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Abstract

We present a solution for variational motion design of a rigid body in the presence
of rigid obstacles of arbitrary shape that fully employs the available degrees of
freedom in the design process. This question remained open in our paper on energy-
minimizing splines in manifolds (Hofer and Pottmann, 2004). The main idea is to
reduce the problem to a curve design task on a suitable barrier surface embedded
in an appropriate kinematic image space.
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1 Introduction

1.1 Previous Work

Motion design (path planning) in the presence of obstacles is a well-studied
problem in Computational Geometry and Robotics (de Berg et al., 2000;
Choset et al., 2005; Latombe, 2001). The classical ’piano mover’s problem’
deals with the task of generating a collision-free path among known rigid ob-
stacles from a starting position to a given end position of the piano.
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Our approach is inspired by the literature on motion design in Computer
Aided Geometric Design and Kinematics. This area of research started with
the seminal paper by Shoemake (1985) and lead to many contributions, see
the survey article by Jüttler and Wagner (2002). Variational motion design
— without consideration of obstacles — has been studied e.g. by Barr et al.
(1992) and Ramamoorthi and Barr (1997).

The problem of designing a smooth rigid body motion in Euclidean 3-space
can be solved by computing a smooth curve in a kinematic image space. It
is interesting to note that there are only a few contributions in the literature
that deal with the problem of designing smooth curves in the presence of
obstacles. We point to work on interpolation with cubic spline functions under
linear inequality constraints (Opfer and Oberle, 1988), CAD related work on
constrained curve design without energy minimization (Meek et al., 2003),
and in particular to Bohl’s contribution to splines on (trimmed) parametric
surfaces (Bohl, 1999). A recent contribution by Myles and Peters (2005) is
an algorithm for generating a parametric spline curve with few pieces that
traverses a polygonal channel between obstacles. They solve a linear feasibility
problem by standard linear programming techniques.

We will see later that we can get rid of the obstacle constraints by introduc-
ing an appropriate unbounded auxiliary surface MB in the kinematic image
space. The obstacle avoiding smooth rigid body motion is then computed as a
smooth curve on MB. Recent work by Azariadis and Aspragathos (2005) uses
a similar idea of representing the whole environment including the obstacles
as one single surface, labeled ‘Bump-surface’ by the authors. However, in their
approach the moving body is only a single point.

Our own previous work (Hofer and Pottmann, 2004) contributed to motion
design a new metric in the kinematic image space and an optimization algo-
rithm for variational motion design. We also presented a conservative solution
for motion design in the presence of obstacles.

1.2 Contributions of the Present Paper

The main contribution of the present paper is an algorithm that fully employs
all available degrees of freedom to solve the task of computing a smooth energy-
minimizing rigid body motion in the presence of obstacles. Thus we answer
a question that remained open in our paper (Hofer and Pottmann, 2004). In
Section 2 we review the kinematic image space, the energy-functionals, and
the basic geometric optimization algorithm we will use. Section 3 presents the
new contribution and Section 4 is used for examples and discussion.
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Fig. 1. (Left) The kinematic image space. (Right) The geometric optimization al-
gorithm.

2 Setting and Techniques

2.1 The Kinematic Image Space

We use the kinematic image space as introduced in Hofer and Pottmann
(2004). Consider two Cartesian coordinate systems, the fixed one Σ whose
points are denoted by x,y, and the moving one Σ0 with points x0,y0 and so
forth. An affine map α maps a point x0 = (x0

1, x
0
2, x

0
3) of Σ0 to the point x of

Σ as follows,

x = α(x0) = a0 + A · x0 = a0 + x0

1a1 + x0

2a2 + x0

3a3.

The translational part of the affine map α is a0 ∈ R
3 and the linear part of

α is given by the matrix A := [a1, a2, a3] ∈ R
3×3. We define the kinematic

image space in the following way (see Fig. 1, left): With each affine map α we
associate a point in 12-dimensional space R

12, represented by the vector A :=
(a0, . . . , a3). The images of Euclidean maps α ∈ SE(3) form a 6-dimensional
manifold M6 ⊂ R

12. Its 6 equations are given by the orthogonality conditions
of the matrix A, i.e., ai · aj = δij for i, j = 1, 2, 3 and δij is the Kronecker
delta. A one-parameter rigid body motion B(u) in R

3 is a smooth family of
Euclidean congruence transformations and corresponds to a curve c(u) ⊂ M6

in the kinematic image space, see Fig. 1, left.

