
The d
2-Tree: A Hierarchical Representation
of the Squared Distance Function

S. Leopoldseder 1, H. Pottmann 1, H. Zhao 2

1 Institute of Geometry, Vienna University of Technology, Vienna, Austria
2 Department of Mathematics, University of California, Irvine, U.S.A.

Abstract

The d
2-tree as presented in this paper is an octree data structure which stores in each of

its cells a local quadratic approximant of the squared distance function of a geometric object

M . This adaptive data structure has large cells in the far field of the geometric object M

whereas small cells are used in the near field of M and also in areas where the squared distance

function of M is not differentiable, i.e., at the medial axis of M .

Our proposed data structure is appropriate for geometric optimization problems, like regis-

tration or active surface approximation, where the solution to the problem is found iteratively

with a Newton-type method. An example for active surface approximation is briefly presented.

1 Introduction

The distance function of a curve or surface M assigns to each point x of the embedding space
the shortest distance d(x) of x to M . Since d is not differentiable at M one often uses the signed
distance function, which agrees with d up to the sign. It is well defined for a closed object and takes
on different signs inside and outside the object, respectively. In the following, we will just speak of
the distance function for both the signed and the unsigned version. A variety of contributions deals
with the computation of this function and its use in various algorithms of geometry processing.

In many cases the computation aims towards the singular set of the function, i.e., towards
points where the function is not smooth. Those points lie on the cut locus (medial axis, skeleton)
of the input shape. Recently, a survey of this topic has been given by Choi and Han [3].

The distance function is also the viscosity solution of the eikonal equation ‖∇f(x)‖ = 1. Its
numerical computation is not trivial because it is a nonlinear hyperbolic equation and an initially
smooth front may develop singularities (shocks) as it propagates. Precisely the latter belong to
the cut locus. The computation of viscosity solutions with the level set method of Osher and
Sethian [12, 19] proved to be a very powerful approach. Whereas earlier implementations have
been of complexity O(N logN), in the number N of grid nodes, H. Zhao [21] recently presented
an algorithm of complexity O(N). This algorithm is heavily used in the present work.

The level sets of the distance function of M are the offsets of M, which are of particular
importance in Computer Aided Design (see e.g. [13]) and also appear in mathematical morphology
[18]. Results on the distance function and its application to shape interrogation for CAD/CAM
may also be found in the recent book by Patrikalakis and Maekawa [13].

The distance function or other functions, which vanish exactly at the object of interest, have
also received great attention within Computer Graphics (see, e.g. [5, 7, 10]) In particular, adap-
tively signed distance fields (ADF’s) [5] proved to be a versatile and unifying representation with
many applications. ADF’s are closely related to the present work.

Our work originates from the solution of various geometric optimization problems. One ex-
ample are registration problems. Given, for instance, a cloud of measurement points and a CAD
model M of an object, one aims at moving the point cloud, viewed as elements of a rigid body,
as close as possible to M . Typically, one computes a final position of the point cloud such that
the sum of squared distances of points in the cloud to M is minimial. The main solution is the
well-known iterative closest point (ICP) algorithm [1]. In each iteration, ICP moves the points
towards their closest points on the CAD model; per step one has to solve an eigenvalue problem.
There are many extensions of this algorithm, which still compute corresponding points in some
way [1, 17]. Recently, we suggested to let the point cloud just flow in the squared distance field

1



of the CAD model. Using kinematics and local quadratic approximants of the squared distance
function of M , we showed that this requires just the solution of a linear system in each step of
an iterative algorithm. Moreover, it has been shown how to extend the algorithm to simultaneous
correspondence-free registration of N systems (point clouds or surfaces) and how to incorporate
some correspondences, if they are known [16].

The moving point cloud can also undergo some deformation. In particular, it can be a cloud
of points on a deforming B-spline surface. This results in an active contour approach to surface
approximation, which will be discussed in section 4. Again, unlike previous approaches, where
correspondences are used to drive the active model [9], we just use local quadratic approximants
of the squared distance field of the model shape M , which shall be approximated.

In our work we have so far used differential geometric knowledge, which ties local quadratic
approximants of the squared distance function d2(x) of a surface M to the curvature behavior of
M [14]. We have been missing an appropriate structure, from which we can quickly retrieve the
necessary information about d2(x). This gap shall be filled in the present paper.

