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Abstract

When designing curves on surfaces the need arises to approximate a given noisy target shape by a smooth fitting
shape. We discuss the problem of fitting a B-spline curve to a point cloud by squared distance minimization in the
case that both, the point cloud and the fitting curve, are constrained to lie on a smooth manifold. The on-manifold
constraint is included by using the first fundamental form of the surface for squared distance computations between
the point cloud and the fitting curve. For the solution we employ a constrained optimization algorithm that allows
us to include further constraints such as one-sided fitting or surface regions that have to be avoided by the fitting
curve. We illustrate the effectiveness of our algorithm at hand of several examples showing different applications.
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1. Introduction

The approximation of a given set of scattered
data points (the target shape) by a smooth poly-
nomial curve (the fitting shape) is a frequently en-
countered problem in CAD/CAM, computer graph-
ics, computer vision, image processing and many
other fields. Due to their popularity and widespread
use often B-spline curves are chosen as the fitting
shapes. The target shapes we are working with are
noisy unordered point sets, also called point clouds
henceforth. Such point clouds arise in various ways,
e.g. they result from digitization, they appear in in-
termediate steps of surface reconstruction in reverse
engineering, or they are a design input.

Most of the previous work concerns curve fitting
in Euclidean spaces. However, practical applications
often impose additional constraints on the curve fit-
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ting problem. These constraints can be of various na-
ture and include spatial restrictions that constrain
the curve to lie on a certain surface, within some
tolerance zone, or outside of forbidden regions that
must not be entered by the fitting curve. We intro-
duce the novel aspect of approximating unordered
point clouds that are lying on smooth parametric
surfaces with constraints that prevent the fitting
shapes form entering forbidden areas (e.g. trimmed
areas of B-spline surfaces) or that allow one-sided
fitting of the target shapes. Furthermore, for design
purposes it is advantageous to first sketch a curve
on a surface which is then automatically smoothed,
possibly with the additional constraint that the fit-
ting curve shall follow a certain tangential vector
field of the surface. Note that the type of geomet-
ric constraints we employ is novel and different from
previously studied constraints for curve fitting such
as a fitting circle whose radius is constrained to a
certain value (cf. Benkö et al. (2002)).

From the optimization point of view the curve ap-
proximation problem is often dealt with as a non-
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linear least squares problem. Since the distance from
the target shape is measured orthogonally to the fit-
ting shape, some researchers speak of orthogonal dis-
tance regression (ODR). The present paper uses the
optimization framework discussed in detail in Wang
et al. (2006) and extends the constrained curve fit-
ting problem studied by Flöry (2006) from the Eu-
clidean space to manifolds.

The main contributions of our paper are:
– An optimization algorithm for fitting B-spline

curves to unorganized point clouds lying on a
smooth manifold.

– The incorporation of additional side conditions
into the optimization problem such as obstacles
(e.g. trimmed regions) that have to be avoided,
and tangential vector fields that guide the fitting
curve.
The remaining parts of this paper are organized as

follows. First, we review some recent literature and
continue our introduction into the topic. Then, we
outline an algorithm to solve the curve fitting prob-
lem on manifolds and discuss its steps, including
foot point computation, description of current fit-
ting error and optimization, in detail. Additionally,
we consider three more constraints: two kinds of ob-
stacles (the point cloud itself and forbidden regions)
and a design constraint (tangential vector field). Fi-
nally, we illustrate applications of our algorithm in
several examples.

1.1. Related Work

The amount of literature on parametric curve
fitting is huge and thus we only cite closely related
work. In Wang et al. (2006), the authors undertake
a detailed review of current curve fitting methods
from the point of optimization and we adopt their
terminology in the following. Chronologically, the
first method and its variants studied e.g. by Plass
and Stone (1983); Hoschek (1988); Bercovier and
Jacobi (1994); Goshtasby (2000); Lee (2000); Saux
and Daniel (2003) employs Point Distance Mini-
mization (PDM) and usually converges very slowly.
The chronologically next method employs error
terms that measure the orthogonal distance to the
curve tangent. It was proposed by Blake and Isard
(1998) and coined Tangent Distance Minimization
(TDM) by Wang et al. (2006). This method is a
Gauss-Newton iteration (see also Atieg and Watson
(2003); Liu et al. (2005)) and achieves good results
if we add an appropriate regularization technique.

A third method (see Wang et al. (2006); Liu et al.
(2006); Pottmann et al. (2005); Yang et al. (2004))
employs Squared Distance Minimization (SDM)
and is based on a quadratic approximation of the
squared distance function (Ambrosio and Mon-
tegazza (1998), Pottmann and Hofer (2003)) to the
fitting shape. The superior performance (by means
of convergence speed and stability) of SDM is due
to the fact that also second order information of the
fitting curve (curvature) is included. However, this
error term requires curvature computations which
are sometimes too expensive to be carried out. Thus
in the present paper we employ a modified regular-
ized TDM method and we achieve very satisfactory
results.

