Möbius differential geometry

(Version: July 17, 2003; A4 format)

Basics

Möbius geometry is the geometry of the group of Möbius transformations, that is, hypersphere preserving (point) transformations, acting on the *n*-sphere S^n as a base manifold. The elements of Möbius geometry are points (elements of the first kind) and hyperspheres (elements of the second kind).

Models

Models serve a uniform description of the elements of (Möbius) geometry (points, hyperspheres) and derived objects (for example, k-spheres) as well as a description of the Möbius transformations as linear, fractional linear, or spin transformations.

The classical (projective) model: the conformal *n*-sphere as an absolute quadric $S^n \cong \{\mathbb{R}v \subset \mathbb{R}^{n+2}_1 \mid |v|^2 = 0\} \subset \mathbb{R}P^{n+1}$, the space of hyperspheres as the "outer space" $S_1^{n+1}/\pm_1 \subset \mathbb{R}P^{n+1};$ the Lorentz sphere $S_1^{n+1} = \{v \in \mathbb{R}_1^{n+2} | |v|^2 = 1\}$ can be interpreted as the space of *oriented* hyperspheres. Möbius transformations become Lorentz transformations, resp. projective transformations that preserve $S^n \subset \mathbb{R}P^{n+1}$.

The quaternionic approach: the conformal 4-sphere as the quaternionic projective line, $S^4 \cong \mathbb{H}P^1$, and the space of quaternionic Hermitian forms $\mathfrak{H}(\mathbb{H}^2) \cong \mathbb{R}^6_1$ with $|h|^2 = -\det h$ (w.r.t. some basis) so that 3-spheres are quaternionic Hermitian forms. Möbius involutions $S \in \mathfrak{S}(\mathbb{H}^2), S^2 = -id$, are 2-spheres. Orientation preserving Möbius transformations are fractional linear transformations, or special linear transformations (on homogeneous coordinates $v \in \mathbb{H}^2$).

A Clifford algebra model: the coordinate Minkowski space \mathbb{R}^{n+2}_1 of the projective model is embedded into its Clifford algebra $\mathcal{A}\mathbb{R}^{n+2}_1$. Möbius transformations are (s)pin transformations.

The Vahlen matrix approach: the Clifford algebra \mathcal{AR}_1^{n+2} is described in terms of 2×2 -matrices with entries from the Clifford algebra $\mathcal{A}\mathbb{R}^n$ of Euclidean *n*-space. Möbius transformations are fractional linear transformations, given by Vahlen matrices.

Points

We consider $\mathbb{R}_1^{n+2} = \mathbb{R} \times \mathbb{R}^{n+1} = \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}$ with the Minkowski product $\langle (y_0, y), (y_0, y) \rangle = -y_0^2 + |y|^2$. The following are description: tions of points in different models.

As points of the absolute quadric in the projective model:

$$\mathbb{R}^{n+1} \supset S^n \ni y \quad \leftrightarrow \quad \mathbb{R}(1,y) \\ \mathbb{R}^n \ni x \quad \mapsto \quad \mathbb{R}\left(\frac{1+|x|^2}{2}, x, \frac{1-|x|^2}{2}\right) \right\} \in S^n \subset \mathbb{R}P^{n+1}.$$

As quaternionic Hermitian forms, in the quaternionic approach $(\mathbb{R}^4 \cong \mathbb{H} \text{ can be identified with the affine slice } v_2 = 1)$:

 $S^{4} \cong \mathbb{H}P^{1} \ni \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} \mathbb{H} \quad \leftrightarrow \quad \mathbb{R} \begin{pmatrix} |v_{2}|^{2} & -v_{1}\bar{v}_{2} \\ -v_{2}\bar{v}_{1} & |v_{1}|^{2} \end{pmatrix} \subset \mathfrak{H}(\mathbb{H}^{2}).$

As 2×2 -Clifford algebra matrices in the Vahlen matrix approach:

$$\mathbb{R}^n \ni x \mapsto \mathbb{R}\begin{pmatrix} x & -x^2 \\ 1 & -x \end{pmatrix} \subset \mathcal{A}\mathbb{R}^{n+2}_1 \cong M(2 \times 2, \mathcal{A}\mathbb{R}^n).$$

Hyperspheres

A hypersphere with center $m \in S^n \subset \mathbb{R}^{n+1}$ and radius $\rho \in (0, \pi)$:

$$=\frac{1}{\sin \varrho}(\cos \varrho,m)\in S_1^{n}$$

 $S=\frac{1}{\sin\varrho}\left(\cos\varrho,m\right)\in S_1^{n+1};$ a change to -m and $\pi-\varrho$ reverts the orientation.

