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Abstract

We survey recent research results in constrained optimization with
curves and curve networks. The addressed topics include con-
strained variational curve and curve network design, variational
motion design, and guaranteed error bound approximation of point
cloud data with curve networks. The main theoretic results are sum-
marized with a focus on geometric solutions of the studied prob-
lems. A variety of applications is outlined including obstacle avoid-
ing rigid body motion design and smoothing of digital terrain ele-
vation data.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems; Curve, surface, solid, and object representations;

Keywords: curves on surfaces, variational design, constrained op-
timization, splines, curve networks, interpolation, approximation.

1 Introduction

Curves and curve networks are fundamental for many modeling
purposes. Due to the ever increasing number of geometric 3D data
that becomes available there is a rising need for curves and curve
networks that meet various constraints. The constraints include on
surface constraints, tolerance zones that need to be met, and special
curves and curve networks that are optimized towards a specific
application. There is a multitude of applications that benefit from
such tools, ranging from computational anatomy via geosciences to
architecture and many more.

In the present paper we survey recent progress that was made in
constrained optimization with curves and curve networks. We sum-
marize the most important results and cite relevant papers in the
field. We start in Section 2 with geodesics and their computation
on various surface representations. In Section 3 we study energy-
minimizing spline curves on surfaces and their applications. One
of these applications is variational motion design (in the presence
of obstacles) which is discussed in Section 4. The generalization
of the curve case to the curve network case leads to so-called fair
webs presented in Section 5. Their discrete realization has a variety
of applications including fair remeshing and constrained smooth-
ing of digital terrain elevation data with prescribed error bounds.
We conclude the paper in Section 6 with an outlook towards future
research.
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2 Geodesics

Geodesics on a surface are the generalization of straight lines in the
plane. They can not only be defined as the shortest curves but e.g.
also as the frontal or straightest curves (see e.g. [Hilbert and Cohn-
Vossen 1932] page 194 for an intuitive explanation). Note that on
polyhedral (i.e., piecewise linear) surfaces, shortest geodesics are
not always straightest geodesics [Polthier and Schmies 1998]. Nev-
ertheless, straightest geodesics are not always defined between pairs
of points on a triangle mesh and are thus not suited for many appli-
cations.

The geometric properties of geodesics have been investigated
in classical differential geometry (see e.g. [do Carmo 1976]).
Geodesic curves can be characterized by the fact that the oscu-
lating plane of the curve shall always pass through the surface
normal in the curve point. Geodesics in a scaled arc length pa-
rameterization also arise as minimizers of the L2 norm of the first
derivative (see e.g. [Pottmann and Hofer 2005]): Let Φ be an m-
dimensional surface in Euclidean Rn, m < n. Moreover two points
pi ∈ Φ, i = 1,2 and real numbers u1 < u2 are given. Among all
curves x : I = [u1,u2] → Φ which interpolate the given data, i.e.,
x(u1) = p1 and x(u2) = p2, a curve c which minimizes the func-
tional

E1(x) =
∫ u2

u1

‖ẋ(u)‖2du (1)

is a geodesic in a scaled arc length parameterization. We find that
the curve’s second derivative vectors c̈ are orthogonal to Φ. In par-
ticular, ċ and c̈ are orthogonal, and hence ‖ċ‖2 = const. This proves,
that the curve is parameterized by a constant multiple of arc length.
Moreover, it shows that c̈ represents the principal curve normal, and
orthogonality of the principal normal to Φ characterizes a geodesic.
Note that the functional E1 also optimizes the parameterization of
the geodesic.

2.1 Computation of geodesics

According to [Struik 1950] the history of geodesics begins with Jo-
hann Bernoulli who first solved in 1697 the problem of computing
the shortest distance between two points on a convex surface. Fol-
lowing Bernoulli also Euler studied geodesics and derived the equa-
tions for implicit surfaces in 1732. Classical differential geometry
teaches us that we can always find a geodesic through a given sur-
face point in a given tangent direction. This initial value problem
can be solved by computing the solution of a system of first order
ordinary differential equations. However, in applications one often
asks for a geodesic that connects two specified surface points which
leads to a much harder to solve boundary value problem.