We present an efficient algorithm for the computation of an octree, denoted as d2-tree. Each
of its cells carries a quadratic function

f(x) = xTAx + b
T
x + c, A symmetric, x ∈ R

3, (1)

which is an appropriate approximation to the squared distance function d2(x) for all points x of
the cell. It is important that the quadratic function f(x) is not restricted to the points x within
the cell but it is a function on the whole embedding space R

3, see Fig. 4 for an illustration of the
planar case.

In view of our applications, less accuracy and thus larger cells are used in the far field of M ,
whereas we have smaller cells close to M . This is a close relation to ADF’s [5], but ADF is just a
method for adaptive rendering or representation of a geometric object with a given distance field.
Our interest lies in dynamic deformation or control of an object. Also ADF does not address the
issue about how to compute the distance field efficiently and adaptively.

One main difference to ADF’s is that we do not store just the values of the function d2, but
coefficients of quadratic approximating functions. We store more information in each cell but this
is not inefficient in terms of storage requirement because we need much less cells to store the same
information on the local behavior of d2.

Of course the computation of the coefficients A, b, c of f(x) is an extra effort compared to the
generation of an ADF. In an application where one is satisfied to have fast access to the distance of
certain sample points to the geometric object, an ADF is fine. In geometric optimization problems,
however, which are solved with a Newton-type method we need in each iteration local quadratic
approximants f(x) for a large number of sample points. There it is favorable to precompute these
local quadratic approximants and retrieve them quickly from the d2-tree during the optimization
procedure.

Another difference of our d2-tree to an adaptively sampled distance field (ADF) is that the size
of the cells is not only guided by the distance to M or the local geometry of M . It is also guided
by the approximation error between the quadratic function in a cell and the function d2. At the
medial axis of M , e.g., the function d2 is not differentiable and there is no quadratic function
which will locally approximate d2 well. Thus we obtain smaller cells near the medial axis of M
which is a very important property in the applications we have in mind.

2 General Outline

The algorithm will proceed through the following steps which are explained in more detail in the
next section. In the following we consider the 3-dimensional setting. The 2-dimensional case is
completely analogous.

1. Start with a cube which encloses the geometric object M and those parts of the surrounding
3-space where we are interested in the distance function of M . Subdivide the cube into

2



its eight sub-cubes. Each of these children (together with neighboring cubes, as specified
in Sec.3.1 ) is subdivided again if it contains part of the geometric object M . Iterate this
procedure until the cell size at the finest level is small enough. We obtain an octree data
structure AuxTree with small cells near M and larger cells further away from M .

2. We assign to the corner points of the resulting cubes of AuxTree their distance values to M .
For memory reasons we store together with each cube only the distance of its ’lower left’
corner point to M . Under the ’lower left’ corner point we understand the one corner point
of the cube which has minimal x-, y-, and z-coordinates.

Since it is too time-consuming to evaluate exact distances we use an adapted version of
Zhao’s sweeping algorithm[21]: We start with the cubes at the finest refinement level of
AuxTree. Only for those cubes that contain part of M we compute the exact distance value
of their ’lower left’ corner point to M . Note that in case of M being a triangulated surface,
we really take the exact distance values, i.e., the shortest distance to the triangular faces
of M . These exact distances are not approximated simply by the shortest distance to the
vertices of the triangulated surface M .

Sweeping through the cubes at the finest refinement level, their distance value is updated
via Zhao’s method. After finishing the finest level of cells the sweeping algorithm is applied
to the next coarser level of cubes. The initialization of the distance values on the coarser
level is obtained from the finer level.

After iterating through all refinement levels we have an approximate distance value d(p) for
the ’lower left’ corner p of each cell of AuxTree. We square this value and obtain a squared
distance function d2 which is defined on the multi-level grid of the cubes’ corner points.

3. Finally, we generate the d2-tree, denoted by D2Tree, which is the octree data structure which
will contain the quadratic approximants, see Equ. (1), of the squared distance function of
M . We begin with a cube at the coarsest level and compute a least square fit of all values
d2(p) to data points p that lie in this cube. If the residuals of this fit are not satisfactory
we subdivide the cube and iteratively compute a least square fit for each of the subcubes.