For distance computations in R
12 we use the metric defined in Hofer and

Pottmann (2004) that is based on a point set x0
1,x

0
2, . . . ,x

0
K spread over the

rigid body B. Let the coordinate system Σ0 be such that the barycenter of
B is the origin and the eigenvectors of the inertia tensor J :=

∑
i x

0
i · x

0T
i are

the coordinate axes. Then the six vertices of B′s inertia ellipsoid have the
coordinates (±f1, 0, 0), (0,±f2, 0), (0, 0,±f3) where 2f 2

i are the eigenvalues of
J. Now we define the squared distance between two affine maps α and β as
the sum of squared distances between corresponding point positions and see
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that it only depends on the barycenter and inertia tensor,

‖α − β‖2 :=
K∑

i=1

‖α(x0

i ) − β(x0

i )‖
2 = 6(a0 − b0)

2 + 2
3∑

i=1

f 2

i (ai − bi)
2.

Thereby A = (a0, . . . , a3) and B = (b0, . . . ,b3) are the kinematic image points
of the affine maps α and β.

Using the above kinematic image space we reduce our motion design problem
to a curve design problem on a certain surface. Since we deal with variational
design we will first introduce the energy functionals we are working with in
Section 2.2. Section 2.3 recalls the geometric optimization algorithm of Hofer
and Pottmann (2004) to compute an energy-minimizing curve on a surface
of arbitrary dimension and codimension. Finally, in Section 3 we specifically
address the design of energy-minimizing rigid body motions in the presence of
obstacles that employs all available degrees of freedom.

2.2 The Energy Functionals

Let S be a k-dimensional regular surface, embedded in Euclidean space R
n,

k < n. Given are N points p1, . . . ,pN ∈ S and corresponding parameters
u1, . . . , uN . We are seeking an interpolating curve c(u) on S with c(ui) = pi

that minimizes one of the following energy functionals,

E1(x) =
∫ uN

u1

‖ẋ(u)‖2du, E2(x) =
∫ uN

u1

‖ẍ(u)‖2du, Eτ = E2 + τE1.

The minimizer of E1 is a geodesic on S traced with constant speed. As shown
in Hofer and Pottmann (2004), the minimizers of E2 and Eτ are surface coun-
terparts to cubic splines and splines in tension, respectively. For the numerical
solution we discretize the energy-functionals (using a Newton-Cotes formula)
to get quadratic functions that have to be minimized under the constraint that
the curves are restricted to a surface S. For this purpose we use the geometric
optimization algorithm of Hofer and Pottmann (2004), which we summarize
below.

2.3 The Geometric Optimization Algorithm

The following algorithm computes an energy-minimizing spline curve on a
surface of arbitrary dimension and codimension. A more detailed discussion
including a convergence analysis can be found in Hofer and Pottmann (2004).
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Algorithm 1 (The geometric optimization algorithm) We compute the
minimizer p∗ of a quadratic function F ,

F : R
D → R, F (x) = (x − p)T · Q · (x − p),

under the constraint that p∗ lies on a given m-dimensional surface Φ ⊂ R
D.

The value of F (x) is the squared distance ‖x − p‖2 of the point x to the
unconstrained minimizer p of F in the Euclidean metric with inner product
〈x,y〉 := xT · Q · y given by the positive definite matrix Q. Starting with
an initial guess xc = x0, we compute the constrained minimizer p∗ ∈ Φ by
iteratively applying the following two steps (see Fig. 1, right):

(1) Compute a basis {c1, . . . , cm} of Φ′s tangent space Tm at the current
iterate xc, and it’s Gramian matrix G = (gij) = (〈ci, cj〉) = (cT

i ·Q · cj).
Further compute the vector r := (r1, . . . , rm) where rj := 〈p − xc, cj〉.
The solution v = (v1, . . . , vm) of the linear system G · v = r defines the
tangent vector t :=

∑
i vici at xc. Note that the point pT := xc + t is the

normal projection of p onto Tm.
(2) Compute an appropriate step size s (see Hofer and Pottmann (2004) for

details) and project xs := xc + st onto Φ to get the next iterate x+.

3 Variational Motion Design in the Presence of Obstacles

In Hofer and Pottmann (2004) we have described how to compute an energy-
minimizing rigid body motion where the moving body B avoids given obstacles
via a single enclosing ball Be. The enclosing ball Be itself avoids the obstacles;
since it is centered in the barycenter of B, the problem can be split into the
computation of the trajectory of the ball’s center and the computation of the
rotational part. Only the first part of the computation needs to consider the
obstacles. This approach is rather conservative and does not fully exploit the
available degrees of freedom.