A variety of applications of geodesics has been described within
Computer Vision and Image Processing (see e.g. [Sapiro 2001; Os-
her and Paragios 2003; Kimmel 2003]). The type of surfaces we
work on goes beyond parametric surfaces [Pham-Trong et al. 2001]
and sometimes we are satisfied with approximately shortest curves.
In Computer Graphics often triangle meshes are the preferred sur-
face representation. For graphs the classical algorithm to com-
pute shortest paths is the Dijkstra algorithm [Dijkstra 1959]. How-



Figure 1: Geodesics on a parametric and implicit surface, a triangle mesh and a point set surface.

ever, for triangles meshes the shortest paths usually cut across faces
and thus we can not simply use an edge-based Dijkstra algorithm.
[Kimmel and Sethian 1998] employ a variant of the fast march-
ing method to propagate the distance function on triangle meshes.
By backtracking in negative gradient direction of the distance func-
tion one can then compute geodesic paths. A series of follow-up
contributions [Novotni and Klein 2002; Kirsanov 2004; Reimers
2004] explored an improved update rule for geodesic computation.
The original idea was also extended to weighted distance functions
by [Bartesaghi and Sapiro 2001] which allows the computation of
weighted geodesic curves. Thereby the weight depends e.g. on the
mean surface curvature. With that approach shortest curves lying in
areas of extremal surface curvature can be computed. The weighted
approach was also extended to implicit hyper-surface [Mémoli and
Sapiro 2001]. [Surazhsky et al. 2005] presented an efficient im-
plementation of the exact geodesic algorithm by [Mitchell et al.
1987] which allows the computation of a geodesic from a single
source point to one or many other points. The authors also ex-
tended the original algorithm to obtain on triangle meshes approxi-
mate geodesics with bounded error.

The algorithm of [Hofer and Pottmann 2004] minimizes the energy
E1 of Equ. (1). The method allows the computation of geodesic
curves on parametric and implicit surfaces, triangle meshes and
also on point set surfaces (Fig. 1). One advantage of that algorithm
is that the surfaces can have arbitrary dimension and codimension
which allows e.g. to employ the algorithm also for motion design
purposes [Pottmann et al. 2004].

2.2 Geodesics with constraints

Often we are interested in the computation of shortest paths in the
presence of obstacles. This problem has been extensively studied in
robotics for motion design purposes [Halperin et al. 1997; Latombe
2001]. Motion design algorithms often assume that the obstacles
have a polygonal shape. A possible solution for the computation
of shortest planar (or spatial) curves connecting two points in the
presence of arbitrarily shaped obstacles is the following [Hofer and
Pottmann 2004]: From one of the two points we propagate the
distance field using an adapted fast sweeping algorithm of [Zhao
2004]. The modification of the original algorithm is that grid nodes
inside obstacles get a flag and are not used for the propagation. In
Fig. 2 we illustrate level sets of the distance function in the presence
of the two obstacles. Then a constrained geodesic is computed as
described in [Hofer and Pottmann 2004]. The same approach can
also be employed in 3D. An extension to geodesics on surfaces that
avoid given obstacles (e.g. trimmed regions) can be achieved by
adapting the fast marching method mentioned above such that again
the distance field computation avoids the present obstacles.

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2
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Figure 2: A planar geodesic curve connecting p1 and p2 con-
strained by two obstacles is shown as a solid line. The level sets
of the constrained distance field to the point p1 are color coded.
Another longer path connecting p1 and p2 is shown as a dotted
line.

3 Splines on surfaces

Curve design using splines is a fundamental topic in Computer
Aided Geometric Design. B-spline curves of odd degree and max-
imal smoothness also arise as solutions of variational problems. In
extension of standard spline methods, variational curve design has
been investigated in many contributions (see e.g. [Brunnet et al.
1993; Moreton and Sequin 1993] and the references therein). Thus
it is rather surprising that there are fewer contributions on the varia-
tional design of spline curves that are restricted to surfaces. [Shoe-
make 1985] introduced spherical counterparts of Bézier curves by
extending de Casteljau’s algorithm to the sphere. He replaced
straight line segments by geodesic arcs and ratios of Euclidean dis-
tances by ratios of geodesic distances. Using this on the 3-sphere
in R4 he generated the spherical component of rigid body motions
and applied it to Computer Animation.

Motivated by the application to motion design, [Park and Ravani
1995] defined Bézier curves on Riemannian manifolds. Actually,
a number of papers dealing with variational design on surfaces is
considering the sphere [Brunnett and Crouch 1994; Brunnett et al.
1995], partially in view of the application to motion design [Park
and Ravani 1997; Ramamoorthi and Barr 1997]. An early contri-
bution to variational curve design on more general surfaces is by
[Noakes et al. 1989]. The authors characterize the minimizers of an
intrinsic geometric counterpart to the L2 norm of the second deriva-



Figure 3: Energy minimizing spline curves on a parametric surface, a level set surface, a triangle mesh, and a point set surface.

tive. This is the integral of the squared covariant derivative of the
first derivative with respect to arc length. Opposed to this intrinsic
formulation there are also more recent contributions about splines
in surfaces that deal with the usual energy functional employed in
CAGD. This extrinsic formulation appears e.g. in the PhD thesis
[Bohl 1999] for surfaces in R3. Bohl proved the existence of a so-
lution and illustrates computed examples based on a quasi-Newton
optimization algorithm.