The curve (and surface) fitting problem is also
known in the literature as orthogonal distance re-
gression (Ahn (2004); Atieg and Watson (2003)).
An alternative optimization approach for paramet-
ric curve (and surface fitting) using a trust region
algorithm was studied by Helfrich and Zwick (1996).

Computing curves with spatial constraints is an
important active research area in Computer-Aided
Design. One class of algorithms deals with spatial
constraints that have to be met by the designed
curves. Hildebrandt et al. (2005) proposed an algo-
rithm for smoothing 3d curves with an ε-constraint
that keeps the curve inside a pipe surface of radius
ε around the original curve. Recently, Peters (in Pe-
ters and Wu (2004)) introduced SLEVEs for planar
spline curves to solve the so-called channel problem
(Myles and Peters (2005)): the task here is to com-
pute a spline curve with a limited amount of pieces
that traverses a narrow channel bounded by polyg-
onal obstacles. An older contribution by Opfer and
Oberle (1988) dealt with cubic splines and obsta-
cles and the constraint interpolation with rational
cubics was studied in Meek et al. (2003). The pa-
per of Renner and Weiß (2004) includes an algo-
rithm for fitting a B-spline curve to an ordered se-
quence of sample points lying on a B-spline surface.
From the optimization point of view they are using
a direction-weighted least-squares fitting that em-
ploys PDM without parameter correction.

Recently Machado (2006) and Machado and Leite
(2006) studied the fitting of an ordered sequence of
points by smooth paths on Riemannian manifolds.
They present solutions for fitting geodesics on the
unit sphere Sn and on the rotation group SO(n), and
for fitting smoothing splines to ordered point clouds
on general Riemmanian manifolds. Their work fol-
lows the pioneering work of Noakes et al. (1989)
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Fig. 1. Curve fitting on a parametric surface s is considered in
the parameter space U ⊆ R2 while taking the inner geometry

of s into account at the same time.

where cubic splines on Riemannian manifolds are
seen as solutions of a variational problem. Related
is also Bohl’s PhD thesis (Bohl (1999)) that com-
putes energy-minimizing splines on trimmed two-
dimensional parametric surfaces. The algorithm pre-
sented by Hofer and Pottmann (2004) was also used
for smoothing noisy input curves on manifolds by
means of energy-minimizing spline curves on mani-
folds that interpolate a certain subset of the input
points. Thus the present paper also improves this
previous work in the sense that now all data points
(and not only some arbitrarily picked ones) are used
to find a smooth solution curve that faithfully ap-
proximates the noisy input data.

2. Curve Fitting on Manifolds

Let Φ be a two dimensional manifold in R3, e.g.
a parameterized surface s : U ⊆ R2 → R3 and Q =
{qk : k = 0, . . . , n} ⊆ Φ a point cloud thereon. Our
aim is to approximate Q with a parametric curve
s(x) on Φ. Considering that curve fitting in R2 is a
well surveyed topic, we choose to carry out the curve
fitting in the parameter space U of s while taking the
inner geometry of the manifold into account at the
same time. Accordingly, we may state our problem
as follows: given points P = {pk : k = 0, . . . , n} ⊆
U such that qk = s(pk) we want to find a curve x
approximating the point cloud P in a least squares
sense (see Fig. 1). A general formula for this type of
problem is of the form

h =
n∑

k=0

d̃2(x(t),pk) + wr, (1)

where d̃2 denotes an approximation of the squared
distance function and r a regularization term
weighted by w, all detailed below. If the data points
qk are given directly on the manifold, then we
first compute the corresponding points pk in the
parameter space, cf. Hu and Wallner (2005).

In the following, we describe a general curve fit-
ting algorithm for point clouds in R2 and modify it

in certain steps to acknowledge that we perform a
curve fitting on manifolds. The input to the algo-
rithm are the point cloud P and the initial position
of the fitting curve x.
Algorithm 1 A general curve fitting algorithm in-
volves the following steps:

(i) Compute the foot points fk of P on x.
(ii) Describe the current fitting error in these foot

points.
(iii) Get an updated position xc of x by minimizing

the fitting error.
Steps (i) to (iii) are repeated until the fitting is

of satisfactory quality and a least squares approxi-
mation of the point cloud is returned. Algorithm 1
turns the fitting problem into an iterative optimiza-
tion problem that we stop once a predefined crite-
rion is met (for example the fitting error falls below
a pre-defined threshold or a maximum number of
iteration steps is reached).