3 The algorithm

In the following we assume that the geometric object M is a triangulated surface, see e.g. Fig. 1,

Figure 1: Surface M and a planar slice through the octree data structure D2Tree where local
quadratic approximants of the squared distance function d2 of M are stored.

which shows a detail of an architectural design model, see Fig. 7, left, of section 4.1. We are

3



interested in local quadratic approximants f(x), see Equ. (1), of the squared distance function
d2(x) of M . For purposes of instruction we will in the following visualize only planar slices of the
occurring octree data structures AuxTree and D2Tree.

3.1 The octree cell structure AuxTree

First we construct an octree cell structure AuxTree. Each cell will store the squared distance d2

of its ’lower left’ corner point. The name of this structure is motivated by the fact that this octree
is an auxiliary data structure for the construction of the octree cell structure D2Tree which will
store quadratic functions f(x) as described above.

At the coarsest level (level 0) of the structure AuxTree we initialize the largest cube C0. Its
size is chosen such that the cube encloses M and the complete region of R

3 where the distance
function of M is of interest.

We subdivide C0 and again subdivide its eight children C1
i , i = 0, . . . , 7 and obtain 82 cubes

C2
j at level 2. Note that if we decide to subdivide a cube of AuxTree at level L we will instantly

subdivide it into its 82 subcubes at level L+ 2. Jumping from level L directly to level L+ 2 has
an advantage lateron with the adapted sweeping algorithm of Zhao, see section 3.2. There it is
more efficient to have larger blocks of cells of the same size, i.e., we prefer larger blocks of cells in
the same level. The finest level will be denoted by Lmax. The level Lmax is chosen such that the
size of its cubes meet the precision requirement of the application.

In order to decide which cubes of AuxTree are hit by at least one triangle of the triangulated
surface M we run through the list of triangles once. For each triangle we proceed as follows:
Beginning with level L = 2, we mark the cells at level L that are hit by the current triangle, and
we subdivide them to level L + 2. Only these resulting cells of level L + 2 need to be tested on
intersection with the current triangle which then results in further subdivision to level L + 4. In
this way we continue to the finest level Lmax, and continue with the same procedure for the next
triangle of M .

After tracing all triangles of M we obtain an octree AuxTree where the cells in a very narrow
band around M are subdivided to finer cells. Now this narrow band will be extended outwards:
For each level L certain cells CL

j are already subdivided to level L + 2. Now all the neighboring

cells of CL
j are also subdivided to level L+ 2. Different neighborhood definitions are possible, for

instance the 1-ring of direct neighbors, i.e., the 26 cubes that share at least a corner point with
the central cube. Alternatively one could take the 2- or 3-neighborhood of the cubes CL

j .
See Fig. 2 for an illustration of a planar slice through the octree AuxTree that was constructed

for the triangulated surface of Fig. 1. The position of the planar slice is indicated in Fig. 1 also.
A 3-neighborhood definition was chosen for this example.

−150 −100 −50 0 50 100 150

−100

−50

0

50

100

Figure 2: Planar slice through octree AuxTree. Small Cells appear in the neighborhood of the
surface M .

4



3.2 Multilevel version of Zhao’s sweeping algorithm

For each cube C in AuxTree we want to obtain a distance value of its ’lower left’ corner point pC

to M . An exact distance computation will be performed only for the cells of the finest level which
are close to M . This exact distance information will be extended outwards on the remaining grid
points pC via Zhao’s sweeping algorithm [21]. This algorithm exploits the fact ‖∇d(x)‖ ≡ 1 for
the distance function d(x) of M .

The distance values of all the cubes of AuxTree are pre-set to infinity. For the moment we only
look at the cubes of the finest level. For an initialization of distance values we run through the
list of triangles of M . If a triangle hits a cube then the distances of the cubes’ corner points to
this triangle are computed. The new distance value for these corner points is the minimum of the
currently stored distance and the distance to the triangle.

The cubes in AuxTree at the finest level form a regular grid. Zhao’s sweeping algorithm defines
eight sweeping directions in three-space, namely ’x+y+z+’, ’x+y+z-’, ’x+y-z+’, . . ., ’x-y-z-’. We
explain the notation of the sweeping directions at hand of one example, say ’x+y+z+’. This
denotes a sweep in positive x-, then positive y-, then positive z-direction, i.e., an iteration
for z=z_min to z_max

for y=y_min to y_max

for x=x_min to x_max

update distance information of p =(x,y,z)
end

end

end

An upwind type of finite difference approximation is used for the partial differential equation
‖∇d(x)‖ = 1 at each grid point so that the distance value at a grid point depends only on its
neighboring distance values that are smaller, i.e., distance information propagates from nearby
points to far away points. Also the distance value at any grid point is updated only if the newly
computed value is smaller that its previous one. Using these eight sweeps with different ordering
the distance values at all grid points can be computed efficiently. For details of the numerical
algorithms see [21].