The counterparts on surfaces to C2 cubic splines (and also the coun-
terparts to splines in tension, C4 quintic splines, and smoothing
splines) have been characterized by [Pottmann and Hofer 2005].
In the unrestricted case the minimizers of the L2 norm of the sec-
ond derivative have cubic segments (vanishing fourth derivative).
The corresponding splines on surfaces have segments with van-
ishing tangential component of the fourth derivative. More for-
mally, in the unrestricted case we have the following result: Among
all curves x(u) ⊂ Rn, whose first and second derivative satisfy
ẋ∈AC(I), ẍ∈ L2(I) on I = [u1,uN ], and which interpolate the given
data, x(ui) = pi, the unique minimizer of

E2(x) =
∫ uN

u1

‖ẍ(u)‖2du, (2)

is the interpolating C2 cubic spline c(u). This well-known result
has been extended by [Pottmann and Hofer 2005] to the case where
the admissible curves x(u) are restricted to the given surface Φ.
The energy functional E2 of Equ. (2) is unchanged, but since the
interpretation of E2 requires an embedding space the restriction to
a surface is seen as a constraint. The main theorem on the counter-
parts to interpolating cubic splines of [Pottmann and Hofer 2005]
is

Theorem 1 Consider real numbers u1 < · · · < uN and points
p1, . . . ,pN on an m-dimensional C4 surface Φ in Euclidean Rn. We
let I = [u1,uN ]. Then among all C1 curves x : I → Φ ⊂ Rn, which
interpolate the given data, i.e., x(ui) = pi, i = 1, . . . ,N, and whose
restrictions to the intervals [ui,ui+1], i = 1, . . . ,N−1 are C4, a curve
c which minimizes the functional E2 of Equ. (2) is C2 and possesses
segments c|[ui,ui+1], whose fourth derivative vectors are orthogo-
nal to Φ. Moreover, at the end points p1 = c(u1) and pN = c(uN)
of the solution curve, the second derivative vector is orthogonal to
Φ.

For a proof we refer the reader to the paper [Pottmann and Hofer
2005]. A linear combination of the energies (1) and (2) leads in the

unrestricted case to the well-known splines in tension as minimizers
[Schweikert 1966]. The counterpart on surfaces is characterized by
the following theorem of [Pottmann and Hofer 2005]:

Theorem 2 Consider a sequence of data points, parameter values
and admissible curves on a surface Φ as in Theorem 1. Then, a
minimizer of the functional

Et(x) =
∫ uN

u1

(‖ẍ‖2 +w‖ẋ‖2)du, w = const > 0, (3)

is a C2 curve which satisfies

t pr (c(4)(u)−wc̈(u)) = 0 (4)

on all segments. Thereby tpr denotes the orthogonal projection of a
vector at a point p ∈ Φ onto the tangent space of Φ at p. The end
conditions are t prc̈+(u1) = t prc̈−(uN) = 0.

3.1 Computation of splines on surfaces

In [Hofer and Pottmann 2004] a geometric optimization algorithm
for the computation of energy-minimizing spline curves on surfaces
is described. In the following we summarize the main ideas. We are
minimizing quadratic functionals such as E2 or Et . After discretiza-
tion we obtain quadratic functions. The restriction of the curves to
a surface yields constraints, and thus the numerical computation of
splines in manifolds requires an algorithm for the constrained min-
imization of a quadratic function. For this purpose we propose a
projected gradient algorithm, whose step size control is guided by
a geometric interpretation of an error estimate. Consider minimiza-
tion of a quadratic function

F : RD → R, F(x) = xT ·Q ·x+2qT ·x+q,

with a symmetric positive definite matrix Q, under the constraint
that x lies in some surface Φ ⊂ RD. We assume that Φ has dimen-
sion m and that it is smooth in the area we work in.

The geometric approach to this minimization problem views the
matrix Q as matrix of the inner product 〈x,y〉 := xT ·Q · y, of a
Euclidean metric in RD. F assumes its minimum in the point p =
−Q−1 ·q. Up to an unimportant additive constant, F then equals

F(x) = (x−p)T ·Q · (x−p).