If we have a closer look at Algorithm 1, the prob-
lem of fitting a curve to a point cloud in the param-
eter space of a two dimensional manifold requires
modifications to two steps: the foot point computa-
tion in step (i) and the description of the current
fitting error term in step (ii).

2.1. Foot Point Computation

In R2, the foot point of the shortest distance from
a point pk to a parameterized curve x(t) is given by
minimizing the squared distance from the curve to
pk,

g(t) = ‖x(t)− pk‖2, (2)

whereas ‖v‖ =
√

vT · v denotes the common
Euclidean norm. Geometrically, the minimum of
Equ. (2) is taken for that parameter value tk for
which the curve tangent in x(tk) is orthogonal to
the connecting line from x(tk) to pk. On a param-
eterized surface s the shortest distance between a
curve s(x) and a point qk ∈ s is measured along a
geodesic. In general, geodesics are not just straight
lines and can not be computed explicitly. To sim-
plify our computations, we work with a local first
order approximation of the surface, namely with
the tangent space. The first fundamental form Gk

defines an inner product on the tangent space Tqk

in qk (see do Carmo (1976)). In Tqk , ‖v‖Gk
=√

vT ·Gk · v gives a norm with respect to the in-
ner geometry of the manifold. Thus, we compute
to each point qk the foot point fk on s(x(t)) in the
tangent space Tqk (see Fig. 2) by minimizing
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Fig. 2. Foot point computation in R2 and on a parameterized

surface s. On the surface s, the computation is performed in

the tangent space Tqk with the inner product induced by
the first fundamental form Gk in qk.

g(t) = ‖x(t)− pk‖2
Gk

, (3)

for example with a Newton iteration. This first or-
der approximation is sufficient for our purposes. In
the course of the iteration, the fitting shape approx-
imates the data points better and better and thus
the foot point computation becomes more accurate.

2.2. Fitting Error Term

There are various ways to describe the current
fitting error in a foot point fk = x(tk). Most ap-
proaches are based on an approximation of the
squared distance from fk to pk. As stated in the
introduction we base our succeeding considerations
on a regularized Tangent Distance Minimization
method.

Let d be the signed distance function to a curve
x, defined as the solution of the Eikonal equation
‖∇d‖ = 1 with d(x) = 0. Second order Taylor ap-
proximation of the squared distance function d2 in
a point fk = x(tk) of x gives

d2(u) ≈ [(u− fk)T · ∇d(fk)]2. (4)

In Euclidean space, the gradient of d in fk can
be identified with the unit normal vector nk in fk.
On manifolds, the relation ‖∇d‖ = 1 has a different
meaning. If we recall that we use the norm induced
by the first fundamental form Gk to measure lengths
in the tangent space and that the gradient of a func-
tion on a manifold is given by ∇Gk

d = G−1
k ·∇d, the

requirement ‖∇d‖ = 1 turns into

‖∇Gk
d‖2

Gk
= ∇dT ·G−1

k · ∇d = 1. (5)

Thus, ∇d(fk) of Equ. (4) will be a vector pointing
in the direction of nk again, however, we norm it
according to Equ. (5).

This approximation of the squared distance func-
tion is used to measure the current fitting error εk.
For a curve fitting on manifolds,

εk = [(pk − x(tk))T · nk]2 (6)

with nT
k ·G−1

k · nk = 1 describes the current fitting
error term in a foot point fk = x(tk).

2.3. Optimization

We choose B-spline curves as approximating en-
tities and describe the updated position xc(t) =∑m

i=0 Ni(t)(di + ci) by displacements ci of the con-
trol points di. Subscript c in xc(t) reflects the vec-
tor of unknown displacements c = (c0, . . . , cm). The
objective function of the curve fitting problem com-
prises several terms. First, we include the current
fitting error, given by summing up all error terms εk

of Equ. (6)

h(c) =
n∑

k=0

[(pk − xc(tk))T · nk]2, (7)

with nT
k ·G−1

k · nk = 1 for k = 0, . . . , n. In order to
ensure that the new position xc is not only optimal
in a mathematical sense but also visually appealing,
we further add two regularization terms:

r0(c) =
∫
‖ẋc(t)‖2

G(x(t))dt, (8)

where G(x(t)) denotes the first fundamental form in
x(t)), and

r1(c) =
∫
‖ẍc(t)‖2dt. (9)

Thus we get the objective function
n∑

k=0

[(pk−xc(tk))T ·nk]2 +w0r0(c)+w1r1(c). (10)

The smoothing terms r0 and r1 are chosen such that
the shape of the fitting curve is as simple as possible.
By neglecting any regularization, the optimization
would fail to converge or give unpleasant results, for
example strong oscillations. r0 keeps the length of
xc small: as the fitting is constrained to happen on
a manifold, we approximate the length of the fitting
curve by integrating the squared norm (as induced
by the first fundamental form) of the curve’s first
derivative over the entire curve.