In the first step we have now supplied each cube of the finest level Lmax in AuxTree with a
distance value to M . In the next step we again apply Zhao’s algorithm for the cubes of level
Lmax − 2. Some of the cubes of this coarser level are subdivided into cubes of level Lmax, namely
those that are close to M . Those cubes obtain their distance value from their subdivided cubes
whose distance value has been previously computed. We again apply Zhao’s algorithm, now for
the cubes of level Lmax − 2 and obtain distance values for all cubes of this level. We iterate this
procedure till we reach the single cube C0 in level 0. Now we have finished the construction of the
octree AuxTree, since we have obtained a distance value to our geometric object M for each cube
at an even level L.

Let us conclude this section with a focus on an important detail on the implementation of this
adaptation of Zhao’s sweeping algorithm: Since our cubes in AuxTree are organized in an octree,
sweeping in the x-, y-, and z-coordinate directions may become rather slow. Thus we sort our
cubes in the eight required sweeping orders ’x+y+z+’, ’x+y+z-’, . . ., which are defined above.
The sorting is performed in a top-down procedure for all levels 2, 4, . . . , Lmax before we start the
sweeping algorithm. We explain this procedure in more detail at hand of the ’x+y+z+’ sweeping
direction. The other seven sweeping directions are completely analogous.

Beginning with level L = 2 we assume that all cells of level L are already sorted in the correct
order and are stored in a sorted list CL

j : Those cells of level L with minimal z-coordinate z = zmin

will appear at the beginning of the list CL
j , sorted in ’x+y+’ order. The list CL

j continues with
z-parallel layers of cells, each sorted in ’x+y+’ order, up to the last layer of cells with z = zmax.

Now we want to sort the cells of level L + 2 in the same sweeping order ’x+y+z+’ and store
them in a list CL+2

k . First we delete all cells from the list CL
j that are not further subdivided

to level L + 2. The remaining cells in CL
j are still in the correct ’x+y+z+’ order and this order

helps us to sort their grandchildren of level L + 2. We treat each z-parallel layer of cells in CL
j

5



separately, and each of those layers of level L leads to four z-parallel layers in the list CL+2

k of

level L+ 2. Again, each of those z-parallel layers within the list CL+2

k must be sorted in ’x+y+’
order, which is easy because their corresponding cells in CL

j are already sorted in the same order.

3.3 Quadratic approximants of the squared distance function

At the current moment we have an octree cell structure AuxTree which is composed of cubes that
are of small size near the geometric object M and of larger size farther away from M . For all
cubes C of AuxTree there is stored a distance value dC which is the distance of the ’lower left’
corner point pC of C to M . We square all these distances and store d2

C for each cell C.
We are now constructing a new octree structure named D2Tree. This structure will be similar

to AuxTree but will store a quadratic function

fQ(x) = xTAx + b
T
x + c, A symmetric, x ∈ R

3

for each cubical cell Q of D2Tree. Within the limits of the cube Q the function fQ shall be a
sufficiently close approximation to the squared distance function of M . The function fQ is not
restricted to the cube Q, however, but is defined on the whole embedding space R

3.
We start with the largest cell Q0 of D2Tree which has the same size as the largest cell C0 of

AuxTree. The cell C0 contains a large number of subcells of different sizes. Each of these subcells
has a data point p (its ’lower left’ corner point) with a squared distance value d2(p).

Now we compute a weighted least square fit fQ0(x) of all the data d2(p), where p is contained
in Q0. If the residuals are sufficiently small we accept this quadratic function fQ0 , otherwise we
subdivide Q0 into its eight subcubes Q1

i , i = 0, . . . , 7 of level 1. For each of the cubes Q1
i we again

compute a weighted least square fit fQ1

i

(x) of the data d2(p), where p is contained in the subcell

Q1
i . This procedure is iterated until we have an adequate quadratic function fQL(x) for each cube

QL of D2Tree. If there are not enough data points p within a certain cube QL at level L for a
robust estimation of fQL(x) we take the quadratic function fQL−1(x) of its parent cube QL−1.

