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Figure 1: Conical meshes are planar quad meshes which discretize principal curvature lines, possess offset meshes at a constant distance as
well as planar connecting elements supporting the offset meshes (left). Therefore they are especially suited for architectural design with glass
structures (right). This student project of a railway station by B. Schneider was generated by a subdivision-type process (see also Fig. 14).

Abstract

In architectural freeform design, the relation between shape and
fabrication poses new challenges and requires more sophistication
from the underlying geometry. The new concept of conical meshes
satisfies central requirements for this application: They are quadri-
lateral meshes with planar faces, and therefore particularly suitable
for the design of freeform glass structures. Moreover, they possess
a natural offsetting operation and provide a support structure or-
thogonal to the mesh. Being a discrete analogue of the network of
principal curvature lines, they represent fundamental shape charac-
teristics. We show how to optimize a quad mesh such that its faces
become planar, or the mesh becomes even conical. Combining this
perturbation with subdivision yields a powerful new modeling tool
for all types of quad meshes with planar faces, making subdivision
attractive for architecture design and providing an elegant way of
modeling developable surfaces.
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1 Introduction

The original motivation for this research comes from architec-
ture, where freeform shapes are becoming increasingly popular,
but the actual construction poses new demands on the underlying
geometry. Gehry Partners and Schlaich Bergermann and Partners
[Glymph et al. 2002] argue why freeform glass structures with pla-
nar quadrilateral facets are preferable over structures built from tri-
angular facets or non-planar quads. The authors also show a few
simple ways to construct quad meshes with planar faces. However,
despite the huge amount of work on mesh processing and the inter-
est in discrete differential geometry [Desbrun et al. 2005], we are
not aware of a thorough investigation of this topic from the perspec-
tive of geometry processing.

The study of quad meshes with planar faces – called PQ meshes
henceforth – will lead us to interesting geometric results, in partic-
ular to conical meshes, a discrete counterpart of principal curvature
lines which have not been considered before. Algorithms which
perturb a quad mesh into a PQ mesh can nicely be combined with
subdivision. This makes subdivision a promising tool for archi-
tectural design and also provides a new and elegant approach to
modeling and approximation with developable surfaces.

1.1 Previous work

Discrete differential geometry. PQ meshes have first been sys-
tematically addressed by R. Sauer, as summarized in his monograph
[1970] on difference geometry, one of the precursors of discrete dif-
ferential geometry [Bobenko and Suris 2005; Desbrun et al. 2005;
Polthier 2002; Hildebrandt et al. 2005]. It has been observed that
PQ meshes are a discrete counterpart of conjugate curve networks
on surfaces. They appear in the mathematics literature under the
name of quadrilateral meshes, which actually means quad meshes
with the additional property that all quads are planar. The inter-
esting case of circular meshes where all quads possess a circum-
circle has been introduced in [Martin et al. 1986]. Like the coni-
cal meshes which are a focus of the present paper, circular meshes



are discrete analogues of the network of principal curvature lines.
Pointers to the literature on PQ meshes and circular meshes, espe-
cially to higher-dimensional generalizations, are given in [Bobenko
and Suris 2005] and [Bobenko et al. 2006]. Convergence of cir-
cular meshes towards the network of principal curvature lines is
the topic of [Bobenko et al. 2003]. Here we discuss topics in pla-
nar quad meshes which have not been addressed previously, like
conical meshes and offset meshes, as well as developable surfaces
obtained by refinement and optimization.

Quad meshes. The computation of quad-dominant meshes from
smoothed principal curvature lines has been presented in [Alliez
et al. 2003]. Although the faces of these meshes are not exactly
planar, one should expect that they are at least approximately pla-
nar. Thus such meshes can serve as an input to algorithms presented
below, which compute numerically precise PQ meshes and conical
meshes by optimization. Variational shape approximation accord-
ing to [Cohen-Steiner et al. ] aims at the optimal placement of a
given number of planar faces, which, in general, are not quadri-
laterals. Other recent contributions to quadrilateral remeshing (see
e.g. [Dong et al. 2005; Marinov and Kobbelt 2004; Ray et al. 2005])
do not try to achieve planarity of quads.