A hypersphere with center $m \in \mathbb{R}^n$ and radius $r \neq 0$:

$$S = \frac{1}{r} \left(\frac{1 + (|m|^2 - r^2)}{2}, m, \frac{1 - (|m|^2 - r^2)}{2} \right) \in S_1^{n+1}$$

and a hyperplane with normal $n \in S^{n-1} \subset \mathbb{R}^n$ and (directed) distance $d \in \mathbb{R}$ from the origin:

 $T = (d, n, -d) \in S_1^{n+1};$

as Vahlen matrices:

$$S = \frac{1}{r} \begin{pmatrix} m & -m^2 - r^2 \\ 1 & -m \end{pmatrix}, \quad T = \begin{pmatrix} n & 2d \\ 0 & -n \end{pmatrix} \in \mathcal{A}\mathbb{R}^{n+2}_1$$

and as quaternionic Hermitian forms:

$$S = \frac{1}{r} \begin{pmatrix} 1 & -m \\ -\bar{m} & |m|^2 - r^2 \end{pmatrix}, \quad T = \begin{pmatrix} 0 & -n \\ -\bar{n} & 2d \end{pmatrix} \in \mathfrak{H}(\mathbb{H}^2)$$

2-spheres (or planes) in $\mathbb{R}^3 \cong \text{Im}\mathbb{H}$ as Möbius involutions:

$$S = \frac{1}{r} \begin{pmatrix} m & |m|^2 - r^2 \\ 1 & \bar{m} \end{pmatrix}, \quad T = \begin{pmatrix} n & 2d \\ 0 & \bar{n} \end{pmatrix} \in \mathfrak{S}(\mathbb{H}^2)$$

Note that S (and T) are symmetric w.r.t. $\mathbb{R}^3 \simeq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$: more generally, a 2-sphere $S \in \mathfrak{S}(\mathbb{H}^2)$ lies inside a 3-sphere $S^3 \in \mathfrak{H}(\mathbb{H}^2)$ iff S is symmetric w.r.t. $S^3, S^3(., S.) = S^3(S., .)$.

Incidence and intersection angle

A point $p \in S^n \subset \mathbb{R}P^{n+1}$ lies on a hypersphere $S \in S_1^{n+1}$ iff p is in the polar hyperplane of S w.r.t. S^n ; in homogeneous coordinates, this is orthogonality:

 $p = \mathbb{R}v \in S \quad \Leftrightarrow \quad \langle v, S \rangle = 0.$

In the Vahlen matrix description or the description of 2-spheres in $\mathbb{H}P^1$ as involutions, incidence can be expressed as

 $p \in S \iff p = S \cdot p$

that is, $p \in \mathbb{R}^n \cup \{\infty\}$ (or $p \in \mathbb{H} \cup \{\infty\}$) is a fixed point of the inversion at S; in case $p = vH \in HP^1$ this can also be written

 $p = v \mathbb{H} \in S \quad \Leftrightarrow \quad \exists \lambda \in \mathbb{H} : Sv = v \lambda,$

that is, $v \in \mathbb{H}^2$ is an eigenvector of $S \in \mathfrak{S}(\mathbb{H}^2)$. Incidence of a point $p = v \mathbb{H} \in \mathbb{H}P^1$ and a 3-sphere $S \in \mathfrak{H}(\mathbb{H}^2)$ is isotropy,

 $p = v \mathbb{H} \in S \iff S(v, v) = 0.$

The intersection angle α of two hyperspheres $S_1, S_2 \in S_1^{n+1}$ is given by

 $\cos \alpha = \langle S_1, S_2 \rangle = -\frac{1}{2} \{ S_1, S_2 \},$

where $\{.,.\}$ is the anti-commutator in \mathcal{AR}_1^{n+2} ; in particular, orthogonal intersection becomes orthogonality.