Of course there are a lot of data points p in a coarse cell, e.g. in Q0. It is very unlikely that
all the data d2(p) may be fitted with one single quadratic function (unless M is a single point or
a plane). In order to speed up the computation, say for fQ0 , one will first try to fit only the data
d2(p) to the points p of the coarse level 2 of AuxTree. Should no adequate quadratic function
fQ0 exist to this reduced data set, we may already subdivide Q0 to the next level 1. Otherwise
we will gradually add points p of finer levels 4, . . . , Lmax of AuxTree till either the least square fit
fQ0 fails or we end with an adequate function fQ0 approximating all the data.

Figure 3 depicts a planar slice through the cell structure D2Tree, corresponding to our example

−150 −100 −50 0 50 100 150

−100

−50

0

50

100

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Figure 3: Left: Planar slice through D2Tree, Right: Detail. Small Cells appear near the surface
M and in the area of the medial axis of M .

model M of Fig. 1. Small cells appear near M and in the area of the medial axis of M . At the

6



medial axis the squared distance function d2 to M is not differentiable, thus there exist no ’good’
local quadratic approximants of d2.

Figure 4, left and right, show the levels sets of the quadratic functions fQi
(x), i = 1, 2 that

Figure 4: Planar slice through D2Tree. The local quadratic approximations fQ1
(x), fQ2

(x)
stored in the marked cells Q1 (left) and Q2 (right) are visualized by some of its level sets. The
locus of minimum values of fQi

(x) (a point for fQ1
and a line for fQ2

) are also depicted.

are stored in the marked cells Qi of D2Tree. The illustrations are again from a planar slice of
the 3-dimensional octree structure D2Tree. The locus x where the function fQ1

(x) of Fig. 4, left,
takes its minimum value is also marked and this points lies close to the surface M . If fQ1

(x)
were not determined numerically, but were the exact local quadratic Taylor approximant of the
squared distance function of M in the midpoint m of the marked cell, then fQ1

(x) would have
its minimum value exactly at the normal footpoint of m to M , and this minimum value of fQ1

would be zero.
Only non-negative quadratic functions fQ(x) are useful for the applications we have in mind.

Thus, if there are negative eigenvalues of the symmetric matrix A in equation (1) we replace the
function fQ(x) by a function f̄Q(x) where the negative eigenvalues of A are replaced by zero.
Figure 4, right, shows the levels sets of such a quadratic function f̄Q2

(x). If one of the eigenvalues
is replaced by zero, the minimum value of f̄Q(x) will be obtained at the points of a line. If two of
the eigenvalues are replaced by zero, the minimum value of f̄Q(x) will be obtained at the points
of a plane.

Fig. 5 gives the level sets of different quadratic functions fQ(x) where each function is plotted
only within the cell Q where it is stored. Each of the quadratic functions is smooth in R

3, but
the collection of the functions fQ(x), each restricted to its cell Q, is not smooth along the cell
boundaries. This can be also seen in Fig. 6 where the quadratic functions f(x), restricted to their
cells, are plotted over the planar domain. This axonometric view shows only a small part (the
lower left region) of Fig. 5.

4 Applications

4.1 Approximation with active B-spline surfaces

An efficient approach to various approximation problems for curves and surfaces are active contour
models, which are mainly used in Computer Vision and Image Processing. The origin of this tech-
nique is the seminal paper by Kass, Witkin and Terzopoulos [8], where a variational formulation of

7



−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Figure 5: Planar slice through D2Tree and level sets of the local quadratic approximations of
squared distance function of the surface M .

Figure 6: Planar slice through D2Tree and the graph of the local quadratic approximants of
the squared distance function of the surface M .

parametric curves, called snakes, is presented for detecting contours in images. There are various
other applications and a variety of extensions of the snake model (see e.g. [2, 11]). Recently we
have developed an active contour type strategy [15] for approximating a point cloud or a surface
in any representation (’model shape’) by a B-spline surface or another surface type which can be
written as linear combination of bivariate basis functions

x(u, v) =

n∑

i=1

Bi(u, v)di. (2)

This technique is based on local quadratic approximants of the squared distance function to
curves and surfaces as we have described them in Sec. 3. For a differential geometric treatment of
this topic, see [14]. The surface approximation method proceeds in the following steps:

1. Initialize the ’active’ B-spline surface and determine the boundary conditions. This requires
the computation of an initial set of control points, the proper treatment of boundaries (e.g.
by fixing vertices of a patch) and the avoidance of model shrinking during the following
steps.