The second term is included to smooth the fitting
and we apply a simplified measure for the curve’s
bending energy. Both r0 and r1 enter the objective
function weighted with a factor. In general, we ini-
tialize these weights such that the current approxi-
mation error and the regularization terms influence
the optimization equally (e.g. by setting w0 = w1 =∑

k εk/(r0 +r1)) and halve the factors at each itera-
tion step. We are going to give more details on how
we choose w0 and w1 in our applications in Sec. 4.
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ẋc(tj)

v xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)xc(t)

Fig. 3. We further constrain curve fitting on manifolds by regarding the point cloud {pk} itself as an obstacle (left), by avoiding

forbidden regions Oi (middle) and by requiring xc to be tangential to a vector field v (right). For better visualization, all three

figures illustrate the setting after updating the curve’s position but before new foot points have been computed.

The objective function in Equ. (10) is a posi-
tive semi-definite quadratic form (with the displace-
ments in c as unknowns) and the minimum is found
by solving a system of linear equations. TDM in gen-
eral and our modified version as well face instabil-
ity issues if applied without further adjustment. As
shown in Wang et al. (2006) TDM is a variant of
a Gauss-Newton method. It is well known that the
convergence behavior of Gauss-Newton methods can
be improved by regularization strategies such as the
damped Gauss-Newton or the Levenberg-Marquardt
method (see e.g. Kelley (1999)).

We employ a damped Gauss-Newton method and
control the step-width at each iteration. Let h(0) be
the current approximation error and h(c0) the fit-
ting error for the displacement c0 obtained by min-
imizing h(c). As long as h(ci) > h(0) holds and i is
below a certain upper bound (usually 10), the posi-
tion update is decreased by the rule ci+1 = 0.5ci.

3. Additional Constraints

The problem of fitting a curve to a point cloud
is an optimization problem, as shown in the previ-
ous section. So far, the solution space was not re-
stricted by any side conditions and the unknown dis-
placements c were allowed to be elements of whole
R2m+2. In the following, we examine in how far a
curve fitting on manifolds may benefit from adding
constraints to the optimization process.

Our main interest is to fit a curve to a point cloud
on a manifold and to avoid obstacles at the same
time. In Flöry (2006), two types of constraints are
discussed for curve and surface fitting in Euclidean
space. Here, we want to briefly review this work and
show how it can be extended to curve fitting on
manifolds. Then, constraints more specific to curve
fitting on manifolds are discussed when we describe
approximations tangential to some vector field.

3.1. Point Cloud as Obstacle

At first, we want to regard the elements of the
point cloud P = {pk : k = 0, . . . , n} itself as obsta-
cle. In this way we will be able to reconstruct any
apparent boundaries of P . More precisely speaking,
if we define some orientation by orienting the nor-
mals nk of the approximating curve in a unique way,
the data points will be located on a single side of the
final fitting shape.

Let the normals nk point outside of the approx-
imating curve. As before, xc(tk) denotes the foot
point of a point cloud element pk on xc. Then, the
linear constraints

(pk − xc(tk))T · nk ≤ 0 k = 0, . . . , n (11)

make the fitting curve approximate the outer bound-
ary of the point cloud and P will lie inside (see Fig.
3, left). The converse scenario — a reconstruction
of the inner boundary with P outside of xc — can
be achieved by either changing the orientation of
the normals or by replacing the less or equal sign in
Equ. (11) with a greater or equal sign.

3.2. General Obstacles

A different kind of obstacles are arbitrary regions
the final fitting must avoid. In curve fitting on man-
ifolds, such obstacles are of special interest. As the
approximation is done in the parameter space U of
the manifold, we can perform a curve fitting on a
trimmed surface by adding those subsets of U , that
define surface parts trimmed away, as obstacles.

Let Oi ⊆ U be such a subset in the parameter
space. For a sample point xc(tj) on the fitting curve,
fO
j denotes the foot point of the shortest distance

from xc(tj) to the boundary of the obstacle Oi and
nO

j the outward oriented normal vector in fO
j . Then,

by adapting the idea of Sec. 3.1,

(fO
j − xc(tj))T · nO

j ≤ 0 ∀j ∈ J, (12)
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constrains the fitting to avoid the obstacle Oi (see
Fig. 3, middle). This side condition isn’t active for
all sample points on xc but only for those either
inside an obstacle or within a certain distance to an
obstacle’s boundary (see the dashed line in Fig. 3,
middle). The latter criteria ensures that the fitting
curve doesn’t penetrate the obstacle again to fit the
data points once it left the forbidden region.