Inversions

The inversion at a hypersphere $S \subset S^n$ is the polar reflection at $S \in \mathbb{R}P^{n+1}$; in homogeneous coordinates, $p = \mathbb{R}v$ and $S \in S_1^{n+1}$:

 $\mathbb{R}^{n+1}_1 \ni v \mapsto v - 2\langle v, S \rangle S = SvS \in \mathbb{R}^{n+1}_1 \subset \mathcal{A}\mathbb{R}^{n+1}_1.$ In terms of Vahlen matrices.

$$\mathbb{R}^n \cup \{\infty\} \ni p \mapsto S \cdot p = \left\{ \begin{array}{c} m - r^2(p-m)^{-1} \\ npn + 2dn \end{array} \right\} \in \mathbb{R}^n \cup \{\infty\}.$$

 $Sl(2,\mathbb{H})$ does not provide (orientation reversing) inversions.

The Möbius group

The Möbius group $M\ddot{o}b(S^n)$ is the conformal group $Conf(S^n)$ of S^n ; in the classical (projective) picture, this is the group of projective transformations that map $S^n \subset \mathbb{R}P^{n+1}$ to itself.

 $O_1(n+2)$ is a (trivial) double cover of $M\ddot{o}b(S^n)$ with kernel $\{\pm id\}$; its identity component $SO_1^+(n+2)$ is isomorphic to the group $M\ddot{o}b^+(S^n)$ of orientation preserving Möbius transformations.

 $Pin_1(n+2)$ is a double cover of $O_1(n+2)$ via the twisted adjoint action

$$Pin_1(n+2) \times \mathbb{R}^{n+2}_1 \ni (\mathfrak{s}, v) \mapsto \mathfrak{s}v\hat{\mathfrak{s}}^{-1} \in \mathbb{R}^{n+2}_1,$$

where $\hat{.}$ is the order involution on $\mathcal{A}\mathbb{R}^{n+2}_1$,

$$= (-1)^k \mathfrak{s}$$
 for $\mathfrak{s} = s_1 \cdots s_k, \quad s_j \in \mathbb{R}^{n+1}_1;$

 $Spin_1^+(n+2)$ is the universal cover of $SO_1^+(n+2) \cong M\ddot{o}b^+(S^n)$; in terms of Vahlen matrices. Möbius transformations are fractional linear:

$$\mathbb{R}^n \cup \{\infty\} \ni p \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot p = (ap+b)(cp+d)^{-1} \in \mathbb{R}^n \cup \{\infty\}.$$

 $Sl(2, \mathbb{H})$ is the double universal cover of $M\ddot{o}b^+(S^4)$; its action on $\mathbb{H}P^1 \cong \mathbb{H} \cup \{\infty\}$ is by fractional linear transformations,

$$Sl(2,\mathbb{H}) \times \mathbb{H}P^1 \ni (\mu, v\mathbb{H}) \mapsto (\mu v)\mathbb{H} \in \mathbb{H}P^1,$$

and on $\mathfrak{H}(\mathbb{H}^2)$ it is given by

 $Sl(2,\mathbb{H}) \times \mathfrak{H}(\mathbb{H}^2) \ni (\mu, S) \mapsto S(\mu^{-1}, \mu^{-1}) \in \mathfrak{H}(\mathbb{H}^2).$

Any (orientation preserving) Möbius transformation is the composition of (an even number of) inversions at hyperspheres.

Spheres of arbitrary dimension

A sphere $S \subset S^n$ of dimension k < n can be identified with

- the projective (k+1)-plane that intersects S^n in the k-sphere: this plane is spanned by k+2 points $p_i = \mathbb{R}v_i \in S^n$ in "general position," $S = v_1 \wedge \ldots \wedge v_{k+2} \in \mathcal{A}\mathbb{R}^{n+2}.$
- the space of all hyperspheres that contain S, or the projective (n-k-1)-plane that contains these hyperspheres, respectively: this plane does not intersect S^n and can be spanned by n-korthogonal hyperspheres S_i , that is, S is the orthogonal intersection of the S_i ,

$$S = S_1 \wedge \ldots \wedge S_{n-k} = S_1 \cdots S_{n-k} \in Pin(\mathbb{R}^{n+1}_1) \subset \mathcal{A}\mathbb{R}^{n+1}_1;$$

S can be interpreted as a Möbius involution with

$$S \in \Lambda^{n-k} \mathbb{R}^{n+2}_1$$
 and $S^2 = (-1)^{\binom{n-\kappa}{2}}$

which conforms with the identification of $\mathfrak{S}(\mathbb{H}^2)$ with the space of 2-spheres in $S^4 \cong \mathbb{H}P^1$.

