A Parallelism Based on the Jacobson Radical of a Ring

Hans Havlicek

Institut für Geometrie Technische Universität Wien Vienna, Austria

A. Blunck and H. Havlicek. Radical parallelism on projective lines and non-linear models of affine spaces. *Math. Pannonica* **14** (2003), 113–127.

The Jacobson Radical

All our rings are associative, with unit element $1 \neq 0$ which is inherited by subrings and acts unitally on modules.

Jacobson radical of a ring *R*:

 $\operatorname{rad} R := \bigcap$ all maximal left (or right) ideals of R

The Jacobson radical $\operatorname{rad} R$ is a two sided ideal of R and

 $\overline{R} := R/\mathrm{rad}\,R$

has a zero radical.

The Meaning of the Jacobson Radical

Let R^* be the group of invertible elements of R.

In terms of R:

$$b \in \operatorname{rad} R \quad \Leftrightarrow \quad 1 - ab \in R^* \text{ for all } a \in R$$

 $\Leftrightarrow \quad 1 - ba \in R^* \text{ for all } a \in R$

In terms of matrices over R:

$$b \in \operatorname{rad} R \Leftrightarrow \begin{pmatrix} 1 & b \\ a & 1 \end{pmatrix} \in \operatorname{GL}_2(R) \text{ for all } a \in R$$

Observe that we cannot use determinants in order to invert a matrix over a non-commutative ring.

Examples

Let R be a *ring of matrices* over a (skew-)field or a *direct product* of such rings:

 $\operatorname{rad} R = \{0\}$

E.g.: $\mathbb{R}^{2 \times 2}$, $\mathbb{R} \times \mathbb{R}$, $\mathbb{R} \times \mathbb{C}$, . . .

Let R be a *local ring*:

$$\operatorname{rad} R = R \setminus R^*$$

E.g.: $R = \mathbb{D} = \mathbb{R} + \mathbb{R}\varepsilon$, the real *dual numbers*.

Let R be the ring of *upper triangular* 2×2 -*matrices* over a field \mathbb{F} (ring of *ternions*): It has an \mathbb{F} -basis

$$j_1 := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ j_2 := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ \varepsilon := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Maximal left ideals in R are $\mathbb{F}j_1 + \mathbb{F}\varepsilon$ and $\mathbb{F}j_2 + \mathbb{F}\varepsilon$;

$$\operatorname{rad} R = \mathbb{F}\varepsilon.$$

The Projective Line over a Ring

A pair $(a, b) \in \mathbb{R}^2$ is called *admissible* if (a, b) is the first row of a matrix in $\operatorname{GL}_2(\mathbb{R})$.

Projective line over *R*:

$$\mathbb{P}(R) := \{R(a,b) \mid (a,b) \in R^2 \text{ is admissible}\}\$$
$$= R(1,0)^{\operatorname{GL}_2(R)}$$

Distant relation (\triangle) on $\mathbb{P}(R)$:

$$\triangle := (R(1,0), R(0,1))^{\mathrm{GL}_2(R)}$$

It is symmetric and anti-reflexive. Letting p = R(a, b) and q = R(c, d) gives

$$p \bigtriangleup q \Leftrightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(R).$$

Non-distant points are also called *parallel*.

Three Classical Examples

Complex numbers \mathbb{C} : The relations ' \triangle ' and ' \neq ' coincide. Parallel points are identical.	
Double numbers $\mathbb{R} \times \mathbb{R}$: The parallelism is the union of two equivalence relations (meridians and parallel circles on the torus.)	
Real dual numbers \mathbb{D} : The parallelism is an equi- valence relation (generators on the cylinder.)	

The Radical Parallelism

 $p,q \in \mathbb{P}(R)$ said to be *radically parallel* $(p \parallel q)$ if

$$x \bigtriangleup p \Rightarrow x \bigtriangleup q$$
 for all $x \in \mathbb{P}(R)$.

Properties:

- The relation || is reflexive and transitive.
- The relation \parallel is finer than $\not a$, i.e. $p \parallel q$ implies $p \not a q$. (Let x = q in the definition.)
- The relation \parallel is invariant under the action of $\operatorname{GL}_2(R)$.

We shall see that \parallel is in fact an equivalence relation.

Algebraic Description

Theorem. The point R(1,0) is radically parallel to $q \in \mathbb{P}(R)$ exactly if there is an element b in the Jacobson radical rad R such that

$$q = R(1, b).$$

Recall that $\overline{R} := R/\mathrm{rad}\,R$.

Theorem. The mapping

$$\mathbb{P}(R) \to \mathbb{P}(\overline{R}) : p = R(a, b) \mapsto \overline{R}(\overline{a}, \overline{b}) =: \overline{p}$$

is well defined and surjective. It has the property

$$p \parallel q \Leftrightarrow \overline{p} = \overline{q} \text{ for all } p, q \in \mathbb{P}(R).$$

Therefore, \parallel is an equivalence relation.

An Example

The projective line over the ring R of upper triangular matrices over a field \mathbb{F} can be identified with a *special linear complex of lines* (in a projective 3-space over \mathbb{F}) without its axis, say a.

 $p riangle q \iff p, q$ are skew lines $p \parallel q \iff a, p, q$ are in a pencil

Remark: $R/\mathrm{rad} R = \overline{R} \cong \mathbb{F} \times \mathbb{F}$.

Let A be an algebra over a field $\mathbb F.$ Then

$$y \mapsto A(y,1)$$

is a bijection of A onto the set of all points that are distant to A(1,0). We shall identify these sets.

Every projectivity of $\mathbb{P}(A)$ such that A(1,0) goes over to a distinct radically parallel point induces a *bijective non-linear Cremona transformation* on A.

 \Rightarrow Genereralizations of the *parabola model* of the real affine plane to higher dimensions.