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Introduction

F. A. Mobius gave an affirmative answer to the following
guestion in 1828:

Do there exist two tetrahedra each of which has all its ver-
tices lying in planes of the other?
F. A. Mobius. Kann von zwel dreiseitigen Pyramiden eine jede in Bezug auf die

andere um- und eingeschrieben zugleich heissen? J. reine angew. Math., 3:273—
278, 1828.



Example

Here is an example in the three-dimensional Euclidean space.

The two (regular) tetrahedra are mutually inscribed and circumscribed.

We call them a Mobius pair of tetrahedra or shortly a Mobius pair.



The Three-Dimensio

The result of Mobius involves only incidence properties, so it is a theorem of three-
dimensional projective geometry over the real numbers.

There is a wealth of older and newer papers on Mobius pairs (H. S. M. Coxeter,
A. P. Guinand, K. Witczynski, .. .).

It turns out that Mobius pairs exist in the three-dimensional projective space over any
field F'. (All our fields are understood to be commutative.)



Mobius Pairs

In what follows we consider the n-dimensional projective space PG(n, F') over any
field F', where n > 1.

Two n-simplices of PG(n, F') are mutually inscribed and circumscribed if each point
of the first simplex is in a hyperplane of the second simplex, and vice versa for the
points of the second simplex.

Two such n-simplices will be called a Mdbius pair of simplices in PG(n, F') or shortly
a Mobius pair.



Existence

A systematic account of the n-dimensional case seems to be missing. We could find

just a few results:

e In PG(n, F'), with n odd, choose any null polarity and any n-simplex, say P. Then
the poles of the hyperplanes of P comprise a simplex Q, say. The simplices P

and O form a Mobius pair (folklore, mentioned in a book by H. Brauner).

e The Klein image of a double six of lines in PG(3, F)) gives a Mobius pair in

PG(5, F') (folklore, mentioned in a book by J. W. P. Hirschfeld).

e Other examples are due to L. Berzolari and H. S. M. Coxeter.



Non-Degeneracy

A Mobius pair is said to be non-degenerate if each point of either simplex is incident
with one and only one hyperplane of the other simplex.

Question:

Do non-degenerate Mdbius pairs exist in PG(n, F') for all n > 1 and all fields F'?



A Negative Answer

Any triangle Py, P, P> in the projective plane PG(2, F') can be extended to a MObius
pair.

However, all solutions are degenerate.

P; P; P, P, = Q
Q1 Q1

Qo

Po=Qo Q2 P Py = Q2 = Po=Q2 P = Qo Pyh=Q2: P =0Qo



Non-degenerate Mobiu

In the second part the existence of non-degenerate Mobius
pairs will be established for projective spaces PG(n, I') of

odd dimension n > 1.

The problem of finding all non-degenerate Mobius pairs is not within the scope of

this lecture.



Basic Assumptions

We define an alternating (n + 1) x (n 4 1) matrix

(0 -1 ... —1)

A= 1 O B _% . (1)

\1 1 ... 0/
It is easily verified that A is an invertible matrix. Thus A defines a null polarity 7 of
PG(n, F).




Basic Assumptions (cont

Let
P .= {P(),Pl, « o ,Pn}

be the n-simplex which is determined by the vectors ey, eq, ..

basis of F**1 i. e.,

P; = Fe; forall j€{0,1,...,n}.

The elements of F ! are understood as column vectors.

., e, Of the standard

(2)



Towards an Affirmative AnSWe

The proof is an elementary calculation.




2" Distinguished Points

The null polarity = and the simplex P give rise to the following points:

e Py, P ...,P, (the points of P).

e Pyi2, Po1s, ..., P2 n—1. (ONe point in each plane of P)

.....

All together these are

(7))

mutually distinct points.

(=50~

(3)



Main Result

Given Pj, ;... let0 <my < my < --- < m,_, < n be those indices which do not
appear in (jo, j1,- - -, Jjx). Then we define

Pj()?jl?'“,jk: = Qm()aml?'“,mn—k;' (4)




Further Results

Under the assumptions of Theorem 1 the following assertions hold:

e Forn =1 holds Py, = Q; and P; = (), otherwise n-simplices P and Q have no

points in common.

e For n > 3 the n-simplices P and Q are in perspective from a point if, and only If,
F'is a field of characteristic two.

e Any choice of an even number of points from P gives rise to a nested Mobius pair.
It shares, mutatis mutandis the properties of P and Q. This gives an interpretation
for all the 2™ points from (3).



Paull Operators

In the third part it will be sketched—iIn terms of one exam-
ple only—how to apply our geometric results to get rather

peculiar systems of commuting / non-commuting Pauli op-

erators.



The Pauli Group

We consider the complex matrices

0o = , Ogp 1= , oy = | , O, = . (5

The sixteen matrices
i%3  with i:=+v—-1, a€{0,1,2,3}, and (€ {0,z,y,z}

constitute the Pauli group P. It acts on the two-dimensional Hilbert space of a single
guantum bit (qubit).



Symplectic Geometry

Let G = P ®c P be the the Kronecker product of the Pauli group with itself. This

group acts on the four-dimensional Hilbert space of two qubits.

o #(G = 64.

e Centreof G: Z(G) ={i%y®o0op | a=0,1,2,3}, #Z(G) = 4.

e G/Z(G) can be viewed as a 4-dimensional vector space V' over GF(2) which is

equipped with a symplectic bilinear form.

e Commutation in &G is equivalent to (symplectic) perpendicularity in V.



The Projective Point ﬂ

zz:={i%,®0, | a=0,1,2,3}

Here the Cremona-Richmond configuration is used to depict the three-dimensional

symplectic polar space over GF(2) (points and null lines only), a Mdbius pair, all
centres of perspectivity, and the corresponding cosets of operators from P (using

shorthand notation).