This is the squared distance ‖x−p‖2 of points p and x in the Eu-
clidean norm mentioned above. Here, and in this entire section,
‘distance’, ‘orthogonality’, and related concepts refer to the met-
ric defined by the matrix Q. The minimum of F on the surface Φ

is attained at the point p∗, which is closest to p. p∗ is the normal
footpoint of p on Φ.

We propose the following iterative procedure for minimizing F . It
consists of repeated application of the following two steps: xc (the
current point) is initialized with an initial guess x0 for the mini-
mizer.

1. Compute the tangent space T m of Φ at the current iterate xc
and project the point p orthogonally into T m, which results in
the point pT .

2. Compute an appropriate stepsize s and project xs := xc +
s(pT −xc) onto Φ; this yields the next iterate x+.

For further details we refer the reader to [Hofer and Pottmann
2004].

3.2 Splines with constraints

Using the algorithm of [Hofer and Pottmann 2004] one can com-
pute counterparts to cubic splines and splines in tension on surfaces
in various representations (parametric, implicit, triangle mesh,
point set surface), see Fig 3. Furthermore, their algorithm can be
employed for variational curve design in the presence of obstacles
[Hofer 2004; Hofer and Pottmann 2004] outlined below. Figure 4
illustrates planar and spatial spline curves that avoid given obsta-
cles. Aimed at an application in computational anatomy energy-
minimizing splines on surfaces were also extended to a weighted
scheme in [Kao et al. 2007].

Only recently researchers in Computer Aided Geometric Design
(CAGD) began to study the computation of spline curves in the
presence of obstacles. In his PhD thesis, Bohl [Bohl 1999] pre-
sented an algorithm for the computation of energy-minimizing
splines on trimmed two-dimensional parametric surfaces. More
general results on the existence of energy minimizing splines in
manifolds are due to Wallner [Wallner 2004]. Recently, Peters in-
troduced SLEVEs for planar spline curves [Peters and Wu 2004]
to solve the so-called ‘channel problem’ [Myles and Peters 2005]:
Compute a spline curve with a limited amount of pieces that tra-
verses a narrow channel bounded by polygonal obstacles. An older
contribution by Opfer and Oberle [Opfer and Oberle 1988] dealt
with cubic splines and obstacles and the constraint interpolation
with rational cubics was studied by Meek et al. in [Meek et al.
2003]. [Hildebrandt et al. 2005] proposed an algorithm for smooth-
ing 3d curves with an ε-constraint that keeps the curve inside a pipe
surface of radius ε around the original curve.

Concerning the representation of obstacles the following ap-
proaches have been suggested so far. The paper [Azariadis and
Aspragathos 2005] uses ‘bump-surfaces’ to represent obstacles. In
our own work [Hofer and Pottmann 2004], we have used a single
barrier manifold to represent all obstacles. Using that manifold we
were able to compute energy minimizing splines that interpolate
given points and avoid the obstacles as outlined above.

4 Variational motion design

The design of smooth motions of a rigid body in R3 is one of the
most prominent applications of splines in manifolds. Many contri-
butions to motion design use the quaternion unit sphere as a model

Figure 4: Variational curve design in the presence of obstacles in
the (left) planar and (right) spatial case. Both figures also show the
unrestricted cubic spline curve.

of SO(3) (see e.g. [Shoemake 1985; Barr et al. 1992; Ramamoor-
thi and Barr 1997]). Nevertheless, one can also consider the group
of Euclidean congruence transformations as a surface [Belta and
Kumar 2002; Hofer et al. 2003] and base motion design on that sur-
face. For that purpose [Hofer and Pottmann 2004; Pottmann et al.
2004; Hofer 2004] consider a rigid body moving in R3. we use
Cartesian coordinates and denote points of the moving system Σ0

by x0,y0, . . . , and points of the fixed system by x,y, and so on. A
rigid body transformation α maps points x0 ∈ Σ0 to positions x in
the fixed system via

x = a0 +A ·x0. (5)

We speak of the image also as ‘position’ Σ; it is determined by the
pair (a0,A), consisting of a vector a0 (the position of the origin)
and the rotation matrix A. If a0(u) and A(u) depend smoothly on u,
which can be thought of as time, we speak of a smooth motion, or
sometimes simply of a motion. Our goal is the design of motions
which interpolate given positions Σ(ui) at time instances ui.

