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1. Introduction

The motivation for the present work comes from our recently published paper
[2] on the design of motions constrained by a contacting surface pair. A central
part of that paper is an extension of variational subdivision in the unrestricted
case [4, 5] to the design of curves on surfaces. These surfaces may lie in a higher
dimensional space R

d, and can have arbitrary dimension 2 < k < d. Since [2]
did just use, but not study the algorithm and its convergence, we will now do it,
but in a much more general setting. In this way, the algorithm is useful for the
solution of a variety of geometric optimization problems.

In the following, we present and analyze an algorithm for the computation of
the point p∗ in an m-dimensional surface Φ ⊂ R

n, which is closest to a given
point p ∈ R

n. Of course, this point p∗ is the footpoint of a normal from p onto
Φ ⊂ R

n.
This problem arises in optimization in the context of minimization of a qua-

dratic function

F : R
n → R, F (x) = xT · Q · x + 2qT · x + q,

with a symmetric positive definite matrix Q, under a set of constraints ck(x) =
0, k = 1, . . . , n−m. The solution set of the constraint equations is a surface Φ ⊂
R

n. We assume that Φ has dimension m and that it is smooth in a neighborhood
of the minimum p∗. The geometric interpretation of this problem views the
matrix Q as matrix of the inner product to a Euclidean metric in R

n. With
p = −Q−1 · q as minimizer of F in R

n, the function is, up to an unimportant
additive constant, equivalent to

F (x) = (x − p)T · Q · (x − p),

i.e., the squared distance ‖x − p‖2 between points p and x in the mentioned
Euclidean norm. Therefore, the minimizer of F , restricted to Φ, is the closest
point p∗ ∈ Φ to p, and thus a normal footpoint.

For the following analysis, it is convenient to introduce in R
n a Cartesian

coordinate system with respect to the Euclidean norm given by F . This is the
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same as assuming for the moment that Q is the identity matrix. The inner
product xT · y of two vectors will then also be written as x · y.

2. Normal footpoint via Newton algorithm

The standard way to solve the present footpoint problem is the use of Newton’s
algorithm. Let us briefly review this approach, since it shows why we want to
modify it for certain practical problems.

It is sufficient here to assume that we are given a parametrization c(u1, . . . , um) =
c(u) of the surface Φ. A normal footpoint p∗ = c(u∗) from p onto Φ must solve
the following set of equations,

(1) fk(u) := (c(u) − p) · c,k(u) = 0, k = 1, . . . ,m.

Here, c,k = ∂c/∂uk. Solving the nonlinear system of equations f = (f1, . . . , fm) =
0 in a Newton iteration requires linearization at the current iterate uc,

f(u) = f(uc) + Df(uc) · (u − uc) = 0.

With the first derivative matrix Df, assumed to be regular, the Newton algorithm
obtains the next iterate u+ as

(2) u+ = uc − (Df)−1(uc) · f(uc).

The first derivative matrix is

(3) Df = (dij), dij = (c − p) · c,ij + c,i · c,j.

Note that c,i · c,j = gij are the elements of the first fundamental form of the
surface representation c. If Df is Lipschitz continuous in a neighborhood of u

∗,
a Newton iteration converges quadratically. This means that the current error
ec = uc − u

∗ is related to the error after the iteration via

(4) ‖e+‖ ≤ C‖ec‖
2.

Geometric interpretation of cases, where one has only linear (or superlinear)
convergence, is still missing. An example for linear convergence is in case of a
planar curve, where p is the curvature center of the curve at the footpoint.

3. Footpoint computation with a projected gradient algorithm

We see that Newton’s method for footpoint computation involves second order
derivatives of Φ. There are a number of applications where this is too time
consuming or where Φ is given in a form such that second order information is
not available and – by the nature of the data – hard to estimate. Therefore,
we will now describe a projected gradient algorithm together with a convergence
analysis of it. The geometric interpretation of the error estimates leads us to
a steplength control strategy of the resulting linearly convergent algorithm. It
even offers us the chance to an optimized steplength choice which results in nearly
quadratic convergence.
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The iterative algorithm which we propose and investigate consists in each it-
eration of the following two steps (see Fig. 1 (a)).

(1) Compute the tangent space T m of Φ at the current approximation xc of
the footpoint and project the point p orthogonally into T m to get the
point pT .

(2) Compute an appropriate steplength s and project xs := xc + s(pT − xc)
in a direction transversal to Φ onto Φ ; this yields the next approximation
x+ of the footpoint.
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Figure 1. (a) Footpoint computation with a projected gradient
algorithm. (b) The tangentspace T m at c.