The passage from one description to the other is

- by polarity w.r.t. $S^n \subset \mathbb{R}P^{n+1}$ in the projective picture,
- by taking orthogonal complements in \mathbb{R}^{n+2}_1 , or
- by taking the Clifford dual (or, the Hodge dual) in $\mathcal{A}\mathbb{R}^{n+2}_1$

© 2003 Udo Hertrich-Jeromin

Permission is granted to make and distribute copies of this card provided the copyright notice is preserved on all copies. Send comments and corrections to U. Hertrich-Jeromin Fakultät II, Sekr. MA 8-3, Str. d. 17. Juni 136, Technische Universität Berlin, D-10623 Berlin, Germany (udo@sfb288.math.tu-berlin.de)

Sphere pencils and complexes

A sphere pencil consists of all spheres on a line in $\mathbb{R}P^{n+1}$; it is

- elliptic if the line does not intersect $S^n \iff |S_1 \wedge S_2|^2 > 0$ for any two hyperspheres $S_1 \neq S_2$ in the pencil), that is, all spheres intersect in a codimension 2 sphere;
- parabolic if the line touches $S^n \iff |S_1 \wedge S_2|^2 = 0$ for S_1, S_2 in the pencil), that is, all spheres touch in a point (the point of contact with S^n) and form a "contact element";
- hyperbolic if the line intersects $S^n \iff |S_1 \wedge S_2|^2 < 0$ for any two hyperspheres $S_1 \neq S_2$ in the pencil), that is, all spheres have one intersection point of the line with S^n as their center when interpreting the other as ∞ , $S^n \setminus \{\infty\} \cong \mathbb{R}^n$, and the pencil can be identified with this "point pair."

A (linear) sphere complex consists of all spheres S in the polar hyperplane of a point $\mathbb{RK} \in \mathbb{RP}^{n+1}$, $S \perp \mathcal{K}$; it is called

– elliptic if \mathcal{K} lies outside S^n , $|\mathcal{K}|^2 > 0$;

– parabolic if \mathcal{K} lies on S^n , $|\mathcal{K}|^2 = 0$; and

– hyperbolic if \mathcal{K} lies inside S^n , $|\mathcal{K}|^2 < 0$.

These sphere complexes describe the hyperplanes of the hyperbolic, Euclidean, and spherical subgeometries of Möbius geometry, respectively.

Quadrics of constant curvature

Given $\mathcal{K} \in \mathbb{R}^{n+2}_1 \setminus \{0\}$, the quadric

 $\begin{aligned} Q_{\kappa} &= \{ p \in \mathbb{R}_{1}^{n+2} \, | \, |p|^{2} = 0 \text{ and } \langle p, \mathcal{K} \rangle = -1 \} \\ \text{has constant sectional curvature } \kappa &= -|\mathcal{K}|^{2}. \text{ The standard ball} \\ \text{models } B_{\kappa}^{n} = (\{ x \in \mathbb{R}^{n} \, | \, 1 + \kappa |x|^{2} > 0 \}, \frac{4|dx|^{2}}{(1+\kappa |x|^{2})^{2}}) \text{ of constant} \\ \text{curvature } \kappa \text{ spaces are isometrically embedded by} \end{aligned}$

 $B_{\kappa}^{n} \ni x \mapsto \left(\frac{1+|x|^{2}}{1+\kappa|x|^{2}}, \frac{2x}{1+\kappa|x|^{2}}, \frac{1-|x|^{2}}{1+\kappa|x|^{2}}\right) \in Q_{\kappa},$ where $\mathcal{K} = \left(\frac{\kappa+1}{2}, 0, \frac{\kappa-1}{2}\right)$; the spheres $S^{n}(r)$ embed via

$$\mathbb{R}^{n+1} \supset S^n(r) \ni y \quad \mapsto \quad (r,y) \in Q_{1/r^2}, \quad \mathcal{K} = (\frac{1}{r}, 0, 0).$$