If we do not impose any restriction on the matrix A in (5), we get an
affine map α(u) and an affine position Σ(u). Let us denote the three
column vectors of A as a1,a2,a3. Now we associate with the affine
map α a point in 12-dimensional affine space R12, represented by
the vector A = (a0, . . . ,a3). Because of the orthogonality condition
imposed on A, the image points of rigid body transformations α lie
in a 6-dimensional manifold M6 ⊂ R12.

A meaningful metric in R12 can be introduced by means of a collec-
tion X of points x0

1,x
0
2, . . . ,x

0
K in the moving system (body), which

are called feature points. The squared distance ‖α −β‖2 of affine
mappings α and β from each other is defined as sum of squared
distances ∑i ‖α(x0

i )− β (x0
i )‖2 of the corresponding feature point

positions. One does not have to use unit point masses at a discrete
number of feature points. Instead, we could work with another mass
distribution (positive measure) on the moving body.

It can be shown (see e.g. [Hofer et al. 2003]) that this distance mea-
sure introduces a Euclidean metric in R12, which only depends on
the barycenter sx = (1/K)∑i x0

i and on the inertia matrix

J := ∑
i

x0
i ·x0

i
T

(6)

of the feature points. By a well-known result from mechanics, we
can replace the set of feature points by the six vertices of their iner-
tia ellipsoid, without changing the barycenter and the inertia matrix
of X . To do so, we choose the barycenter as the origin in the moving
system and the eigenvectors of J as coordinate axes. Then the six
points have coordinates (± f1,0,0),(0,± f2,0),(0,0,± f3), where



Figure 5: Energy minimizing cyclic motions: (Left) E2, (Center) Et , (Right) E1.

2 f 2
i are the eigenvalues of J. Now, ‖α−β‖2, i.e., the above defined

squared distance of the points A = (a0, . . . ,a3) and B = (b0, . . . ,b3)
from each other is given by the formula

‖A−B‖2 = 6(a0−b0)2 +2
3

∑
i=1

f 2
i (ai−bi)2. (7)

Variational motion design is seen as curve design with energy min-
imizing splines on M6 ⊂ R12, using the metric (7). For motions,
the meaning of minimizing one of the functionals E1, E2, or Et , is
that the total energy of the feature point trajectories is minimized. It
makes sense to base motion design on trajectories of points on the
moving body. We view this as an advantage over the known purely
intrinsic formulations, which are neglecting shape and mass prop-
erties of the moving body. For the numerical solution we refer to
[Hofer and Pottmann 2004]. An example of such motions is shown
in Fig. 5. The same five input positions are interpolated by motions
minimizing E2, Et , and E1, respectively.

For a geometric characterization of the motions which are com-
puted in this way [Pottmann et al. 2004] use the concept of a bal-
anced force system from statics. A system of forces fi, attached to
points pi, is in balance, if both, the sum of force vectors and the
sum of moment vectors, vanish, i.e., ∑i fi = 0, and ∑i pi × fi = 0.
At an arbitrary time instant u of a sufficiently smooth motion, the
k-th derivative vectors at the feature point positions define the k-th
derivative force system Sk. Now motions arising from the mini-
mization of E2 are characterized as follows: The energy minimizing
spline motion is C2, at each time instant u 6= ui the 4-th deriva-
tive force system S4(u) is in balance, and at the end positions, the
systems S2(u1),S2(uN) of second derivatives are in balance. In
particular, the trajectory of the barycenter of the feature points is
an interpolating cubic C2 spline. For a proof, one uses the results
of [Pottmann and Hofer 2005] and shows that the k-th derivative
vector of a curve C on M6 at a point C(u) is orthogonal to M6 if the
k-th derivative force system of the corresponding position in R3 is
in balance. The spline property of the barycenter trajectory follows
immediately from (7) and the definition of E2; therefore, the mo-
tion computation described above in R12 can be decomposed into
the computation of this special trajectory (in R3) and the computa-
tion of the rotational part (in R9).

4.1 Constrained motion design

Similar to the curve case one can perform motion design in the pres-
ence of obstacles [Hofer 2004; Hofer and Pottmann 2005] exploit-
ing all available degrees of freedom. Figure 6 compares an uncon-
strained and a constrained (by four obstacles) energy-minimizing

rigid body motion interpolating five input positions. In recent work
[Nawratil et al. 2007] present an algorithm that deals with rigid
body motions and obstacles in a slightly different way. Motivated
by a paper of [Zhang et al. 2006] a constrained geometric optimiza-
tion algorithm for generalized penetration depth computation has
been developed. Here the goal is to find the optimal motion that
makes two colliding rigid bodies penetration free.

