Recent Results in Chain Geometry

Hans Havlicek

Institut für Geometrie, Technische Universität Wien Vienna, Austria

Varna, August 2001

Part 1 Basic Concepts

W. BENZ. *Vorlesungen über Geometrie der Algebren*. Springer, Berlin, 1973.

A. HERZER. Chain geometries. In F. Buekenhout, editor, *Handbook of Incidence Geometry*. Elsevier, Amsterdam, 1995.

A. BLUNCK and H. HAVLICEK. Extending the concept of chain geometry. *Geom. Dedicata* **83** (2000), 119–130.

A. BLUNCK and H. HAVLICEK. The connected components of the projective line over a ring. *Adv. Geom.* **1** (2001), 107–117.

The Real Möbius Plane

Algebraic definition

Points: $\mathbb{C} \cup \{\infty\}$ (complex projective line) *Circles*: Images of $\mathbb{R} \cup \{\infty\}$ under $\mathrm{PGL}_2(\mathbb{C})$

Other models

- Elliptic quadric / conics
- Euclidean plane + one point / circles and lines
- Elliptic linear congruence of lines (regular spread)
 / reguli

The Projective Line over a Ring

All our rings are associative, with unit element 1 which is inherited by subrings and acts unitally on modules.

Let $\operatorname{GL}_2(R)$ be the group of invertible (2×2) -matrices with entries in a ring R.

A pair $(a, b) \in \mathbb{R}^2$ is called *admissible* if (a, b) is the first row of a matrix in $\operatorname{GL}_2(\mathbb{R})$.

Projective line over *R*:

 $\mathbb{P}(R) := \{ R(a,b) \mid (a,b) \text{ admissible } \}$

Chain Geometries

Assume that F is a field (not necessarily commutative) contained in a ring R. There is the natural embedding

$$\mathbb{P}(F) \to \mathbb{P}(R) : F(a,b) \mapsto R(a,b).$$

The images of $\mathbb{P}(F)$ under $\mathrm{PGL}_2(R)$ are the *chains* of the *chain geometry* $\Sigma(F, R)$.

 $\operatorname{PGL}_2(R)$ is a group of automorphisms of $\Sigma(F, R)$.

Let R^* be the group of units in R. Then $u \in R^*$ implies

$$\Sigma(F,R) = \Sigma(u^{-1}Fu,R).$$

The Real Laguerre Plane

 $\mathbb{D} := \mathbb{R}[\varepsilon]$ with $\varepsilon^2 = 0$ is the ring of *dual numbers* over \mathbb{R} .

Up to isomorphism, $\Sigma(\mathbb{R}, \mathbb{D})$ is the geometry of *spears* and *oriented circles* in the Euclidean plane.

The Distant Graph

Distant points of $\mathbb{P}(R)$:

$$R(a,b) \triangle R(c,d) : \iff \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(R)$$

Non-distant points are also called *parallel*.

 $(\mathbb{P}(R), \triangle)$ is the *distant graph* of $\mathbb{P}(R)$.

Examples

Two points of $\Sigma(F, R)$ are distant exactly if they are different and joined by a chain.

Varna, August 2001

Chains through three points

Theorem. There are as many chains through three mutually distant points of $\Sigma(F, R)$ as there are subfields $u^{-1}Fu$, where u is a unit in R.

Examples

There is a unique chain through three mutually distant points if

- F is in the centre of R,
- $F^* = R^*$,
- F = GF(4), R = M(2, 2, GF(2))(sporadic example).

There is more than one chain through three mutually distant points if

- $R = \mathbb{H}$ and $F = \mathbb{C}$ (4-sphere / 2-spheres),
- $F = GF(q^2)$, R = M(2, 2, GF(q)) with q > 2.

Part 2 Connectedness

P.M. COHN. On the structure of the GL_2 of a ring. Inst. Hautes Etudes Sci. Publ. Math. **30** (1966), 5–53.

A. BLUNCK and H. HAVLICEK. The connected components of the projective line over a ring. *Adv. Geom.* **1** (2001), 107–117.