The (mean) curvature H of a hypersphere $S \in S_1^{n+2}$ is given by

$$H = -\langle S, \mathcal{K} \rangle,$$

in particular, S is a hyperplane in Q_{κ} iff S is a sphere of the sphere complex $\mathcal{K}, S \perp \mathcal{K}.$

A k-sphere $S = S_1 \land \ldots \land S_{n-k}$ is a k-plane in Q_{κ} iff all

$$S_j \perp \mathcal{K} \iff \mathcal{K} \in \operatorname{span}\{v_i \mid i = 1, \dots, k+2\}$$

for k+2 points $p_i = \mathbb{R}v_i \in S$ in general position.

A 2-sphere $S \in \mathfrak{S}(\mathbb{H}^2)$ is a 2-plane in Q_{κ} given by $\mathcal{K} \in \mathfrak{H}(\mathbb{H}^2)$ iff S is skew w.r.t. \mathcal{K} ; more generally, its mean curvature is given by

$$|H|^2 = |\mathcal{K}_S|^2$$
, where $\mathcal{K}_S = \frac{1}{2}(\mathcal{K}(.,S.) + \mathcal{K}(S.,.)).$

A Möbius transformation that fixes the sphere complex \mathcal{K} (the hyperplanes of Q_{κ}) is an isometry of Q_{κ} if $\kappa \neq 0$ or a similarity of Q_0 , respectively;

$$Isom(Q_{\kappa}) = \{ \mu \in O_1(n+2) \, | \, \mu(\mathcal{K}) = \mathcal{K} \}$$

is the group of isometries of Q_{κ} — in case $\kappa < 0$, it is the group of isometries that extend smoothly through the infinity sphere \mathbb{RK} .

Stereographic projection

Let $\mathcal{K}_0 = (1, 0, -1) \in Q_1$ be the "south pole" in the round *n*-sphere $S^n \cong Q_1$ given by $\mathcal{K}_1 = (1, 0, 0);$

$$\begin{array}{rcl} Q_0 \ni \left(\frac{1+|x|}{2}, x, \frac{1-|x|}{2}\right) & \mapsto & \left(1, \frac{2x}{1+|x|^2}, \frac{1-|x|}{1+|x|^2}\right) \in Q_1 \\ Q_1 \setminus \{\mathcal{K}_0\} \ni (1, y_1, y_2) & \mapsto & \left(\frac{1}{1+y_2}, \frac{y_1}{1+y_2}, \frac{y_2}{1+y_2}\right) \in Q_0 \\ \text{then yields the classical stereographic projection. More generally,} \end{array}$$

$$S^n \ni \mathbb{R}v \mapsto -\frac{v}{\langle v, \mathcal{K} \rangle} \in Q_{\kappa}$$

can be considered as a stereographic projection from (part of) the conformal *n*-sphere onto a quadric of constant curvature. With $\nu_{\infty}, \nu_0 \in (\mathbb{H}^2)^*$ a notion of stereographic projection is given

With $\nu_{\infty}, \nu_0 \in (\mathbb{H}^2)^*$ a notion of stereographic projection is given

$$\mathbb{H}P^1 \setminus \{\infty\} \ni p = v\mathbb{H} \mapsto (\nu_0 v)(\nu_\infty v)^{-1} = \mathfrak{p} \in \mathbb{H},$$

where $\infty = v_{\infty} \mathbb{H}$ is the unique point with $\nu_{\infty} v_{\infty} = 0$.

The cross ratio

Four points $p_i \in S^n$ always lie on a 2-sphere S that can be considered as a Riemann sphere, so that their complex cross ratio $[p_1; p_2; p_3; p_4]$ can be defined up to complex conjugation (orientation of S). In the following $[p_1; p_2; p_3; p_4] \in \mathbb{C}$ is obtained by taking $[p_1; p_2; p_3; p_4] = \operatorname{Re} q + i |\operatorname{Im} q|$ where appropriate.