3.3. Tangential Vector Fields

Let v(q) : s → R3 be a tangential vector field
defined for each point q of a parameterized surface
s. We would like v to control the shape of the ap-
proximating curve in certain points. Therefore, we
choose samples sj = s(xc(tj)), j ∈ J , on the surface
curve s(xc) and require the curve in sj to be tangent
to v. To simplify the formulation of this constraint
we introduce an auxiliary vector field w that results
from v by a rotation of 90 degrees in the respective
tangent planes. Then, we require

w(sj)T · d
dt

s(xc(t))|t=tj = 0 ∀j ∈ J.

In order to find an equivalent constraint in parame-
ter space, we use the coordinates wj of w(sj) with
respect to the basis of the tangent plane T sj spanned
by the partial derivatives of s along the parameter
directions. Then,

wT
j · ẋc(tj) = 0 ∀j ∈ J, (13)

makes the fitting curve perpendicular to w (and thus
tangential to v) in the sample points sj (see Fig. 3,
right). If the regularization term r0 is applied, the
first derivative of xc is available anyway and can
be used here as well. However, if derivation is too
time consuming, we may compute some numerical
derivative instead, e.g. wT

j ·(xc(tj+δ)−xc(tj−δ)) =
0 for small δ. If v is not a tangential but a more
general vector field on s, we first project v onto the
tangent space.

For all constraints described here, it turns out to
be advantageous to first ignore the side conditions at
early iterations of the algorithm (usually 5 to 10 iter-
ations are sufficient for our examples) to increase the
stability and global convergence of the algorithm.

3.4. Constrained Optimization

After describing several possible constraints for a
curve fitting on manifolds, we need to address the
question how these side conditions are added to the

unconstrained minimization problem of Equ. (10)
and how to solve the emerging constrained optimiza-
tion problem.

The point cloud constraint, the general obstacle
constraint and the vector field constraint have one
important characteristic in common. They are all
linear in the unknown displacement vector c. If we
recall the definition of the fitting problem’s objective
function in Equ. (10) and that it’s quadratic in c, we
get in total a quadratic minimization problem with
linear constraints by writing

minimize
n∑

k=0

εk(c) + w0r0(c) + w1r1(c)

subject to one or more of (11), (12), (13).

(14)

There are basically two families of algorithms to
solve linear constrained quadratic optimization
problems (see e.g. Nocedal and Wright (1999)). As
our problem is rather small scaled (c ∈ R2m+2) we
favor an Active Set Method over an Interior Point
Method. Active set methods deal with the con-
straints by estimating and continuously updating
a set of active side conditions in order to not leave
the feasible solution space.

In Sec. 2.3 we already emphasized the need for a
step-width control which is still important for the
constrained optimization problem. However, the
damping method described above may fail as it does
not allow the value of the objective function to grow
from one iteration step to another. Exactly this
might be necessary to fulfill the given constraints
and to get a feasible solution at all. By allowing
the objective function to increase by a factor of 1.1
(thus requiring h(ci) > 1.1h(0)) we achieve a good
trade off between computing a valid solution and
enjoying stable convergence.

4. Experiments and Results

We want to illustrate our theoretical considera-
tions with a handful of examples. For the following
results, we choose parametric surfaces (cubic ten-
sor product B-spline surfaces) as manifolds. The ap-
proximating curves themselves are either closed or
open cubic B-spline curves. The point clouds have
been created in different ways. For most examples,
an auxiliary B-spline curve was evaluated at uni-
formly distributed parameters and distorted in nor-
mal direction by some Gaussian noise. In one ex-
ample, the points were placed manually in param-
eter space while in another, a black and white im-
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Fig. 4. Example 1. We compare the TDM method based on the Euclidean metric (top center, bottom left) to our modified

TDM algorithm taking the surface metric into account (top and bottom, right) on a simple surface. The initial position for

both approximations is shown (top left). The fitting curves are shown in parameter space (top row) and on the surface (bottom
row). We see that our method (bottom right) approximates the points along the surface bend much better.

age was randomly sampled to get the set of data
points. For points interactively entered on a two-
dimensional surface we first solve the inversion prob-
lem, cf. Hu and Wallner (2005), to map them to pa-
rameter space. The algorithm was implemented in
an Matlab environment and ran on a AMD Sempron
Processor 3100+. Runtime information and applica-
tion specific values for all examples are summarized
in Table 1 at the end of this section.