Developable surfaces. An arrangement of n planar quads in a
single row (see Fig. 2) is a discrete representation of a developable
surface. In this way the study of PQ meshes is related to the com-
putational geometry of developable surfaces. Recall a few facts
from differential geometry [do Carmo 1976; Pottmann and Wallner
2001]: A developable surface Γ is the envelope of a one-parameter
family of planes. Each of these planes touches the surface along a
straight line, a so-called ruling. There are three main types: Either
rulings are parallel (Γ is a cylinder surface), or they pass through
a fixed point s (Γ is a cone with vertex s), or they are tangents of
a space curve r (Γ is a tangent surface and r is its singular curve).
Because developable surfaces can be mapped into the plane with-
out distortion, they possess a variety of applications, for example,
in sheet-metal and plate-metal based industries and architecture.
Modeling with developable surfaces is a nontrivial task, which is
only weakly included in current 3D modelers. Several ways of ge-
ometric design with developables have been proposed. One can
use B-spline ruled surfaces and express developability via nonlin-
ear constraints [Aumann 2004; Chu and Sequin 2002]. Via dual-
ity such constraints can be avoided, at the cost of a less intuitive
plane-based control structure [Pottmann and Wallner 2001]. There
are also contributions based on constrained triangle meshes [Frey
2004; Wang and Tang 2004; Mitani and Suzuki 2004]. Singulari-
ties in crumpled sheets have also received attention, see e.g. [Cerda
et al. 1999; Frey 2004]. Recently there has been interest in devel-
opable surfaces for mesh parametrization [Julius et al. 2005] and
mesh segmentation [Yamauchi et al. 2005].

Surfaces in architecture and aesthetic design. Freeform ge-
ometries are becoming increasingly popular in architecture, thus
demanding adapted modeling methods which take the actual con-
struction and fabrication into consideration. The Smart Geometry
group (http://www. smartgeometry. com) promotes research in this
direction; a good overview of the state of the art may be found in
[Kilian 2006]. Geometric modeling for aesthetic design and ‘opti-
mal geometry’ are the topics of [Sequin 2004] and [Sullivan 2005].

1.2 Contributions and overview

• We introduce conical meshes and demonstrate their superiority
over other types of meshes for architectural design and other ap-
plications where planarity and exact offset property are demanded.
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Figure 2: (a) PQ strip as discrete model for a developable surface.
(b) Discrete developable tangent to PQ mesh along a row of faces.
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Figure 3: Visualization of conjugacy via shadow contours.

The conical mesh is a new type of principal meshes and it pos-
sesses the property that offsetting the face planes by a constant dis-
tance yields a planar mesh of the same connectivity, which is again
a conical mesh. This is a very useful property in layer composition
constructions for architecture, where each layer has to be covered
by planar panel elements and the geometry of the outermost layer
should also be valid for the offsets which represent the layer com-
position (see Figures 1, 11, 12a, and 15).

• We propose the PQ perturbation algorithm for computing a PQ
mesh from an input quadrilateral mesh. By combining PQ pertur-
bation with a surface subdivision scheme we obtain a powerful tool
for modeling not only conical meshes, but also circular meshes and
general PQ meshes. When applied to PQ strips, it leads to an effec-
tive and elegant approach to modeling developable surfaces.

In Sec. 2 we elaborate on the relation between PQ meshes to con-
jugate curve networks for understanding the variety of PQ meshes.
Sec. 2.2 discusses the PQ perturbation algorithm. In Sec. 3 we
combine subdivision and PQ perturbation to get a hierarchical con-
struction of PQ meshes. In particular, we obtain developable sub-
division surfaces. Conical meshes are introduced in Sec. 4, and
their main properties are derived. Sec. 5 discusses how to approxi-
mate given data by a conical mesh via optimization of a quad mesh,
possibly derived from robustly computed principal curves on an ap-
propriate scale. We discuss our results in Sec. 6 and conclude the
paper with some pointers to future research in Sec. 7.

2 PQ meshes and PQ perturbation

Conjugate Curves. Quad meshes with planar faces may be seen
as a discrete version of so-called conjugate curve networks on a
surface [Sauer 1970]. First we explain conjugate surface tangents
at a point x of a surface Φ (see Fig. 3): Suppose that the straight line
T1 is tangent to the surface at x. Choose a light source z on T1. Then
the line T2 tangent to the shadow contour (contour generator) c at x
is conjugate to T1. T1 is contained in the conical surface Γ of surface
tangents passing through the light source z. Here we could also use
a parallel illumination, with z at infinity. An alternative definition
of conjugate directions in terms of the second fundamental form of
a surface is given by [do Carmo 1976, p. 150].

The above is a special case of the following more general prop-
erty: If Γ is the developable surface enveloped by the tangent planes
along a curve c ⊂ Φ, and T1 is a ruling of Γ passing through the
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Figure 4: Various conjugate networks and their suitability for mesh-
ing purposes. Left: The network of generating curves in a transla-
tional surface Φ is conjugate. Center: For any surface Φ, the in-
tersection curves (yellow) of Φ with planes through a fixed line l
and the contour generators (blue) for viewpoints on l form a con-
jugate network. Right: Isophotes (yellow) and curves of steepest
descent (blue). Such networks may be unsuitable for meshing even
for simple surfaces, if its curves do not intersect transversely. This
is caused by asymptotic directions (see frame).

point x ∈ c, then the line T2 tangent to the curve c at the point x
is conjugate to T1. This relation turns out to be symmetric (see
e.g. [Pottmann and Wallner 2001]). Asymptotic directions are self-
conjugate. A conjugate network of curves consists of two one-
parameter families A,B of curves which cover a given surface Φ

such that for each point p ∈ Φ there is a unique curve of A and a
unique curve of B which pass through x, and furthermore, the tan-
gents of these two curves at x are conjugate. We may prescribe
family A and get family B by integration of the vector field of di-
rections conjugate to the tangents of family A.