Expressing the cross ratio in terms of the distances

$$|x_i - x_j|^2 = -2\langle v_i, v_j \rangle$$
, where $v_k = \left(\frac{1+|x_k|^2}{2}, x_k, \frac{1-|x_k|^2}{2}\right)$

of the four points in \mathbb{R}^n , one arrives at

$$q = \frac{\langle v_1, v_2 \rangle \langle v_3, v_4 \rangle - \langle v_1, v_3 \rangle \langle v_2, v_4 \rangle + \langle v_1, v_4 \rangle \langle v_2, v_3 \rangle + \sqrt{\operatorname{det}(\langle v_i, v_j \rangle)}}{2 \langle v_1, v_4 \rangle \langle v_2, v_3 \rangle}$$

Using the Clifford algebra setup, the cross ratio is obtained from

$$q = \frac{v_1 v_2 v_3 v_4 - v_4 v_3 v_2 v_1}{(v_1 v_4 + v_4 v_1)(v_2 v_3 + v_3 v_2)} \in \Lambda^0 \mathbb{R}_1^{n+2} \oplus \Lambda^4 \mathbb{R}_1^{n+2}$$

and the direction of the $\Lambda^4 \mathbb{R}_1^{n+2}$ -part defines the 2-sphere S of the four points; for $x_i \in \mathbb{R}^n$,

 $q = (x_1 - x_2)(x_2 - x_3)^{-1}(x_3 - x_4)(x_4 - x_1)^{-1} \in \Lambda^0 \mathbb{R}^n \oplus \Lambda^2 \mathbb{R}^n$

provides the cross ratio, and the same formula holds true for four points $x_i \in \mathbb{H}$ in the quaternionic setup; if $p_i = v_i \mathbb{H} \in \mathbb{H}P^1$ then

$$q = (\nu_1 v_2)(\nu_3 v_2)^{-1}(\nu_3 v_4)(\nu_1 v_4)^{-1} \in \mathbb{H}$$

gives their cross ratio, where $\nu_1, \nu_3 \in (\mathbb{H}^2)^* \setminus \{0\}$ are quaternionic linear forms with $\nu_i v_i = 0$.

The cross ratio $[p_1; p_2; p_3; p_4] \in \mathbb{R}$ is real iff the four points are concircular (form a "conformal rectangle," which is embedded iff $[p_1; p_2; p_3; p_4] < 0$) and the cross ratio $[p_1; p_2; p_3; p_4] = -1$ iff they form an (embedded) "conformal square."

The cross ratio $cr := [p_1; p_2; p_3; p_4]$ satisfies the following identities under permutations of the four points (the complex conjugate \overline{cr} appears when the imaginary part is chosen to be always positive):

cr:	1234	2143	3412	4321
$1 - \overline{cr}$:	-	-	-	-
$\frac{1}{1-cr}$:	1423	2314	3241	4132
$\frac{1}{\overline{cr}}$:	1432	2341	3214	4123
$1 - \frac{1}{cr}$:	1342	2431	3124	4213
$\frac{\overline{cr}}{\overline{cr}-1}$:	1243	2134	3421	4312

Sphere congruences and envelopes

A sphere congruence is a smooth map $S: M^m \to S_1^{n+1}/\pm$, and a smooth map $f: M^m \to S^n$ is said to envelope S if $f(p) \in S(p)$ and $d_p f(T_p M^m) \subset T_{f(p)} S(p)$ for all $p \in M^m$. For hypersurfaces, m = n - 1, this reads

 $\begin{array}{l} 0=\langle f,S\rangle=\frac{1}{2}S(SfS-f) \quad \text{and} \quad 0\equiv\langle df,S\rangle=\frac{1}{2}S(SdfS-df),\\ \text{when considering }f,S:M^{n-1}\rightarrow \mathbb{R}_1^{n+2}\subset \mathcal{A}\mathbb{R}_1^{n+2}; \text{ an immersed}\\ \text{congruence }S:M^{n-1}\rightarrow S_1^{n+1} \text{ has two envelopes iff }\langle dS,dS\rangle \text{ is}\\ \text{positive definite. For }f:M^3\rightarrow \mathbb{H}^2 \text{ and }S:M^3\rightarrow \mathfrak{H}(\mathbb{H}^2) \text{ the}\\ \text{enveloping condition reads} \end{array}$

$$= S(f, f)$$
 and $0 \equiv S(df, f) + S(f, df)$.