8



2. Repeatedly apply the following steps a.–c. until the approximation error or change in the
approximation error falls below a user defined threshold:

a. With the current control points di, compute a set of points sk = s(uk, vk) of the active
surface, such that the shape of the active surface is well captured. For each of the points sk

determine a local quadratic approximant fsk
=: fk of the squared distance function to the

model shape at the point sk. We trace our octree cell structure D2Tree and find the smallest
cell where sk is lying in. The quadratic function stored in this cell will be taken as f k.

b. Compute displacement vectors ci for the control points di by minimizing the functional

F =
N∑

k=1

fk(s∗k) + λFs, (3)

where s∗k denote the displaced surface points s∗k =
∑n

i=1
Bi(uk, vk)(di + ci) (which depend

linearly on the unknown displacement vectors of the control points). Fs denotes a smoothing
functional which shall be quadratic in the unknown displacement vectors ci. Thus, our goal
is to bring the new surface points s∗k closer to the model shape than the old surface points sk.
Since the points s∗k depend linearly on the unknown displacement vectors ci of the control
points, both fk and F are quadratic in the unknowns ci.

We see that this step requires the minimization of a function F which is quadratic in the
displacement vectors of the control points. This amounts to the solution of a linear system
of equations.

c. With the displacement vectors from the previous step, update the control points of the active
surface.

An important advantage of the new technique is that it is not necessary to deal with the
correspondence between points in the parameter domain and the data points. Thus problems
where this correspondence is crucial can now be easier handled.

As an example, Fig. 7, left, shows a triangulated point cloud M as the geometric model. The
data has been obtained by scanning an architectural design, namely a clay model of a tower. In
the lower left part of the model you may note a small gap in the model. This is a local artifact
where the laser based data capturing failed. Topologically the surface M is a cylindrical patch.
This surface shall be approximated by a B-spline surface which is closed in u-parameter direction,
see Fig. 7, right. The initial position of the active B-spline surface was chosen as in Fig. 8, left.
The B-spline surface is chosen bicubic, i.e., degree (3, 3), with 24× 6 control points.

The control points di of the active B-spline surface, which are not depicted in Fig. 7 and Fig. 8,
are iteratively recomputed as described above, such that the B-spline surface ’flows’ towards the
target shape. Fig. 8, right, shows the final result as an overlay of Fig. 7, left and right.

As a boundary condition, two planes ε0 and ε1 have been chosen where the closed boundary
curves v = v0 and v = v1 of the active surface patch are lying in. During the iterative surface
approximation procedure, the control points corresponding to these two boundary curves are only
allowed to move within ε0 and ε1, respectively. This side condition is linear in the unknown
displacement vectors of the control points. All other control points have their full three degrees
of freedom.

5 Conclusion and Future Research

We have presented the d2-tree, which is an octree whose cells carry local quadratic approximants
of the squared distance function d2 to a geometric object. At hand of surface approximation with
active B-spline curves it has been shown that this data structure is very well suited for use in
geometric optimization algorithms of the Newton type, where local quadratic approximants of d2

are necessary. Another application, where this is useful, is registration.
There are many directions for future research. We outline a few of them.

9



Figure 7: Approximation of a model surface M (triangulated point cloud, left) with a closed
tensor product B-spline surface (right).

• A surface computed with the level set method on a grid can be converted into a NURBS
surface or a subdivision surface by first converting the level set function into the d2-tree
and then applying the active B-spline model. We can use rational B-splines and optimize
the weights as well. There, the unknown displacement vectors are in R

4 and we use a local
linearization of the canonical projection (x1, x2, x3, x4) 7→ (x1/x4, x2/x4, x3/x4) into R

3.
Apart from this modification, the remaining procedure is the same as outlined in this paper.

• Several improvements are possible for the basic active B-spline surface approximation scheme
presented here. This includes for instance the (semi-)automatic choice of the start position
of the active B-spline surface, or an automated knot insertion and removal process during
the optimization process. The latter improvement has been presented by Yang et al. [20] for
the curve case but their method can not be applied to the surface case straightforwardly.

• It might be sufficient to store local quadratic approximants of a function, which is not exactly
d2. Therefore, one could try to use the quadric error metrics of Garland and Heckbert [6],
which are obtained by summing up squared distances to planar faces of the model M .