In the present paper we capture the shape of the moving body B more pre-
cisely. For the theoretic considerations we consider the moving body B and
the obstacle O to be smooth solid bodies.

3.1 Definition of the Barrier Manifold

The moving body B is a solid. A position α(B) of the body corresponds to
some displacement α, seen as a point A in M6. In the following, we speak
of a single obstacle O, but note that it may contain several components. For
simplicity, we assume right now that both B and O have smooth boundary
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Fig. 2. (Left) Rigid body motion B(u) in R
3 interpolating 5 given positions with

shortest distances to the obstacles. (Right) Forbidden region F and the curve c

corresponding to B(u) on the manifold M6 ⊂ E12.

surfaces. In our implementation we use triangle meshes to represent both, B
and O.

Those positions α(B), which penetrate O, have to be avoided. One may view
these forbidden positions as points in some subset F of M6, see Fig. 2. Like
O, it may have several components. In order to stay away from F , we build a
barrier manifold against it, according to the concept presented in Hofer and
Pottmann (2004) for the curve case, see Fig. 3. To do so, we use a distance
function d. The distance d(α) = d(A) =: d0 is the shortest distance between
the corresponding position α(B) of B and the obstacle O, see Fig. 2 (left) and
Fig. 4. Note that we view d as a function defined on M6.

In case of penetration, we define d(A) = −1. Of special interest is the zero level
set of d, since it is the boundary ∂F of F . It contains exactly those positions
in which α(B) is tangent to O, but not penetrating the obstacle. Likewise, any
other level set to a constant distance value d0 contains the positions, where
α(B) is in contact with the offset Õ of O at distance d0, see Fig. 4.

We use a function f(d) (blending profile function) which is supported on some
interval [0, D]. It describes a smooth blend between f -axis and d-axis, and
thus it has a positive value h and infinite derivative at 0, and satisfies f(D) =
f ′(D) = 0, see Fig. 3.

The barrier manifold MB is a 6-dimensional manifold, embedded in R
13. Part

of it can be parameterized over M6: If d(A) > 0, the corresponding point on
MB is (A, f(d(A))). This surface contains a part in M6 (for d ≥ D), and a
blending part which reaches height h in the 13-th coordinate, when A reaches
the boundary ∂F of the forbidden region F . There, the surface is joined with
a cylinder surface defined over ∂F . Let P be a parametrization of ∂F (over an
appropriate subset of R

5), then we obtain with an additional parameter v ≥ h

a parametrization (P, v) of this 6-dimensional cylindrical part.
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3.2 Tangent Spaces of the Barrier Manifold

The tangent vector T at a position A = (a0, . . . , a3) of M6 is given by

T = (c̄ + c × a0, c × a1, c × a2, c × a3), (1)

and has an interpretation as a velocity vector field v(x) = c̄ + c × x in R
3.

For the tangent space of the barrier manifold MB we have the following three
different cases:

Case 1: d(A) ≥ D. Equation (1) suffices to compute the tangent space of MB

for d(A) ≥ D; we just have to add a zero as 13-th coordinate.

Case 2: 0 < d(A) < D. This is the case of main interest. Let Nc be the com-
mon normal between α(B) and O, along which the shortest distance d0 = d(A)
occurs, see Fig. 4. Nc meets α(B) at a foot point pf . There, we consider two
straight lines T1, T2 which are orthogonal to the contact normal Nc and thus
tangent to the position α(B) of the body B, see Fig. 4. We may assume orthog-
onal Ti’s and then T1, T2, Nc define a Cartesian frame at the foot point pf . At
first, we derive those tangent vectors of MB, whose 13-th coordinate is zero.
These are characterized by vanishing directional derivative of the function d.
Clearly, they belong to velocity fields of gliding motions along the offset Õ
of O at distance d0. Note that pf is the contact point and Nc is the contact
normal for such a gliding motion. By a well known result from kinematical
geometry Pottmann and Wallner (2001), these velocity fields are characterized
by an equation

n̄c · c + nc · c̄ = 0. (2)