Figure 6: Variational motion design in the presence of obstalces.
The energy-minimizing Euclidean rigid body motion (left) without
constraints and (right) avoiding the given obstacles.

5 Fair webs

Fair webs have been described by [Wallner et al. 2007] and are
energy-minimizing curve networks. Obtained via an extension of
cubic splines or splines in tension to networks of curves, they are
efficiently computable and possess a variety of interesting applica-
tions. Here we summarize properties of fair webs. Their discrete
counterparts are fair polygon networks and both have interesting
applications including fair surface design and approximation under
constraints such as obstacle avoidance or guaranteed error bounds,
aesthetic remeshing, parameterization and texture mapping, and
surface restoration in geometric models.

While curve networks in 3-space are widely used and several
contributions exist that use a variational approach, much less is
known about energy-minimizing curve networks in surfaces, and
in the presence of obstacles. Prior art on surface design based on
energy-minimizing curve networks (without constraints) includes
e.g. [Kolb 1995; Moreton and Sequin 1992]. In the discrete set-
ting variational subdivision has been addressed in [Kobbelt and



Figure 7: Curve networks on a surface which minimize an energy E. From left to right: E = E2, E = E2 + 0.2E1, E = E1. Fixed knots are
marked by a ball. All other knots are free. The structure lines of the fair web reveal themselves beautifully.

Schröder 1998]. Note that there are also many contributions deal-
ing with curve networks that do not explicitly use a variational ap-
proach and thus we do not cite those papers.

We summarize the main results from [Wallner et al. 2007]. A curve
network is a finite set of curves C = {c}, each defined in its param-
eter interval [ac,bc]. We call points which are common to more than
one curve knots. One can think that the curves are being knotted to-
gether at the knots. Note that by “curve” we actually mean a curve
segment between two knot points of the curve network. As in the
familiar case of splines, some of these curves will later be joined to
larger curves, called structure lines. Each knot k of the curve net-
work has a collection Cs

k of curves starting there and another set Ce
k

of curve segments ending there. The location of the knot in space
is some point pk. So if a curve c, defined in the interval [ac,bc]
starts in the knot pk, i.e., c ∈Cs

k, then c(ac) = pk, and analogously,
if a curve c ends in the knot pk, i.e., c ∈Ce

k , then c(bc) = pk. The
knots pk together with the sets Cs

k, Ce
k define the connectivity of the

network. Later on we will refer to the curves in the set Cs
k also as

the outgoing curves of the knot pk, and the curves in the set Ce
k as

the incoming curves of pk.

To obtain nice curve networks we often want that two curve seg-
ments joining in a knot (an incoming curve and an outgoing one)
actually belong to one larger curve. More formally we state: a curve
ce ∈ Ce

k ending in a knot pk together with a curve cs ∈ Cs
k starting

in pk may be required to form a single smooth curve. These two
curve segments (ce,cs) are part of what we call a structure line of
the curve network. If two curves sharing a knot belong to a struc-
ture line, we say that these two curves have property (S). For a knot
pk, we collect all outgoing curves that have the property (S) in a set
C∗

k . All outgoing curves c ∈Cs
k without property (S) are collected

in a set Cs∗
k , and the incoming curves c ∈Ce

k without property (S)
form the set Ce∗

k .

The energy of the entire curve network C is the sum of energies of
all single curves of the curve network:

E(C ) = ∑c∈C
E(c). (8)

Here E is either of E1, E2, or Et . We refer to energy minimizing
curve networks also as fair curve networks or short fair webs. Fair
webs minimizing the energies E2, E1 +0.2E1, and E1 are shown in
Fig. 7.

Fair webs constrained to surfaces have a number of nice properties.
The most important from the fairness point of view is, that for E2-
and Et -minimizing fair webs, a structure line (which originally is
required to be smooth only) is actually C2. Further, the derivatives
of the curve segments which join in a free knot (whose location is
not fixed as a side condition) fulfill some balance equations, which
are detailed below. A discretized network (see [Wallner et al. 2007])
has analogous properties. We consider fair webs whose curves are

constrained to a given surface Φ. Although we assume that the
connectivity of the fair web is maintained, we have the freedom to
choose which knot points shall be fixed (their position is chosen,
e.g. by the user), and which knot points shall be free (their position
will be determined by the energy minimization procedure). In Fig.
7, fixed knots are marked.