Since p−xc is the negative gradient of the squared distance function 1

2
‖x−p‖2

at xc, the method is in fact a familiar projected gradient algorithm [1]. However,
we do not require convexity of Φ, which is often done in standard texts on opti-
mization. We will carefully investigate this scheme from a geometric viewpoint
and then apply it to the numerical solution of several geometric optimization
problems.

3.1. Computation for a parametrized surface Φ and convergence anal-
ysis. We will first study the convergence behaviour. For that, it is sufficient to
work with a parametrically given surface c(u).
Step 1. The tangent space T m at c(uc) is spanned by the m vectors c,i(uc), i =
1, . . . ,m. The unknown coordinates vi of the projection pT of p in this basis (see
Fig. 1 (b)) follow from the linear system

(5) [c − p +
m∑

i=1

vic,i] · c,k = 0, k = 1, . . . ,m.

Evaluation is at u = uc. With the first derivative matrix Dc and the matrix
G = (gik) of the first fundamental form, the coordinate vector v = (v1, . . . , vm) is
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given by

(6) v = G−1(uc) · Dc(uc) · (p − c(uc)).

Step 2. The second step of the algorithm, namely projection onto Φ shall be
performed by linearization of c at uc. This means that the new parameter value
u+ is computed with an appropriate steplength s as

(7) u+ = uc + sv.

For the convergence analysis we assume that the footpoint occurs to u
∗ = 0 and

lies at the origin, c(u∗) = 0. Hence, p · c,i(0) = 0. A Taylor expansion of the
surface c(u) = (c1(u), . . . , cm(u)) at the footpoint c(0) = 0 is given by

(8) ci(u) = ∇ci(0) · u +
1

2
u

T · ∇2ci(0) · u + Ri,3.

Here, ∇ and ∇2 denote gradient and Hessian, respectively, and Ri,3 is the cubic
remainder term in which third order derivatives appear. ¿From this we see that
the m coordinates of the vector Dc(u) · (p− c(u)) possess the Taylor expansion

c,k · (p − c) =
m∑

i=1

(p · c,ik − gik)ui + Rk,2.

The quadratic remainder term contains derivatives of c up to third order. Note
that p equals dn, with d ≥ 0 as distance to the footpoint c(0) = 0 and n as a
unit surface normal vector there. The matrix

L = (lik) = (n · c,ik),

is the matrix of the second fundamental form in case of a hypersurface Φ (m =
n−1). We will interpret it in the other cases later. With this notation, the vector
v of (6) is

(9) v = G−1 · (d L − G) · uc = d(G−1 · L) · uc − uc.

W := G−1 · L is the matrix of the Weingarten map at the footpoint in the
hypersurface case. The updated parameter point u+ for the footpoint becomes

(10) u+ = uc + sv = [(1 − s)I + sdW )] · uc + R2.

Assuming bounded derivatives of c up to third order in a neighborhood of the
footpoint, the remainder term R2 can be bounded by C‖uc‖

2. Since the minimum
is at u

∗ = 0, error and parameter vectors agree, and we find the error estimate

(11) ‖e+‖ ≤ ‖(1 − s)I + sdW )‖2 ‖ec‖ + C ‖ec‖
2.

Before we give an interpretation of the spectral norm ‖(1 − s)I + sdW )‖2, we
need a geometric meaning of the matrices L and W . To obtain such an inter-
pretation, we consider the m + 1-dimensional affine space Nm+1 spanned by p
and the tangent space T m at the footpoint p∗. Now, the surface Φ is projected
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orthogonally into Nm+1. The resulting surface ΦN is a hypersurface in Nm+1 and
has a parameterization of the form

(12) cN(u) = c(u) + c∗(u),

where c∗ lies in the orthogonal complement of Nm+1. Note that p∗ is also foot-
point of p to ΦN within Nm+1. Because of n · c,ik(0) = n · cN

,ik(0), the matrix
L is the matrix of the second fundamental form of the projected surface at the
footpoint p∗ = c(0) = cN(0). By the agreement of the tangent spaces of Φ and
ΦN at p∗, we have c∗,i(0) = 0, and thus the first fundamental forms of Φ and

ΦN at 0 agree. Hence, the matrix W = G−1 · L is the matrix of the Weingarten
map of ΦN at p∗. Its eigenvalues are the principal curvatures κi of ΦN at the
footpoint p∗.