A Characterization

 $GE_2(R)$ denotes the subgroup of $GL_2(R)$ which is generated by the set of all matrices of the form

$$\left(\begin{array}{cc}1&t\\0&1\end{array}\right),\ \left(\begin{array}{cc}1&0\\t&1\end{array}\right),\left(\begin{array}{cc}u&0\\0&v\end{array}\right)$$

with $t, u, v \in R$ and u, v invertible.

Theorem. The projective line $\mathbb{P}(R)$ is connected if, and only if,

$$\operatorname{GL}_2(R) = \operatorname{GE}_2(R),$$

i.e., R is a GE₂-ring.

Examples

 $\mathbb{P}(R)$ is connected if R is a

- local ring,
- endomorphism ring of a vector space,
- finite-dimensional algebra,
- polynomial ring F[X], X a central indeterminate.

However, $F[X_1, X_2, \ldots, X_n]$ with $n \ge 2$ central indeterminates is not a GE₂-ring.

Part 3 Residues

A. BLUNCK and H. HAVLICEK. Affine spaces within projective spaces. *Res. Math.* **36** (1999), 237–251.

A. BLUNCK and H. HAVLICEK. Extending the concept of chain geometry. *Geom. Dedicata* **83** (2000), 119–130.

A. BLUNCK and H. HAVLICEK. The dual of a chain geometry. *J. Geom.* (to appear).

Blaschke's Cone

A quadratic cone (without its vertex) in the real projective 3-space is a point model for the projective line over $\mathbb{R}[\varepsilon]$. Two points are parallel exactly if they are on a common generator.

Under a stereographic projection all points that are distant to the centre of projection are mapped bijectively onto the plane of dual numbers (*isotropic plane*).

Residue at a point

We fix one point of $\Sigma(F, R)$, say $R(1, 0) =: \infty$ and put

$$\mathbb{P}_{\infty} := \{ R(a,b) \in \mathbb{P}(R) \mid R(a,b) \bigtriangleup \infty \}, \\ \mathbf{B}_{\infty} := \{ \mathcal{C} \setminus \{ \infty \} \mid \mathcal{C} \text{ is a chain }, \infty \in \mathcal{C} \}.$$

 $(\mathbb{P}_{\infty}, \mathbf{B}_{\infty})$ is the *residue* of $\Sigma(F, R)$ at ∞ . The elements of \mathbf{B}_{∞} are called *blocks*.

We shall identify R and \mathbb{P}_{∞} via the bijection

$$R \to \mathbb{P}_{\infty} : r \mapsto R(r, 1).$$

Left and Right Affine Spaces

R is a left and a right vector space over $u^{-1}Fu$ for each $u \in R^*$.

So we get (in general a lot of) left and right affine spaces

$$\mathbb{A}(R, u^{-1}Fu)_{\text{left}}, \ \mathbb{A}(R, u^{-1}Fu)_{\text{right}}$$

with common point set $\mathbb{P}_{\infty} = R$, each with two types of lines:

- *regular* lines (direction vector in R^*)
- *singular* lines (otherwise)

The elements of \mathbf{B}_∞ are exactly the regular lines of all left (right) affine spaces from above.

Open Problem

Is it possible to characterize, in terms of $\Sigma(F, R)$, those subsets of \mathbf{B}_{∞} which are formed by all regular lines coming from a fixed affine space $\mathbb{A}(R, u^{-1}Fu)_{\text{left}}$ or $\mathbb{A}(R, u^{-1}Fu)_{\text{right}}$?

Part 4 Projective Representations

A. BLUNCK. Reguli and chains over skew fields. *Beiträge Algebra Geom.* **41** (2000), 7–21.

A. BLUNCK and H. HAVLICEK. Projective representations I. Projective lines over rings. *Abh. Math. Sem. Univ. Hamburg* **70** (2000), 287–299.