We confine ourselves to C2 curve segments in the case of E1 and to
C4 segments in the case of E2 and the tension energy Et . A vector
V attached to a point p in Φ can be written as V = V>+V⊥, where
V> is tangent and V⊥ is orthogonal to Φ in the point p. The vectors
c′(t),c′′(t), . . . are attached to the point c(t).

The main theorems in [Wallner et al. 2007] give a characterization
of E-stationary curve networks for the different energies that we
consider. We begin with the energy E1.

Theorem 3 E1-stationary curve networks in a surface Φ are char-
acterized by:

(i) The second derivative vectors c′′ of all curves c are orthogo-
nal to the surface Φ, i.e.,

c′′> = 0

for all curves.

(ii) For each free knot k,

T1,k := ∑
c∈Ce

k

c′(bk)− ∑
c∈Cs

k

c′(ak) = 0, (9)

i.e., the first derivative vectors of incoming and outgoing
curves are in equilibrium.

For curves in C∗
k which represent an incoming/outgoing pair and

are therefore part of a structure line, the symbol ∆c′′ means the
jump in c′′ when leaving the incoming curve and continuing at the
outgoing one, and similar for ∆c′′′. The next theorem describes
curve networks which make the energy E2 stationary.

Theorem 4 E2-stationary curve networks in a surface Φ are char-
acterized by:

(i) The fourth derivative vectors c′′′′ of all curves c are orthogo-
nal to the surface Φ, i.e.,

c′′′′> = 0

for all curves.

(ii) For each knot k, curves in Ce∗
k and Cs∗

k have c′′> = 0 there,
and the curves in C∗

k which are part of a structure line have
∆c′′ = 0 in the knot.



Φ

(a) (b) (c)

Figure 8: (a) User input on original mesh Φ are four polygons in
vertical direction and two polygons in horizontal direction. (b) Fair
mesh interpolating the input polygons. (c) Design based on coarser
fair mesh interpolating the given polygons.

(iii) For each free knot k, T>
2,k = 0, where

T2,k := ( ∑
c∈Ce∗

k

− ∑
c∈Cs∗

k

)(c′′⊥′+ c′′′)− ∑
c∈C∗

k

∆c′′′. (10)

The following theorem gives a geometric characterization of Et -
stationary curve networks in a surface.

Theorem 5 For the tension energy Et = E2 + tE1, Et -stationary
curve networks are characterized by:

(i) A linear combination of the fourth and the second derivative
vector with the coefficients 1 and −t vanishes,

(c′′′′− tc′′)> = 0

for all curves;

(ii) same as (ii) in Theorem 4;

(iii) at all free knots we have

(T2,k − tT1,k)> = 0

where T1,k and T2,k are defined by Equ. (9) and Equ. (10) re-
spectively.

For proofs of theorems 3,4,5 we refer the reader to [Wallner et al.
2007].

5.1 Constrained fair polygon networks

The discrete counterpart of fair webs are fair polygon networks. A
wealth of possible applications of fair polygon networks is outlined
in [Wallner et al. 2007]. In Fig. 8 we illustrate a remeshing example
with user input that guides the structure lines of the new triangle
mesh.

A special form of fair polygon networks turned out to be a use-
ful tool for constrained smoothing of digital terrain elevation data
[Hofer et al. 2006]. In the following we summarize the main ideas
of the latter paper. Elevation data of the DTED-2 (Digital Terrain
Elevation Data) specification are given as a height field over a uni-
form grid in the xy-plane, such that every data point has horizontal
and vertical error (accuracy) bounds. Thus the error bounds are
in the form of cylinders of revolution Zi j (see Fig. 9). The ob-
jective is to compute a smooth surface that stays within the given

pi jpi jpi jpi jpi jpi jpi jpi jpi jpi jpi jpi jpi jpi jpi jpi jpi j

Zi j

Figure 9: Smoothing height fields via fair polyline networks. Poly-
line network with the tolerance cylinders Zi j associated with the
vertices pi j.

error margins dictated by the cylinders. The framework proposed
in [Hofer et al. 2006] views the height field over the xy-plane as a
network consisting of x-parallel and y-parallel polylines. We per-
form smoothing by minimizing a discrete bending energy of these
polylines, always respecting the error bounds. The framework is
very flexible and allows e.g. to use individual error bounds for ev-
ery data point, fill voids in the data, or smooth only a subset of the
data for feature preservation.