Remark 1. For a visualization of the involved curvatures at the footpoint, we
consider the simplest case, namely a curve c(u) in R

3, see Fig. 2. The arising
curvature at the footpoint p∗ of a point p is obtained by projection of the curve
into the plane N 2 spanned by p and the tangent T of c at p∗. This is also a
tangent plane of the connecting cone Γ of p and c. It is well-known that the
curvature of the orthogonal projection cN of c onto N 2 is the geodesic curvature
of the curve c ⊂ Γ at p∗. Moreover, it is the curvature of the curve c0 which
is obtained by development (isometric mapping) of the cone Γ into a Euclidean
plane. Since this development shows all steps of the algorithm without distortion,
it is not surprising that the convergence analysis of the case of a space curve (in
fact, a curve in a space of arbitrary dimension) is reducible to the case of a planar
curve.

Let us now study the case, where we work with a full step, i.e., s = 1. Then,
the error estimate (11) becomes

(13) ‖e+‖ ≤ d ‖W‖2 ‖ec‖ + C ‖ec‖
2 ≤ d |κmax| ‖ec‖ + C ‖ec‖

2.

Here, |κmax| denotes the maximum absolute value of the principal curvatures of
ΦN at the footpoint. Now ρmin = 1/|κmax| is the minimal principal curvature
radius of ΦN at p∗. The error estimate (13) shows that we have linear convergence
for d |κmax| < 1.

Theorem 1. If the distance d of p to Φ is less than the minimal principal cur-
vature radius of ΦN at the footpoint p∗, the proposed projected gradient algorithm
converges linearly, even if we take a full step, s = 1. Here, ΦN denotes the or-
thogonal projection of the surface Φ into the affine space spanned by p and the
tangent space of Φ at the normal footpoint p∗.

For a complete proof of the theorem, we still need to show that another kind of
projection in step 2 than the one via linearization of the parametric representation
does not change the convergence rate. This will be done in subsection 3.2.

Clearly, the projected gradient algorithm works very well for points p suffi-
ciently close to the surface. For d = 0, we even have quadratic convergence. This
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Figure 2. (a) Connecting cone Γ of p and the space curve c.
(b) Development Γ0 of Γ and c0 of c in R

2.

may seem a strange situation, but an example for an application is the following:
We are given a parametric surface c(u) and a point p, which is known to lie on c,
but its parameter values are not yet known. The present algorithm can solve this
inversion problem with quadratic convergence, even if we do not use a Newton
algorithm.

For larger distances, we cannot work with the full step s = 1. We have to
choose s such that the constant C1 := ‖(1 − s)I + sdW )‖2 in the error estimate
(11) is less than 1. If κ is an eigenvalue of W to the eigenvector w, we have
[(1− s)I + sdW ] ·w = (1− s+ sdκ)w, and thus 1− s+ sdκ is an eigenvalue of the
matrix M = (1− s)I + sdW to the same eigenvector. Hence, ‖M‖2 < 1 requires

−1 < 1 − s + sdκi < 1,

for all principal curvatures κi of ΦN at p∗. We have chosen the normal vector n
such that d > 0, but we cannot assume positive values of κi. For the following,
it is convenient to distinguish between two cases.

(a) Assume dκmax > 1. Now 1 − s + sdκmax > 1 − s + s = 1 and no choice
of s would guarantee convergence. Fortunately, this case does not arise
in our setting: We argue in Nm+1. Here, p would be on the same side
of the tangent hyperplane T m of ΦN as the principal curvature center
kmax to the largest principal curvature κmax. However, p would be at a
larger distance to p∗ than kmax. This means that d cannot be the globally
smallest distance. In other words, p∗ is a footpoint, but not the one to
the smallest distance. We are not interested in such a footpoint here.
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(b) Let dκmax < 1. We set dκmax − 1 = −K with K > 0. Now, any choice of
s with

(14) 0 < s <
2

K

gives a constant C1 < 1, i.e., linear convergence.

Theorem 2. With the notations from Theorem 1, and a choice of the steplength
s, which satisfies

(15) 0 < s <
2

|dκmax − 1|
,

the proposed projected gradient algorithm exhibits linear convergence.

Before we address the question, whether we can actually achieve quadratic
convergence with a clever choice of s, we focus on the influence of step 2 of the
algorithm.

3.2. The projection in step 2 does not change the convergence rate.
Whereas the first step in our algorithm is purely geometric, the version of the
second step which has been presented so far is just applicable if the surface Φ is
given in parametric representation. This may be very undesirable, for example,
if we are minimizing a quadratic function under equality constraints; those define
Φ as an intersection of implicit surfaces (level sets).