Example 1. In a first simple example (see Fig. 4)
the point cloud is defined on an u-bend surface. The
parameter distortion on the surface is for the ver-
tical parts much higher than for the horizontal one
(as indicated by the parameter lines). We performed
two fittings, one with the standard TDM method
(using the Euclidean metric) and one with our modi-
fied TDM algorithm incorporating a surface specific
metric. As expected, the fittings are very similar in
the horizontal part of the surface, where the control
points’ positions are nearly the same. However, the
error term based on the first fundamental form re-
fines the fitting along the edge and leads to a more
natural fitting on the surface. While the standard
TDM method approximates the center of the points
along the edge, our algorithm shifts the curve left to
balance the parameter distortion.

The average fitting errors

Fig. 5. The average fitting error decreases for our surface

TDM algorithm as fast as for the ordinary, standard TDM
method. Here shown for Example 1.

εavg,E :=
1

n + 1

n∑
k=0

‖x(tk)− pk‖ (15)

and

εavg,G :=
1

n + 1

n∑
k=0

‖x(tk)− pk‖Gk
(16)

decrease similarly for both methods and reach a min-
imum after about 10 iterations (see Fig. 5). Please
note that we can not directly compare the final val-
ues of εavg,E and εavg,G as they are based on differ-
ent metrics.

This and some of the following examples feature
closed approximating curves. It is well known that
a closed smooth cubic B-spline curve is obtained by
repeating the first three points of the control poly-
gon. However, this requires us to add the additional
constraints
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↑
Fig. 6. Example 2. Three views, each rotated by 120 ◦, of a reconstruction of a point cloud’s boundaries on a parametric surface
closed in one parameter direction. The arrow in the middle marks the parameter line along which the parameter space was

glued together.

ci = cm−2+i i = 0, 1, 2 (17)

to Equ. (14) to maintain a smooth, closed fitting
curve.

Example 2. In the second example, the point cloud
itself is seen as an obstacle. Thus we add the linear
constraints of Equ. (11) to the objective function of
Equ. (10). In the following, superscript indices de-
note coordinate entries, e.g. u0 and u1 are the first
and second parameter directions, respectively. The
two parametric B-spline surface of this example is
closed in one parameter direction, w.l.o.g. we as-
sume that the surface is closed with respect to pa-
rameter u0 which ranges from 0 to 1. In order to get
a smooth closed curve on this kind of surface, the
control points of the approximating B-spline curve
need to be repeated cyclically

d0
m−2+i = d0

i + 1 i = 0, 1, 2 (18)

whereas d0
1 = 0 and d0

1 − d0
0 = d0

2 − d0
1 holds. Addi-

tional constraints

c0
1 = 0 and c0

2 + c0
0 = 0 (19)

in Equ. (10) ensure the smoothness throughout the
iterations.

Fig. 6 shows three views (each rotated by 120 ◦)
of the composed final results of two approximations
of the point cloud’s boundaries. The higher curva-
ture parts in the left view, the varying thickness of
the point set in the middle view, and the increasing

spacing between the data points in the right view
give evidence of the stability and robustness of the
algorithm.

The most centered vertical parameter line (see ar-
row) in the middle plot marks the line along which
the parameter space was glued together. The ap-
proximating curves pass this line smoothly.

Example 3. The next example shows results for the
second family of obstacles discussed in Sec. 3. We
examine general obstacles in the context of trimmed
surfaces. The holes of the surface are defined by re-
gions Oi in the parameter domain with point sam-
pled boundaries. From these boundaries we compute
an approximated distance field (see Tsai (2002)) and
propagate foot point and normal information over a
grid at the same time. The trimmed regions Oi are
then included in the optimization procedure via the
linear constraints described in Sec. 3.2. The final re-
sult of a curve fitting on a trimmed surface is visu-
alized in Fig. 7 (top), where the B-spline curve was
sampled in 200 points for building the constraints.
Please note, that the boundaries of the holes might
not be approximated properly by a cubic polyno-
mial curve and thus the curve will not completely
follow the said boundary.

As mentioned above, the constraints discussed in
Sec. 3 can be combined (see Fig. 7, bottom). In this
example we combine the objective function (10) with
the linear constraints (11) and (12). We computed
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Fig. 7. Example 3. Fitting a curve to a point cloud on a
trimmed surface (top). Note that the trimmed regions are

avoided by the fitting curve. By combining the constraints

of Equ. (11) and (12) the fitting curve approximates the
boundaries of the point set and lies outside of the trimmed

regions (bottom).

two such curves that enclose the given data points
from either side and additionally avoid the trimmed
regions. This example also illustrates a limitation of
our method: we need to choose two different initial
positions to get the two one-sided fits shown in Fig.
7 (bottom). This is due to the fact that the fitting
curve is not allowed to change the side of an ob-
stacle once the constraints are active. For a sample
point xc(tj), the side conditions of Equ. (11) sepa-
rate the parameter space U in two half spaces from
which the one containing the other side of the ob-
stacle is marked forbidden. Sometimes, one can ease
this limitation by including only side conditions for
sample points close to an obstacle’s boundary. How-
ever, these constraints were still too strong in this
example.