The smoothing procedure of [Hofer et al. 2006] is based on mini-
mizing the energy of a polyline network. We first define the energy
of a single polyline, and then the energy of the polyline network as
the sum of energies of all the polylines that contribute to the poly-
line network. A polyline p = (q1,q2, . . . ,qL), as a discrete curve,
possesses a discrete linearized bending energy:

E = ∑
L−1
i=2 ‖∆

2qi‖2, ∆
2qi = qi−1−2qi +qi+1. (11)

Polyline networks have energies which are defined as the sum of the
energies of the polylines which they are made of. The given eleva-
tion data constitute a rectangular array of points: pi j = (xi j,yi j,zi j),
(i = 1, . . . ,M, j = 1, . . . ,N). We define the energy of the data collec-
tion to be the sum of energies of the N different polylines defined
by j = const. and the M different polylines defined by i = const.:

E = ∑
N
j=1 ∑

M−1
i=2 ‖pi−1, j −2pi, j +pi+1, j‖2

+ ∑
M
i=1 ∑

N−1
j=2 ‖pi, j−1−2pi, j +pi, j+1‖2. (12)

A fair polyline network is one which has minimal energy among all
networks which fulfill a fixed set of constraints.

The data sets we use consist of points pi j which are equally spaced
in x and y direction. We might, without loss of generality, assume
that xi j = gx · i and yi j = gy · j, where gx, gy specify the grid element
size (1 arc second for DTED-2). The data points contain errors,
both in horizontal and vertical direction. If the horizontal error of
a data point pi j is bounded by ri j, and the vertical error by hi j,
then the true location of that data point is within a cylinder Zi j of
diameter 2ri j and height 2hi j, which is centered in the given point
pi j = (xi j,yi j,zi j). Thus each point pi j is equipped with its own
tolerance cylinder Zi j (Fig. 9). They are hard constraints, which
means that the terrain surface we are seeking has to pass through
all Zi j’s.



Figure 10: Iso-height contour plot of (top) original and (bottom)
smoothed digital terrain elevation data. The constrained optimiza-
tion procedure uses a fair polygon network.

Minimizing the quadratic function (12) of the variables xi j,yi j,zi j,
subject to the constraints mentioned above, is a quadratic program-
ming problem with non-convex side conditions. It contains too
many variables for just submitting it to a generic optimization pro-
cedure as, e.g., provided by mathematical software. [Hofer et al.
2006] showed that only using the z coordinates of the data points as
variables for minimization is a meaningful approach:

E = ∑
N
j=1 ∑

M−1
i=2 (zi−1, j −2zi, j + zi+1, j)2

+ ∑
M
i=1 ∑

N−1
j=2 (zi, j−1−2zi, j + zi, j+1)2. (13)

A straightforward optimization scheme employs a gradient descent
method, with the original elevation data as initial condition. It is
elementary that the gradient of the energy is given by

(∇E)i j = (zi−2, j + zi+2, j + zi, j−2 + zi, j+2)

−4(zi−1, j + zi+1, j + zi, j−1 + zi, j+1)+12zi, j, (14)

provided i, j > 2 and i < M−1, j < N−1 (that is, we superimpose
the masks [1,−4,6,−4,1] in both x- and y-direction). As we ap-
proach the boundary, the standard mask becomes [−2,5,−4,1] and
finally [1,−2,1]. Optimization is basically implemented as follows:
First, we find a direction of descent, e.g., by letting gi j :=−(∇E)i j.
We consider the 1-parameter variation Eτ of the energy (13) defined
by the z coordinates zi j(τ) = zi j + τ ·gi j. The dependence of E on
τ is quadratic, so it is easy to find a parameter τ = τ0 where Eτ has
a minimum. We replace zi j by zi j +τ0 ·gi j, but vertices which have
moved too far (violating the constraints) are pulled back. This pro-
cedure is iterated. Fig. 10 illustrates original and smoothed digital
terrain elevation data by means of an iso-height contour plot. We
see that the iso-height contour lines are much nicer after smoothing
with our procedure but the digital terrain is still within the specified
tolerances.

6 Conclusion

The recent progress made in the area of constrained optimization
with energy-minimizing curves and curve networks helped to estab-
lish new theoretical results and a variety of practical applications.
In the present survey paper we can only sketch the main results and
thus we always refer to the original literature for detailed results.
This interesting area of current research has proved to be a stimu-
lating environment over the last few years and we hope that future
contributions help to define this research area.

An extension of the research surveyed in the present paper is the fol-
lowing. Currently, conjugate curve networks on surfaces such as the
principal curvature lines of relative differential geometry are prov-
ing themselves as fundamental tools for the generation of discrete
freeform-surfaces with planar faces other than triangles. This the-
ory in the hot field of discrete differential geometry has important
applications in architecture that are currently under investigation.
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