Let us now describe what we consider an admissible projection for step 2: We
assume that a differentiable m-parametric set P of affine spaces of dimension
n − m has been defined. These affine spaces shall be transversal to Φ and form
a fibration of a neighborhood of Φ. We could call P a family of pseudonormal
spaces. Now projection is performed with these pseudonormal spaces: To project
x onto Φ, intersect the unique element S ∈ P , which contains x, with the surface
Φ.

Before we proceed with the discussion, let us mention a few examples for an
admissible projection:

(1) For m = n − 1, i.e., a hypersurface Φ ⊂ R
n, we project parallel to a

fixed line L; the only requirement is that L is transversal to all tangent
hyperplanes of Φ in the neighborhood of the footpoint which is considered
by the algorithm.

(2) For a curve Φ, take P as a family of parallel hyperplanes, which are not
tangent to the curve in the required neighborhood of the footpoint.

(3) For an implicitly defined hypersurface c(x) = 0, project parallel to the
gradient ∇c. Since we need regularity of the surface in a neighborhood
of the footpoint anyway, it can be expected that the required gradients
do not vanish there. Note that the algorithm would only use gradients at
the points pT . These can be viewed as samples of the gradient field along
some hypersurface Ψ close to Φ, and thus it fulfils the requirements. It
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might be sufficient to choose a fixed direction, given by the gradient at
some initial point p0 sufficiently close to the footpoint.

(4) For a surface Φ, given as intersection of implicit surfaces ck(x) = 0, k =
1, . . . , n−m, we may use a projection space spanned by the n−m gradients
∇ck.

We would like to show that the projection of a tangent vector v differs from
the projection via linearization only in the second order. This means that the
difference between the two kinds of projections is O(‖v‖2).

For a proof, we use a Taylor expansion of c(u) at some point, say u = 0,

c(u) = c(0) +
∑

i

c,i(0)ui +
1

2

∑

j,k

c,jk(0)ujuk + R3(u).

A point pT in the tangent plane of c(0), namely c(0) +
∑

i c,i(0)vi is projected
to some point x+ of the surface,

x+ = c(0) +
∑

i

c,i(0)vi + t(v1, . . . , vm).

If we vary v, the vector t depends smoothly on v and for sufficiently small ‖v‖,
it is transversal to the tangent space at c(0), which is spanned by the vectors
c,i(0). The point x+ is some surface point, so there exists u such that

c(0) +
∑

i

c,i(0)ui +
1

2

∑

j,k

c,jk(0)ujuk + R3(u) = c(0) +
∑

i

c,i(0)vi + t(v).

The second derivative vectors c,jk(0) have a tangential component
∑

λijkc,i(0);
the rest is transversal. Hence, the tangential components in the vector equation
above are

ui − vi +
1

2

∑

j,k

λijkujuk + Ri,3,

with some cubic remainder term Ri,3. This shows that the difference between
linearization and projection satisfies

(16) ‖u − v‖ = O(‖u‖2).

Hence, it does not influence the error estimate for our optimization algorithm.

3.3. Stepsize selection for nearly quadratic convergence. Let us start with
the case of a planar curve, with κ being the curvature at the footpoint. Then the
choice of s with

(17) s =
1

|dκ − 1|

removes the linear part in the error estimate and we get quadratic convergence.
Of course, in practice, we do not know d and κ, so that we have to estimate these
values from the known data at the previous iterates. Since we want to avoid
second order derivatives, we will introduce errors in the estimates of dκ. Although
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this will not give quadratic convergence from a theoretical viewpoint, it can be
expected to yield a very good performance of the algorithm. Note that quadratic
convergence in Newton’s algorithm is rooted in the curvature computation which
is involved in the linear system for each step (see (3)).

As soon as we have three consecutive points x1, x2, x3 on our way towards the
footpoint, we may estimate dκ with help of a circle through the points xk. In
Algorithm 1 we use tangents of the developed curve, which follow with help of the
footpoints pT , to estimate dκ. Then s can be adapted to yield fast convergence.

For a general surface Φ, error estimates of the type (11), which are based on
the norm of the matrix (1 − s)I + sdW , are worst case estimates. They do not
consider the direction, in which the footpoint is approached. If we consider the
direction, we can do better.

