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Geometry of Matrices

Let Mm,n, m, n ≥ 2, be the vector space of all m × n matrices over a field F.

Two matrices (linear operators) A and B are adjacent if A − B is of rank one.

We may consider Mm,n as an undirected graph the edges of which are precisely the
(unordered) pairs of adjacent matrices.

Two matrices A and B are at the graph-theoretical distance k ≥ 0 if, and only if

rank(A − B) = k.

On the other hand we may consider Mm,n as an affine space. Its lines fall into
min{m, n} classes, according to the rank of a “direction vector”.



Hua’s Theorem

Fundamental Theorem (1951). Every bijective map ϕ : Mm,n → Mm,n : A 7→ ϕ(A)
preserving adjacency in both directions is of the form

A 7→ TAσS + R,

where T is an invertible m × m matrix, S is an invertible n × n matrix, R is an m × n

matrix, and σ is an automorphism of the underlying field.

If m = n, then we have the additional possibility that

A 7→ TAt
σS + R

where T, S, R and σ are as above, and At denotes the transpose of A.

The assumptions in Hua’s fundamental theorem can be weakened.
W.-l. Huang and Z.-X. Wan: Beiträge Algebra Geom. 45 (2004), no. 2, 435–446.



Grassmann Spaces

Let m, n be integers ≥ 2. We consider the Grassmannian Gm+n,m whose elements
are vector subspaces of F

m+n of dimension m. Alternatively, the point of view of
projective geometry may be adopted.

Two m-dimensional subspaces U and V are adjacent if dim(U + V ) = m + 1.

As before, we obtain a graph known as the Grassmann graph of Gm+n,m.

Two subspaces U and V are at graph-theoretical distance k if, and only if,

dim(U + V ) = m + k,

whence k ≤ min{m, n}.

On the other hand, we may consider Gm+n,m as the “point set” of a Grassmann
space. Its “lines” are the pencils of k-subspaces.



Chow’s Theorem

Chow’s Theorem (1949). Every bijective map ϕ : Gm+n,n → Gm+n,n : U 7→ ϕ(U)
preserving adjacency in both directions is induced by a semilinear mapping

f : F
m+n → F

m+n : x 7→ Lxσ such that ϕ(U) = f(U),

where L is an invertible (m + n) × (m + n) matrix, and σ is an automorphism of the
underlying field.

If m = n we have the additional possibility that ϕ is induced by a sesquilinear form

g : F
m+n × F

m+n → F : (x, y) 7→ xt
σLy such that U ⊥g ϕ(U),

where L and σ are as above.

The assumptions in Chow’s theorem can be weakened.
W.-l. Huang: Abh. Math. Sem. Univ. Hamburg 68 (1998), 65–77.



Coordinates

To each m-dimensional subspace U of F
m+n we can associate an m×(m+n) matrix

whose rows form a basis of U . This matrix can be written in block form as

[X Y ]

where X,Y are of size m × n and m × m, respectively.

Two matrices [X Y ] and [X ′ Y ′], each with rank m, are associated to the same U if,
and only if,

[X Y ] = P [X ′ Y ′]

for some invertible m × m matrix P .

This gives “homogeneous coordinates” for the Grassmann space. For m = n we
obtain the projective line over the ring of m × m matrices.



Connection

Let U be a point of the Grassmann space and [X Y ] an associated matrix:

• U is at infinity if Y is not invertible.

• U is a finite point otherwise. Hence it can be written uniquely in the form [A I],
where A is an m × n matrix and I is the identity matrix.

The mapping U 7→ A is a bijection from the set of finite points of the Grassmann
space Gm+n,n onto the space Mm,n; adjacency is preserved in both directions.

Alternative point of view: Stereographic projection of a Grassmann variety (folklore).
Cf. also: R. Metz: Geom. Dedicata 10 (1981), no. 1-4, 337–367.



Full Rank Differences

Let F be a field with at least three elements and m,n integers with m ≥ n ≥ 2.

Given A, B ∈ Mm,n we write A △ B if A − B is of full rank (i.e., the rank equals n).

For two finite points U, V of the Grassmann space F
m+n the sum

U + V is direct

(i. e. they meet at 0 only) if, and only if, their associated matrices A, B satisfy

A △ B.



Full Rank Preservers

Theorem 1. Assume that ϕ : Mm,n → Mm,n is a bijective map such that for every
pair A, B ∈ Mm,n we have

A △ B ⇔ ϕ(A) △ ϕ(B).

Then adjacency is preserved under ϕ in both directions.

Consequently, Hua’s theorem can be applied and all such mappings can be de-
scribed explicitly as before.

Cf. A. Blunck, H. H.: Discrete Math. 301 (2005), no. 1, 46–56.



Sketch of the Proof

Proposition. Let A, B ∈ Mm,n be matrices with A 6= B. Then the following are
equivalent:

1. A and B are adjacent.

2. There exists C ∈ Mm,n, C 6= A,B, such that for every X ∈ Mm,n

the relation X △ C yields X △ A or X △ B.

Geometric idea behind the proof (m = n = 2):
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Hilbert Spaces

Let H be an infinite-dimensional complex Hilbert space and B(H) the algebra of all
bounded linear operators on H.

Given A, B ∈ B(H) we write A △ B if A − B is invertible.

Then it is possible to characterise all invertibility preservers, i. e., all bijective map-
pings ϕ : B(H) → B(H) with the following property:

For every pair A,B ∈ B(H) we have

A − B is invertible ⇔ ϕ(A) − ϕ(B) is invertible.



Invertibility Preservers

Theorem 2. Let H be an infinite-dimensional complex Hilbert space and B(H) the
algebra of all bounded linear operators on H. Assume that ϕ : B(H) → B(H) is an
invertibility preserver.

Then there exist R ∈ B(H) and invertible T, S ∈ B(H) such that
either

ϕ(A) = TAS + R

for every A ∈ B(H), or
ϕ(A) = TAtS + R

for every A ∈ B(H), or
ϕ(A) = TA∗S + R

for every A ∈ B(H), or
ϕ(A) = T (At)∗S + R

for every A ∈ B(H).

Here, At and A∗ denote the transpose with respect to an arbitrary but fixed orthonor-
mal basis, and the usual adjoint of A in the Hilbert space sense, respectively.