Here, (nc, n̄c) are the Plücker coordinates of Nc. This says that the common
normal Nc is contained in the linear complex of instantaneous path normals.
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It is easy to derive five independent velocity fields of gliding motions: We
use instantaneous rotations about the three axes T1, T2, Nc and translations
parallel to the two lines T1, T2. With (ti, t̄i) as Plücker coordinates of Ti, the
corresponding velocity fields (c, c̄) are

(c1, c̄1) = (t1, t̄1), (c2, c̄2) = (t2, t̄2), (c3, c̄3) = (nc, n̄c), (3)

and

(c4, c̄4) = (0, t1), (c5, c̄5) = (0, t2). (4)

To verify (2) for these velocity fields, one uses the condition ḡ · h + g · h̄ = 0
for two intersecting lines G = (g, ḡ) and H = (h, h̄). Thus, we obtain with
(1) five tangent vectors of MB at the point (A, f(d(A))),

Ti = (c̄i + ci × a0, ci × a1, ci × a2, ci × a3, 0), i = 1, . . . , 5. (5)

We assume that nc is normalized and points outside the obstacle, i.e., in
direction of increasing d. Displacing α(B) by a translation with vector λnc

changes the distance value to d0 + λ, since the contact normal remains the
same for sufficiently small λ. In other words, d(Aλ) = d0 + λ at Aλ = (a0 +
λnc, a1, a2, a3). This leads to a curve C in the barrier manifold, parameterized
with help of λ,

C(λ) = (a0 + λnc, a1, a2, a3, f(d0 + λ)). (6)

The tangent of this curve at λ = 0 gives us the 6-th tangent vector,

T6 = (nc,0,0,0, f ′(d0)). (7)

Case 3: d(A) = 0. To each point A in the boundary ∂F of the forbidden region,
i.e., d0 = d(A) = 0, we have an infinite number of points in MB, namely in its
cylindrical part, see Fig. 3. However, at all points of such a cylinder ruling, the
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tangent space is the same. It is spanned by the five vectors (5) to instantaneous
gliding motions of the body along the obstacle and by (0, . . . , 0, 1) ∈ R

13.

As mentioned earlier, one should not use a graph representation of the profile.
If (t1, t2) is a tangent vector of the profile curve at d0, i.e., (t1, t2) is parallel
to (1, f ′(d0)), we use

T6 = (t1nc,0,0,0, t2). (8)

This representation also holds for d0 = 0, since then we have (t1, t2) = (0, 1).

3.3 Projection Onto the Barrier Manifold

In the previous section we have derived basis vectors of the 6-dimensional
tangent space at a point (A, f(d(A))) of the barrier manifold MB ⊂ R

13. This
allows us to compute the tangent space of the high-dimensional surface Φ used
in Algorithm 1. Once we have computed the stepsize of the current iteration
step, we apply the displacement in the tangent space of Φ. Then we need an
admissible projection from a point in the tangent space of Φ onto Φ, see Fig. 1.
One possibility is to perform the projection in the low-dimensional space for
each position As ⊂ R

13 of the moving body separately. First we project the
point As orthogonally onto M6 by setting the 13-th coordinate equal to zero.
The new translation of the Euclidean displacement in R

3 is given by the first
three coordinates of the point As, and the new rotation matrix in R

3 is the
best-fit orthogonal matrix to the affine matrix given by the 4-th till 12-th
coordinate of As, computed with the methods presented in Hofer et al. (2004).
Then we compute the distance of each new position of the moving body to the
obstacle O to get the new 13-th coordinate, i.e., all together the new position
on the barrier manifold MB. In case of penetration we translate the moving
body position in direction of the common normal out of the obstacle.

Algorithm 2 (Variational motion design in the presence of obstacles)
The algorithm employs the following steps:

(1) Given are N collision free input positions B(uj) at time instances uj,
obstacles Oi, and an energy functional E ∈ {E1, E2, Et}.

(2) Compute an obstacle avoiding energy-minimizing motion with the con-
servative algorithm of Hofer and Pottmann (2004):
(a) Replace the moving body B by a minimum enclosing ball Be with

radius r centered in the barycenter s of B.
(b) Use Alg. 1 to compute the path of the barycenter s(u) such that it

minimizes E and avoids the given obstacles with a minimum distance
r. For details on computing such an obstacle avoiding curve we refer
to Hofer and Pottmann (2004).