Let us first look at the algorithm used with very small stepsize s. It can be
seen as a projected gradient flow: At each point x ∈ Φ in a neighborhood of the
footpoint p∗, compute the tangent vector v = pT −x. The path of the algorithm
is then a solution of the differential equation x′ = v(x). The behaviour of these
curves near the footpoint is governed by the Jacobian of v there. It is easy to
show that its eigenvectors are the principal curvature directions of the surface ΦN ,
and the eigenvalues are dκi−1 < 0. Therefore, almost all curves are approaching
the footpoint in direction of the smallest value of |dκi − 1|. Thus, this algorithm
adapts itself to a direction, which would allow the largest steps according to
equation (17).

Our goal now is to have the iterates arranged along a curve, but to use optimal
steplengths to achieve nearly quadratic convergence. For this, we consider a curve
cf on Φ, containing the individual iterates xi for the footpoint in our projected
gradient algorithm with sufficiently small stepsize s. The footpoint p∗ is also a
footpoint on the curve cf . Moroever, we can view the algorithm as the footpoint
algorithm applied to curve cf , although the latter is not known. In view of
Remark 1, we can look at the planar development of the cone Γf , which connects
p with cf . An approximation of this development in a neighborhood of the
current iterate xi can be computed with the following algorithm.
Algorithm 1. Estimates d and κ via a planar development of a part of the cone
Γf (see Fig. 3).

(1) In the first step of the algorithm we compute the distances

ai = ||pT,i − xi||, bi = ||pT,i − p||,(18)

ci = ||xi−1 − p||, fi = ||xi−1 − xi||(19)

With these distances we can immediately develop the triangle with ver-
tices xi, pT,i, p to get (in a planar coordinate system with axes ξ, η, see
Fig. 3(b))

(20) x0

i = (0, 0)T , p0

T,i = (ai, 0)
T , p0 = (ai, bi)

T
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(2) In order to develop the triangle with vertices xi, p, xi−1 into the same
planar coordinate system, we compute the two intersection points si,1, si,2

of the two circles ki,1 (midpoint p0, radius ci) and ki,2 (midpoint x0
i , radius

fi). Then we compute the distances

(21) ei,j := ||p0

T,i − si,j||, j = 1, 2.

We compare the distances ei,j to the distance ei = ||pT,i − xi−1|| and set

x0

i−1 := si,j := (xi, yi)
T with j corresponding to min

j∈{1,2}
|ei − ei,j|.

(3) Now the circle ki through the points x0
i−1 and x0

i tangent to [x0
i , p

0
T,i] (the

x-axis) has midpoint mi and radius %i given by

(22) mi = (0, %i)
T , %i =

x2
i + y2

i

2yi

.

This gives us κi := 1/%i, an estimate of the curvature. An estimate of
the distance of p to the current footpoint xi is given by di := | ||p0 −
mi|| − |%i| |. The stepsize si at the current step of the projected gradient
algorithm is then given by

(23) si =
1

|diκi − 1|
.
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3.4. Summary of the algorithm for a general quadratic function. Let us
return to the originally addressed minimization of a quadratic function

F : R
n → R, F (x) = xT · Q · x + 2qT · x + q,

with a symmetric, positive definite matrix Q. The minimizer p of F in R
n is

given by p = −Q−1 · q. The Euclidean metric introduced via Q has an inner
product, defined by

(24) 〈v, w〉 := vT · Q · w.

The minimizer p∗, which is constrained to a given surface Φ ⊂ R
n is found by

the following algorithm, which follows immediately from the previous considera-
tions. We just have to carefully check where the inner product is involved.
Algorithm 2. Computes the minimum p∗ of a quadratic function with positive
definite matrix Q (and unconstrained minimum p) under the constraint that p∗

lies on a given m-dimensional surface Φ ⊂ R
n. Starting with an initial guess x0

for the minimum, iteratively apply the following two steps.

(1) At the current iterate xc ∈ Φ, compute a basis {c1, . . . , cm} in the tangent
space of Φ, its Gramian matrix G = (gij) = (〈ci, cj〉) for the inner product
(24), and the vector r = (rj) = (〈p − xc, cj〉). Solve the linear system
G · v = r. With help of the solution v = (v1, . . . , vm), define the tangent
vector t =

∑
i vici.

(2) With distance computations based on the norm ‖x− y‖2 = 〈x− y, x− y〉
and the stepsize strategy of subsection 3.3 (performed in the Euclidean
plane), compute a steplength s and the point pT = xc + st. With an
admissible projection according to subsection 3.2, project pT onto Φ to
obtain the next iterate x+.
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