• Also in higher dimensions n > 3, a d2-tree makes sense. Examples for applications concern
spaces, whose points represent shapes (from R

2 or R
3). A class of learned shapes corre-

sponds to a manifold M ⊂ R
n. The squared distance function to M , in an appropriately

introduced Euclidean metric, can be used to incorporate shape knowledge into data fitting
or segmentation algorithms. This would be an extension of work by Cremers, Schnörr and
Weickert [4].

Acknowledgements

This work has been carried out as part of the project P16002-N05 of the Austrian Science Fund
(FWF).

10



Figure 8: Approximation of a model surface (triangulated point cloud) with a closed tensor
product B-spline surface. Left: initial position of active B-spline. Right: final position of active
B-spline after 20 iterations.

References

[1] P.J. Besl, N.D. McKay, A method for registration of 3D shapes, IEEE Trans. Pattern Anal.
and Machine Intell. 14, pp. 239–256 (1992)

[2] A. Blake, M. Isard, Active Contours, Springer, 1998.

[3] H.-I. Choi, C.-Y. Han, The medial axis transform, in: G. Farin, J. Hoschek, M.-S. Kim, eds.,
Handbook of Computer Aided Geometric Design, North Holland, pp. 451–471 (2002).

[4] D. Cremers, C. Schnörr, J. Weickert, Diffusion snakes: combining statistical shape knowledge
and image information in a variational framework, In: M. Figueiredo, J. Zerubia, A.K. Jain,
eds., Lecture Notes in Computer Science, IEEE Computer Society, pp. 137–144 (2001).

[5] S. Frisken, R. Perry, A. Rockwood, T. Jones, Adaptively sampled distance fields: a general
representation of shape for computer graphics, Computer Graphics (SIGGRAPH 00 Proceed-
ings), pp. 249–254 (2000).

[6] M. Garland, P. Heckbert, Surface simplification using quadric error metrics. Computer Graph-
ics (SIGGRAPH 97 Proceedings), pp. 209–216 (1997).

[7] S. Gibson, Using distance maps for accurate surface representation in sampled volumes, IEEE
Symposium on Volume Visualization, pp. 22–30 (1998).

[8] M. Kass, A. Witkin, D. Terzopoulos, 1988. Snakes: Active contour models, Intern. J. Com-
puter Vision 1, pp. 321–332 (1988).

[9] L. Kobbelt, J. Vorsatz, U. Labsik, H.-P. Seidel, A Shrink Wrapping Approach to Remesh-
ing Polygonal Surfaces, Computer Graphics Forum (Eurographics ’99 issue) 18, C119–C130
(1999).

11



[10] L. Kobbelt, M. Botsch, U. Schwanecke, H.-P. Seidel, Feature sensitive surface extraction from
volume data, SIGGRAPH 01 Proceedings, pp. 57–66 (2001).

[11] R. Malladi, J.A. Sethian, B.C. Vemuri, Shape modeling with front propagation: A level set
approach, IEEE Trans. Pattern Anal. and Machine Intell. 17, pp. 158–175 (1995).

[12] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, New York,
2003.

[13] N.M. Patrikalakis, T. Maekawa, Shape Interrogation for Computer Aided Design and Manu-
facturing, Springer, 2002.

[14] H. Pottmann, M. Hofer, Geometry of the squared distance function to curves and surfaces,
in: H.-C. Hege, K. Polthier, eds., Visualization and Mathematics III, Springer, pp. 223-244,
2003.

[15] H. Pottmann, S. Leopoldseder, M. Hofer, Approximation with active B-spline curves and
surfaces, Proc. of Pacific Graphics 2002, Beijing, IEEE Computer Society, pp. 8–25 (2002).

[16] H. Pottmann, S. Leopoldseder, M. Hofer, Simultaneous registration of multiple views of a
3D object, Intl. Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, Vol. XXXIV, Part 3A, Commission III, pp. 265–270 (2002).

[17] S. Rusinkiewicz, M. Levoy, Efficient variants of the ICP algorithm, Proc. 3rd Int. Conf. on
3D Digital Imaging and Modeling, Quebec, Springer-Verlag, 2001.

[18] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982.

[19] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press,
1999.

[20] Yang, H., Wang, W., Sun, J., Control Point Adjustment for B-Spline Curve Approximation,
submitted to CAD.

[21] H.K. Zhao, Fast Sweeping Method for Eikonal Equations I, submitted to SIAM Numerical
Analysis.

12