(c) Separately minimize the energy of the rotational part of the motion
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using Alg. 1 (i.e., the energy E of a curve on the manifold O(3) of
orthogonal matrices, embedded in R

9).
(3) The motion resulting of step 2 corresponds to a curve on M6 that avoids

the forbidden regions in a conservative way. We lift this curve onto the
barrier manifold MB and then employ Alg. 1. This results in an energy-
minimizing rigid body motion B∗(u) that avoids the given rigid obstacles.

Remark 1 In some cases, e.g. a narrow channel, the initial motion planned
in a conservative way may not exist, since the bounding sphere of the moving
body will not fit through the channel. However, a final solution can exist. Here
one would benefit from a bump surface, which does not enforce the obstacles
in such a strong way at the beginning of the iteration, cf. Fig. 13 in (Hofer
and Pottmann, 2004). Geometrically this means that the curve on the barrier
manifold can interfere with the obstacles at the beginning, but as the bump of
the barrier manifold over the obstacles grows from a flat hill to a mountain
with steeper and steeper walls, the curve is pushed out of the obstacles more
and more.

4 Experimental Results

We have implemented the algorithm in Matlab and tested it on a 1.8GHz
personal computer. The examples illustrated in Fig. 5 have been computed
using Alg. 2 and show open and cyclic motions that minimize the energy
functional E2:

(1) (Left) The unconstrained energy-minimizing rigid body motion corre-
sponding to the point p in Alg. 1. Some of the obstacles are penetrated
by this unconstrained motion.

(2) (Middle) The initial obstacle avoiding rigid body motion corresponding
to the point x0 in Alg. 1.

(3) (Right) The constrained energy-minimizing rigid body motion correspond-
ing to the point p∗ in Alg. 1.

When we compare the open and the closed motion to the same input positions
(right column in Fig. 5, the top two and the bottom two images) we can see
that the overall shape of the motion is different, which goes along with what
we expect to happen.

In our implementation, the computation time for all optimization parts is in
sum a few seconds. The distance computations with the algorithms from the
literature Arya et al. (1998); Tsai (2002); Zhao (2005) are a bit more time
consuming.
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Fig. 5. (Left column) unconstrained minimizing motions, (Middle column) initial
motions, (Right column) constrained minimum motions.

11



B

O
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Fig. 6. Energy-minimizing motion of the cucumber shaped rigid body B (middle,
bottom) passing through a narrow channel O: (Left) The unconstrained minimizer
clearly interferes with the obstacle. (Right) The constrained minimizer B∗(u) winds
its way through the channel.

For the actual design of an energy-minimizing motion in the presence of obsta-
cles the designer has the following parameters to influence the resulting rigid
body motion, (i) the number of fixed positions that have to be interpolated,
(ii) the number of intermediate positions (fineness of the motion), and (iii)
the tension parameter τ in the energy functional Eτ .

The example shown in Fig. 6 shows a rigid body motion passing through a
narrow channel. The rigid body is cucumber shaped (see Fig. 6 in the middle
on the bottom) and the single obstacle is an S-shaped channel. We have chosen
the linear parts of the three input positions as follows: in the first input position
the moving body points into the entry hole of the channel, for the second
input position we rotated the first input position through 90 degrees around a
horizontal axis, and the third input position is obtained by rotating the second
one again about the same axis about 90 degrees. The translational parts of
the input positions have been chosen such that all three input positions do
not interfere with the channel.

Since the bounding sphere of the moving body is too big to fit through the
channel, we had to slightly modify step 2 of Alg. 2 and used an a bit relaxed
condition to create an initial obstacle avoiding motion. Then we ran step 3
of Alg. 2 until we reached a local minimum of the energy functional. Note
that we did set a distance threshold such that the moving body keeps a small

12



minimum distance to the obstacle.

For comparison reasons we show in Fig. 6 on the left the energy-minimizing
motion that does not consider the channel as an obstacle. It can be clearly seen
that this motion interferes with the obstacle. The obstacle avoiding motion
that passes through the channel and minimizes the energy functional can be
seen on the right in Fig. 6.

5 Conclusion

In this paper we give an answer to a question that remained open in our previ-
ous work (Hofer and Pottmann, 2004). In particular, we demonstrate how the
geometric optimization algorithm of Hofer and Pottmann (2004) can be used
to compute energy-minimizing rigid body motions in the presence of obstacles
in a way such that all available degrees of freedom are actually employed. This
not only improves the previously available conservative solution but also al-
lows the computation of energy-minimizing rigid body motions in the presence
of obstacles in situations where the conservative algorithm fails.
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