp2 ⊗ · · · ⊗ σpN

) = (−1)j(σ0 ⊗ σ0 ⊗ · · · ⊗ σ0)

each element of GN/[GN , GN ] coincides with its inverse.

Since 4N+1 : 2 = 22N+1, we obtain

GN/[GN , GN ] ∼= Z2 × Z2 × · · · × Z2︸ ︷︷ ︸
2N+1

.

Hence GN/[GN , GN ] is isomorphic to the additive group of a 2N + 1-dimensional
vector space over GF(2).

What is the geometric meaning (if any) of the group GN/[GN , GN ]?



The Centre Revisited

The factor group

GN/Z(GN) =
{
Z(GN)(σp1 ⊗ σp2 ⊗ · · · ⊗ σpN

) | p1, p2, . . . pN ∈ {0, 1, 2, 3}
}

(12)

is a commutative group of order 4N+1 : 4 = 4N , since the centre Z(GN) contains
the commutator subgroup [GN , GN ]. Each element of GN/Z(GN) coincides with its
inverse, so

GN/Z(GN) ∼= Z2 × Z2 × · · · × Z2︸ ︷︷ ︸
2N

.

In order to describe an isomorphism explicitly, we use a function

ϑ : {0, 1, 2, 3} → Z
2
2 : 0 7→ (0, 0), 1 7→ (1, 0), 2 7→ (0, 1), 3 7→ (1, 1).

Then an isomorphism is given by

Z(GN)(σp1 ⊗ σp2 ⊗ · · · ⊗ σpN
) 7→

(
ϑ(p1), ϑ(p2), . . . , ϑ(pN)

)
.



Result

The factor group (GN/Z(GN), ·) is isomorphic to
the additive group of a 2N-dimensional vector
space over GF(2).



Problem

Problem 4. Endow the vector space GN/Z(GN)

with a non-degenerate alternating bilinear form
which reflects in some way if two elements of GN

commute or not.



The Commutator Subgroup Revisited

Recall that

[GN , GN ] = {σ0 ⊗ σ0 ⊗ · · · ⊗ σ0,−σ0 ⊗ σ0 ⊗ · · · ⊗ σ0}

is isomorphic to Z2. Hence the following properties hold for all α,α1, α2, β ∈ GN :

[α,α] = σ0 ⊗ σ0 ⊗ · · · ⊗ σ0.

[β, α] = [α, β]. (13)

[α1α2, β] = [α1, β] · [α2, β].



The Commutator Mapping

Let α, β ∈ GN . Then

[Z(GN)α,Z(GN)β] = [Z(GN), Z(GN)] · [Z(GN), β] · [α,Z(GN)] · [α, β]

= [α, β].

Thus, [α, β] remains unaltered if α and β are replaced with any other element of
Z(GN)α and Z(GN)β, respectively.

Altogether we obtain a well defined mapping

GN/Z(GN) × GN/Z(GN) → [GN , GN ] :
(
Z(GN)α,Z(GN)β

)
7→ [α, β]

which, by abuse of notation, will also be denoted by [·, ·]. For all α, β ∈ GN we have

αβ = βα ⇔ [α, β] = σ0 ⊗σ0 ⊗ · · ·⊗σ0 ⇔
[
Z(GN)α, Z(GN)β

]
= σ0⊗σ0 ⊗ · · ·⊗σ0.



An Alternating Bilinear Form

The ultimate step merely amounts to applying the isomorphisms from the above:

GN/Z(GN) → GF(2)2N : Z(GN)(σp1⊗σp2⊗ · · ·⊗σpN
) 7→

(
ϑ(p1), ϑ(p2), . . . , ϑ(pN)

)
.

[GN , GN ] → GF(2) : σ0 ⊗ σ0 ⊗ · · · ⊗ σ0 7→ 0, −σ0 ⊗ σ0 ⊗ · · · ⊗ σ0 7→ 1.

By virtue of these isomorphisms, we obtain a mapping

[·, ·] : GF(2)2N × GF(2)2N → GF(2).

Due to (13) and the trivial multiplication in GF(2), this is an alternating bilinear form.



Result

The mapping [·, ·] : GF(2)2N ×GF(2)2N → GF(2)

is an alternating bilinear form. Its matrix with re-
spect to the standard basis of GF(2)2 equals

diag

((
0 1

1 0

)

,

(
0 1

1 0

)

, . . . ,

(
0 1

1 0

))

,

i. e., we have a non-degenerate form.



Summary
We have an exact sequence of groups

{1} → Z(GN) → GN → GN/Z(GN)
︸ ︷︷ ︸
∼= GF(2)2N

→ {1}

1 7→ σ0 ⊗ · · · ⊗ σ0

α 7→ α
β 7→ Z(GN)β

Z(GN)γ 7→ 1

and the following commutative diagram:

GN × GN −−−−−−−−−−−→ GN/Z(GN) × GN/Z(GN)
︸ ︷︷ ︸

∼= GF(2)2N
×GF(2)2N

[·,·] ց ւ [·,·]

[GN , GN ]
︸ ︷︷ ︸
∼= GF(2)

(Koen Thas, 2007.)



An Illustration

In our illustration of the case N = 2 the element Z(G2)σj ⊗ σk is denoted by jk.

12 33 21

30

02 01

22 11

10 2032 31

13 23

03

(Metod Saniga, 2007.)


