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The Real Möbius Plane

Algebraic definition

Points: C ∪ {∞} (complex projective line)
Circles: Images of R ∪ {∞} under PGL2(C)

Other models

• Elliptic quadric / conics

• Euclidean plane + one point / circles and lines

• Elliptic linear congruence of lines (regular spread)
/ reguli
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The Projective Line over a Ring

All our rings are associative, with unit element 1
which is inherited by subrings and acts unitally on
modules.

Let GL2(R) be the group of invertible (2 × 2)-
matrices with entries in a ring R.

A pair (a, b) ∈ R2 is called admissible if (a, b) is the
first row of a matrix in GL2(R).

Projective line over R:

P(R) := {R(a, b) | (a, b) admissible }
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Chain Geometries

Assume that F is a field (not necessarily
commutative) contained in a ring R. There is the
natural embedding

P(F ) → P(R) : F (a, b) 7→ R(a, b).

The images of P(F ) under PGL2(R) are the chains

of the chain geometry Σ(F, R).

PGL2(R) is a group of automorphisms of Σ(F, R).

Let R∗ be the group of units in R. Then u ∈ R∗

implies
Σ(F, R) = Σ(u−1Fu, R).
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The Real Laguerre Plane

D := R[ε] with ε2 = 0 is the ring of dual numbers

over R.

Up to isomorphism, Σ(R, D) is the geometry of
spears and oriented circles in the Euclidean plane.
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The Distant Graph

Distant points of P(R):

R(a, b)4R(c, d) : ⇐⇒

(

a b

c d

)

∈ GL2(R)

Non-distant points are also called parallel.

(P(R),4) is the distant graph of P(R).

Examples

R = GF(2)[ε] R = GF(2) × GF(2)

Two points of Σ(F, R) are distant exactly if they are
different and joined by a chain.
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Chains through three points

Theorem. There are as many chains through
three mutually distant points of Σ(F, R) as there
are subfields u−1Fu, where u is a unit in R.

Examples

There is a unique chain through three mutually
distant points if

• F is in the centre of R,

• F ∗ = R∗,

• F = GF(4), R = M(2, 2, GF(2))
(sporadic example).

There is more than one chain through three mutually
distant points if

• R = H and F = C (4-sphere / 2-spheres),

• F = GF(q2), R = M(2, 2,GF(q)) with q > 2.

Varna, August 2001 7



Part 2
Connectedness

P.M. Cohn. On the structure of the GL2 of a ring. Inst.

Hautes Etudes Sci. Publ. Math. 30 (1966), 5–53.

A. Blunck and H. Havlicek. The connected components of

the projective line over a ring. Adv. Geom. 1 (2001), 107–117.

Varna, August 2001 8



A Characterization

GE2(R) denotes the subgroup of GL2(R) which is
generated by the set of all matrices of the form

(

1 t

0 1

)

,

(

1 0
t 1

)

,

(

u 0
0 v

)

with t, u, v ∈ R and u, v invertible.

Theorem. The projective line P(R) is connected
if, and only if,

GL2(R) = GE2(R),

i.e., R is a GE2-ring.
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Examples

P(R) is connected if R is a

• local ring,

• endomorphism ring of a vector space,

• finite-dimensional algebra,

• polynomial ring F [X], X a central indeterminate.

However, F [X1, X2, . . . , Xn] with n ≥ 2 central
indeterminates is not a GE2-ring.
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Blaschke’s Cone

A quadratic cone (without its vertex) in the real
projective 3-space is a point model for the projective
line over R[ε]. Two points are parallel exactly if they
are on a common generator.

Under a stereographic projection all points that
are distant to the centre of projection are mapped
bijectively onto the plane of dual numbers (isotropic

plane).
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Residue at a point

We fix one point of Σ(F, R), say R(1, 0) =: ∞ and
put

P∞ := {R(a, b) ∈ P(R) | R(a, b)4∞},

B∞ := {C \ {∞} | C is a chain , ∞ ∈ C}.

(P∞,B∞) is the residue of Σ(F, R) at ∞. The
elements of B∞ are called blocks.

We shall identify R and P∞ via the bijection

R → P∞ : r 7→ R(r, 1).
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Left and Right Affine Spaces

R is a left and a right vector space over u−1Fu for
each u ∈ R∗.

So we get (in general a lot of) left and right affine
spaces

A(R, u−1Fu)left, A(R, u−1Fu)right

with common point set P∞ = R, each with two
types of lines:

• regular lines (direction vector in R∗)

• singular lines (otherwise)

The elements of B∞ are exactly the regular lines of
all left (right) affine spaces from above.
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Open Problem

Is it possible to characterize, in terms of Σ(F, R),
those subsets of B∞ which are formed by all
regular lines coming from a fixed affine space
A(R, u−1Fu)left or A(R, u−1Fu)right?
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Endomorphism Rings

Let U be a left vector space over a field K. We
consider the projective space on U × U :

G denotes the set of all subspaces that are isomorphic
to one of their complements.

Theorem. For S := EndK(U) the mapping

Ψ : P(S) → G : S(α, β) 7→ {(uα, uβ) | u ∈ U}

is bijective. Distant points and complementary
subspaces are in bijective correspondence.

Example

If dimU = 2 then G is the set of lines in the
projective 3-space over K.
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Arbitrary Rings

Let U be a (K, R)-bimodule and S = EndK(U).
For each a ∈ R the mapping

R → S : a 7→ (ρa : u 7→ ua)

is a K-linear representation.

Theorem. The mapping

P(R) → P(S) : R(a, b) 7→ S(ρa, ρb)

is well defined and takes distant points to distant
points. The mapping is injective exactly if U is
faithful (as right R-module).

Altogether we get the projective representation

P(R) → G : R(a, b) 7→ {ua, ub | u ∈ U}.
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Chain Geometries

We obtain a projective representation of Σ(F, R)
from a (K, R)-bimodule U . So U is a K-left vector
space and an F -right vector space.

If R is a finite-dimensional F -algebra, U 6= {0},
and F = K then the chains appear as reguli (Segre
manifolds).

In general, a unified geometric description of chains
seems hopeless.

• It depends on “how” the field F is embedded in
the ring R.

• The link between F and K is rather weak:

char F = char K if U 6= {0}
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Field

Let ζ1, ζ2 be monomorphisms of F = K. The
mapping

k 7→ diag
(

kζ1, kζ2
)

is a faithful representation of K. (We use matrix
rings over K instead of EndK(U).)

2 weak transversals

Particular cases

• ζ1 = ζ2 = idK: Regulus

• K = C, ζ1 = idC, ζ2 = conjugation: Elliptic
linear congruence (regular spread) of a real sub-
geometry.
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Double numbers

Let ζ1, ζ2 be monomorphisms of K and let R =
K × K. The representation

(k1, k2) 7→

(

k
ζ1
1 0

0 k
ζ2
2

)

is faithful.

2 weak transversals

Particular case

• ζ1, ζ2 ∈ Aut(K): Hyperbolic linear congruence of
lines.
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Twisted dual numbers

R = K[ε] with ε2 = 0, εk = kζε, and ζ ∈ Aut(K).
The representation

k1 + k2ε 7→

(

k1 k2

0 k
ζ
1

)

is faithful.

1 weak transversal

Particular cases

• ζ = idK: Dual numbers, parabolic linear
congruence of lines without its axis.

• K = C, ζ = conjugation: Ring of Study’s

quaternions.
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Upper triangular matrices

Let R be the ring of upper triangular (2×2)-matrices
over K.

1 transversal

Special linear complex of lines without its axis.

Particular case

• K = R: R is the ring of ternions.
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