The approximation of the outer boundary re-
veals another important aspect. Left and right of
the biggest hole of the surface the point cloud and
the final fitting curve are nearly perpendicular. If
all those points would be included in the computa-

Fig. 8. Example 4. Curve fitting tangential to vector fields

on surfaces, for parameter lines (bottom parts resp.) and
principal curvature lines (top parts resp.). The top figure
illustrates the fitting in parameter space, the dashed lines

denote the unconstrained fittings.

tion of the fitting term they would become strong
outliers and make the fitting unstable. For this
reason, we compute the fitting error term and the
constraints only for data points within a certain
distance from the B-spline curve.

Example 4. The design constraint proposed in
Sec. 3 aims for a curve fitting tangential to a given
vector field. First, we define a point cloud compris-
ing three small arc-like point clusters (see Fig. 8,
bottom parts). We fit this point set and require the
fitting to be tangential to one parameter direction
at the same time by employing the constraints of
Equ. (13). While the unconstrained fitting (shown
in the parameter space as a dashed line) follows the
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Fig. 9. Example 5. Standard (left) and length minimizing

(right) curve fitting on manifolds, visualized in parameter
space.

shape of the point cloud closely, the constrained
fitting consists of three connected horizontal seg-
ments. All optimization parameters (w0, w1, etc.)
were the same for both approximations.

In general, vector field constraints are of a very
strong nature. A single constraint influences the lo-
cation of the control points much more than the
previous side conditions. It turned out that the fit-
ting tends to get unstable if too many constraints
are added. Thus we increased the influence of the
smoothing terms to smooth out any gaps and in-
cluded the constraints for only every 5th foot point.

The optimization gets more challenging for the
second fitting example where we used one princi-
pal curvature direction as the tangential vector field
constraint (Fig. 8, top parts). While the parameter
directions are straight lines in parameter space and
the control points just need to line up, the principal
curvature lines are of a more general nature. These
constraints act very similar to smoothing forces. As
for the optimization a good fit of the data points
is most important, the fitting curve aligns loosely
along the principal curvature directions. This ap-
proximation was ruled by 25 tangential constraints.

In difference to previous examples, we choose open
B-splines as approximating curves. When approxi-
mating with open B-spline curves, one has to take
care of the start and end points to avoid a shrinking
of the fitting shape. Therefore, we fixed the first and
last control point, either by

c0
0 = c0

m = 0 (20)

for the parameter direction example or by

c1
0 = c1

m = 0 (21)

for the principal curvature direction example. This
simple strategy was sufficient for our needs.

Example 5. In another example we want to further
discuss the influence of the smoothing term r0 of
Equ. (8), based on the metric induced by the first
fundamental form and minimizing the length of the

Fig. 10. Example 5. Standard (top) and length minimizing

(bottom) curve fitting on manifolds.

approximating curve. We choose a parametric sur-
face with distinct peaks and valleys and place data
points between these extrema. If we set w0 = 0, thus
neglecting this smoothing term at all, the final solu-
tion is of small length in the parameter space (Fig.
9, left) but passes the peaks and valleys of the sur-
face (Fig. 10, top). Instead, if r0 is applied by set-
ting w0 > 0, the curve’s length gets smaller on the
manifold (Fig. 10, bottom). As seen in the parame-
ter domain (Fig. 9, right), the curve fitting is clearly
influenced by the surface’s geometry.

Please note that the peak in the background is
rather a pyramid than a cone due to the tensor prod-
uct nature of the surface. Thus the sharp bend in
the curve there originates from a distinct feature of
the manifold.

Example 6. Fig. 11 shows a point cloud with more
than 5000 elements. We approximate the outer
boundary of the data set with three open B-spline
curves, each counting approximately 20 control
points. Each curve starts at the end of a previous
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Fig. 11. Example 6. We sampled a black and white image on

a surface to generate 5000 data points. Then we approximate

the boundary of this point set with three open B-spline
curves on the given surface (the start and end points of the

three curves are marked with balls).

curve. We did not impose any further constraints
on the connections (marked by bigger balls in the
figure) between the segments thus getting only C0

smoothness in these points. The approximation
would work as well for a single closed curve. In order
to make the fitting more stable, we included only
those data points within a certain distance from the
fitting curve.