A 2-sphere congruence $S:M^2\to \mathfrak{S}(\mathbb{H}^2)$ is enveloped by f iff

$$S \cdot f \parallel f$$
 and $dS \cdot f \parallel f$

or, equivalently, if f envelopes every hypersphere congruence (section) in the congruence of elliptic sphere pencils given by S. Similarly, an *m*-sphere congruence $S: M^m \to \Lambda^{n-m} \mathbb{R}_1^{n+2}$ is enveloped by $f: M^m \to \mathbb{R}_1^{n+2}$ iff f envelopes any section of S (hypersphere congruence in S). With the contact elements

 $\mathfrak{t}(p) = f(p) \cdot d_p f(e_1) \cdots d_p f(e_m), \quad (e_1, \dots, e_m) \text{ orthonormal,}$ of an immersion $\mathbb{R}f: M^m \to S^n$, the enveloping condition reads

 $\mathfrak{t} \parallel \mathfrak{v}(Sf), \text{ where } \mathcal{AR}_1^{n+2} \ni \mathfrak{x} \mapsto \mathfrak{v}\mathfrak{x} \in \mathcal{AR}_1^{n+2}$ is the Clifford dual. Two immersion f and \hat{f} envelope an m-sphere congruence iff $\hat{f} \cdot \mathfrak{t} \parallel \hat{\mathfrak{t}} \cdot f.$

The central sphere congruence $Z:M^m\to\Lambda^{n-m}\mathbb{R}^{n+2}_1$ of an immersion $\mathbb{R}f:M^m\to S^n$ is given by

$$\mathbb{V}Z = \frac{1}{2m} (\mathfrak{t} \cdot \Delta f - (-1)^m \Delta f \cdot \mathfrak{t}).$$

Conformal change of metric

Let $S^m \subset M^n$ be a submanifold, (M^n, g) Riemannian, $\tilde{g} = e^{2u}g$ a conformal change of the ambient metric; then the geometric quantities of S^m change as follows:

$$\begin{split} \nabla_v w &= \nabla_v w + (vu)w + (wu)v - g(v,w) \cdot \nabla u \\ \tilde{I}(v,w) &= I\!\!I(v,w) - g(v,w) \cdot (\mathrm{grad}_M u)^\perp \\ \tilde{A}_n v &= A_n v - (nu)v \\ \tilde{\nabla}_v^\perp n &= \nabla_v^\perp n + (vu)n; \end{split}$$

and the real valued curvature quantities:

$$\tilde{s} = s - b_u \quad (s = \frac{1}{n-2}(ric - \frac{scal}{2(n-1)}g) \quad \text{Schouten tensor})$$

$$\tilde{w} = e^{2u}w \qquad (w = r - s \wedge g \quad \text{Weyl tensor})$$

$$\tilde{r} = e^{2u}(r - b_u \wedge g)$$

$$\tilde{K}_{\pi} = e^{-2u}(K_{\pi} - \operatorname{tr}_g b_u|_{\pi}) \quad (\text{sect. curv. on } \pi \subset TS^m)$$

$$\tilde{K} = e^{-2u}(K - \Delta u) \quad (\text{Gauss curv. for } m = 2),$$
where $b_v(v, w) = (\nabla^2 u)(v, w) - (vu)(wu) + \frac{1}{2}g(\nabla u, \nabla u)g(v, w)$

where $b_u(v, w) = (\nabla^2 u)(v, w) - (vu)(wu) + \frac{1}{2}g(\nabla u, \nabla u)g(v, w)$ and $(b_1 \wedge b_2)(v, w, x, y) = \begin{vmatrix} b_1(v, x) & b_1(v, y) \\ b_2(w, x) & b_2(w, y) \end{vmatrix} + \begin{vmatrix} b_2(v, x) & b_2(v, y) \\ b_1(w, x) & b_1(w, y) \end{vmatrix}$ is the Kulkarni-Nomizu product of two bilinear forms.

Important invariants are umbilics, the normal curvature R^{\perp} , and the trace free second fundamental form $I\!\!I_0 = I\!\!I - H \cdot g$ with the mean curvature $H = \frac{1}{m} \operatorname{tr}_g I\!\!I$ of S^m . A conformal metric is obtained by $g_{conf} = h^2 g$, $h^2 = \frac{1}{m} g(I\!\!I_0, I\!\!I_0)$; this is the induced metric of the conformal Gauss map in case m = 2 and n = 3.