A. BLUNCK and H. HAVLICEK. Projective representations II. Generalized chain geometries. *Abh. Math. Sem. Univ. Hamburg* **70** (2000), 300–313.

Endomorphism Rings

Let U be a left vector space over a field K. We consider the projective space on $U \times U$:

 ${\cal G}$ denotes the set of all subspaces that are isomorphic to one of their complements.

Theorem. For $S := \operatorname{End}_K(U)$ the mapping

 $\Psi: \mathbb{P}(S) \to \mathcal{G}: S(\alpha, \beta) \mapsto \{(u^{\alpha}, u^{\beta}) \mid u \in U\}$

is bijective. Distant points and complementary subspaces are in bijective correspondence.

Example

If $\dim U = 2$ then \mathcal{G} is the set of lines in the projective 3-space over K.

Arbitrary Rings

Let U be a (K, R)-bimodule and $S = \operatorname{End}_K(U)$. For each $a \in R$ the mapping

$$R \to S : a \mapsto (\rho_a : u \mapsto ua)$$

is a K-linear representation.

Theorem. The mapping $\mathbb{P}(R) \to \mathbb{P}(S) : R(a, b) \mapsto S(\rho_a, \rho_b)$ is well defined and takes distant points to distant points. The mapping is injective exactly if U is faithful (as right R-module).

Altogether we get the projective representation

$$\mathbb{P}(R) \to \mathcal{G} : R(a, b) \mapsto \{ua, ub \mid u \in U\}.$$

Chain Geometries

We obtain a projective representation of $\Sigma(F, R)$ from a (K, R)-bimodule U. So U is a K-left vector space and an F-right vector space.

If R is a finite-dimensional F-algebra, $U \neq \{0\}$, and F = K then the chains appear as reguli (Segre manifolds).

In general, a unified geometric description of chains seems hopeless.

- It depends on "how" the field F is embedded in the ring R.
- The link between F and K is rather weak:

 $\operatorname{char} F = \operatorname{char} K \text{ if } U \neq \{0\}$

Field

Let ζ_1, ζ_2 be monomorphisms of F = K. The mapping

$$k \mapsto \operatorname{diag}(k^{\zeta_1}, k^{\zeta_2})$$

is a faithful representation of K. (We use matrix rings over K instead of $\operatorname{End}_{K}(U)$.)

 $2~{\rm weak}~{\rm transversals}$

Particular cases

- $\zeta_1 = \zeta_2 = \mathrm{id}_K$: Regulus
- $K = \mathbb{C}$, $\zeta_1 = id_{\mathbb{C}}$, $\zeta_2 = conjugation$: Elliptic linear congruence (regular spread) of a real subgeometry.

Double numbers

Let ζ_1, ζ_2 be monomorphisms of K and let $R = K \times K$. The representation

$$(k_1, k_2) \mapsto \left(\begin{array}{cc} k_1^{\zeta_1} & 0\\ 0 & k_2^{\zeta_2} \end{array}\right)$$

is faithful.

 $2\ {\rm weak}\ {\rm transversals}$

Particular case

ζ₁, ζ₂ ∈ Aut(K): Hyperbolic linear congruence of lines.

Twisted dual numbers

 $R=K[\varepsilon]$ with $\varepsilon^2=0,\ \varepsilon k=k^\zeta\varepsilon,$ and $\zeta\in {\rm Aut}(K).$ The representation

$$k_1 + k_2 \varepsilon \mapsto \left(\begin{array}{cc} k_1 & k_2 \\ 0 & k_1^{\zeta} \end{array}\right)$$

is faithful.

1 weak transversal

Particular cases

- $\zeta = id_K$: Dual numbers, parabolic linear congruence of lines without its axis.
- $K = \mathbb{C}$, $\zeta = \text{conjugation}$: Ring of *Study's quaternions*.

Upper triangular matrices

Let R be the ring of upper triangular (2×2) -matrices over K.

 $1\ {\rm transversal}$

Special linear complex of lines without its axis.

Particular case

• $K = \mathbb{R}$: *R* is the ring of *ternions*.