Example 7. Our last example shows another ap-
plication of constrained curve fitting on manifolds.
Assume that the rough shape of a curve was drawn
on a surface by a designer (see Fig. 12, top) and we
want to reconstruct a smooth curve from this input.
As an improvement of the approach presented in
Hofer and Pottmann (2004) (Figure 7), where some
input points were picked and then interpolated by a
spline on the manifold, we regard the corners of the
input polygon as a point cloud and approximate it
on the surface (Fig. 12, bottom) using the algorithm
proposed in the present paper. Thus, the smoothed
curve now closer resembles the shape intended by
the designer than by the previous approach.

Fig. 12. Example 7. The noisy input shape on a parametric

surface (top) is smoothed by fitting a B-spline curve to it

(bottom).

Example 1 2 3 4 5 6 7

nr. points 150 300 250 150/100 100 5000 150

iterations 20 25 19/30/30 20/30 30 30 20

time (s) 3.8/2.5 9.8 30/37/34 25/25 15/10 13 4

w0 0 0.1 0.1/1/1.2 1/1 0.01/0 1.5 0

Table 1

Runtime and parameter details. In Table 1 we sum-
marize information concerning our examples. We list
the number of data points, the required iterations,
the computation time in seconds, and the values
of the weight w0 for the regularization. The weight
w1 was always chosen automatically as described in
Sec. 2.3. For examples with more than one approx-
imating curve, the values are given in the order the
fitting curves are described in the text and illus-
trated in the figures. Thus a time of 3.8/2.5 for Ex-
ample 1 means that the curve shown in Fig. 4 (bot-
tom, left) took 3.8s to compute and the curve shown
in Fig. 4 (bottom, right) took 2.5s to compute.
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5. Conclusions and Future Research

In the present paper we have shown how to
approximate unordered noisy point clouds on two-
dimensional parametric surfaces by B-spline curves.
The proposed iterative optimization algorithm
takes into account the surface metric via the first
fundamental form, which is used to compute foot
points and squared distances that enter the objec-
tive function. The framework allows the inclusion of
additional constraints such as obstacles that have to
be avoided. For the solution of the quadratic mini-
mization problem with linear constraints we employ
an active set method. In a set of examples we il-
lustrated applications of constrained curve fitting
on manifolds and also discussed some limitations of
the presented method.

Our method can be extended in several ways. Cur-
rently the number of control points of the fitting B-
spline curve is set by the user. To achieve a good
fit with a reasonable number of control points one
sometimes has to manually increase/decrease the
number of control points. Thus, an automatic ad-
justment of the number of control points as pro-
posed by Yang et al. (2004) for a related fitting prob-
lem would be useful, but is beyond the scope of the
current paper. Another topic is to make the obsta-
cles fuzzy. Currently the fitting curve is completely
pushed out of all obstacles. For some applications
one would like to allow the fitting curve to pene-
trate the obstacle up to a certain degree. This could
be achieved with a penalty type optimization strat-
egy and is again a topic of future research. If one
needs the control points of a spatial B-spline curve
approximately lying on the given manifold, then one
can take the curves computed in the present paper
as input and use e.g. the algorithm of Renner and
Weiß (2004) to compute the spatial B-spline curve
control polygon.

While the current algorithm has possible applica-
tions to trajectory planning for CNC machining of
two-dimensional freeform surfaces, we are also inter-
ested in a transfer from fitting on two-dimensional
surfaces to the higher-dimensional case. One prob-
lem of immediate interest is the approximation of a
noisy rigid body motion by a smooth one, and fur-
thermore, the rigid body motion shall avoid given
obstacles. However, it is non-trivial to generalize the
present algorithm to the motion design case and we
hope to address this in future research.

Acknowledgements

We would like to thank the Austrian Science
Fund (FWF) for supporting our work under grants
P16002 and P18865. We further acknowledge sup-
port by Vienna University of Technology via the In-
novative Project “Geometric Model Building with
CNC Technology”.

References

Ahn, S. J., 2004. Least Squares Orthogonal Distance
Fitting of Curves and Surfaces in Space. Vol. 3151
of Lecture Notes in Computer Science. Springer.

Ambrosio, L., Montegazza, C., 1998. Curvature and
distance function from a manifold. J. Geom. Anal-
ysis 8, 723–748.

Atieg, A., Watson, G., 2003. A class of methods for
fitting a curve or surface to data by minimizing
the sum of squares of orthogonal distances. J. of
Comp. Appl. Math. 158, 277–296.
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