Examples of conjugate networks on surfaces are:
— The network of principal curvature lines is always conjugate.
— In a translational surface of the form x(u,v) = p(u) + q(v),
generated by a translatory motion of a profile curve p(u) along a
directrix curve q(v), or vice versa, the isoparameter lines form a
conjugate network (Fig. 4, left).
— The movement of a viewpoint z along some curve in space pro-
duces a family of contour generators “c(z)” on a given surface Φ,
where z is interpreted as a light source. The curves conjugate to
the c(z)’s are called epipolar curves and are found by integrating
the field of light rays tangent to the surface Φ. These curves arise
in 3D surface reconstruction from apparent contours in an image
sequence [Cipolla and Giblin 2000]. Fig. 4 (center) shows the case
where z moves along a straight line l.
— The condition that the surface normals form a constant angle
with the z-axis defines an isophotic curve. These isophotes are con-
jugate to the system of curves of steepest descent with respect to the
z-axis (see Fig. 4, right, and e.g. [Pottmann and Wallner 2001]).

2.1 PQ meshes

Let us start with a PQ strip, which means a single row of pla-
nar quadrilateral faces. The two rows of vertices are denoted by
a0, . . . ,an and b0, . . . ,bn (see Fig. 2). It is obvious and well known
that such a mesh is a discrete model of a developable surface (see
e.g. [Pottmann and Wallner 2001; Sauer 1970]). This surface is
cylindrical, if all lines aibi are parallel. If the lines aibi pass through
a fixed point s, we obtain a model for a conical surface with vertex
s. Otherwise the PQ strip is a patch on the tangent surface of a
polyline r1, . . . ,rn, as illustrated by Fig. 2: consecutive lines aibi
and ai+1bi+1 are co-planar and thus intersect in a point ri+1. It
follows that both ai and bi are contained in the line riri+1. This
property is the direct analogue of the well known fact that, in gen-
eral, a developable surface is part of the tangent surface of a space
curve. The lines riri+1 serve as the rulings of the discrete tangent

surface, which carries the given PQ strip. The planar faces of the
strip represent tangent planes of the developable surface.

Now we consider a general PQ mesh with vertices vi, j , i = 0, . . . , n,
j = 0, . . . , m. For theoretical investigations we will always assume
that interior mesh vertices have valence four; vertices with valence
6= 4 are like singularities in a curve network and require special
treatment. In practice, meshes will not consist of quads only – n-
gons with n 6= 4 likewise are treated as singularities.

Recall the property mentioned above which characterizes conju-
gate curve networks: the envelope of tangent planes along a curve
of family A is a developable surface, whose rulings are tangent to
curves of family B. We can easily see that the row and column
polylines of a PQ mesh enjoy a discrete version of this property:
Each row of faces vi, j (we let j = k,k +1) is a PQ strip, which rep-
resents a discrete developable surface tangent to the mesh (Fig. 2).
The row of vertices v0,k, . . . ,vn,k can be seen as the polyline of tan-
gency between the mesh and this developable surface. The rulings
of the developable surface are spanned by the edges vi,k,vi,k+1 for
i = 1, . . . ,n. The same lines occur as tangents of the column poly-
lines vi,0, . . . ,vi,m. It follows that the system of row and column
polylines are a discrete conjugate network of polylines. Moreover,
a discrete developable surface tangent to a PQ mesh along a poly-
line is given by a row (or a column) of quad faces.

Consequently, if a subdivision process, which preserves the PQ
property, refines a PQ mesh and produces a curve network in the
limit, then the limit is a conjugate curve network on a surface.

2.2 PQ perturbation

Given a quad mesh with vertices vi, j , we want to minimally per-
turb the vertices into new positions such that the resulting mesh
is a PQ mesh. One way to solve this problem is by a Sequen-
tial Quadratic Programming method (SQP, see e.g. [Madsen et al.
2004]), which minimizes fairness and closeness functionals subject
to the planarity condition. Another way is a penalty method which
optimizes a linear combination of functionals which express pla-
narity, fairness, and closeness to the original mesh, weighted in a
way which ensures numerically exact planarity.

In order to express planarity of a quad face Qi j, we consider the
four angles φ 1

i, j, . . . , φ 4
i, j enclosed by the edges of Qi j, measured in

the interval [0,π]. It is known that Qi j is planar and convex if and
only these angles sum up to 2π . We use the notation

cpq,i, j := φ
1
i, j + . . .+φ

4
i, j −2π = 0. (1)

Below we need sums of the form ∑i, j λpq,i, jcpq,i, j, which we write
as λ T

pqcpq, i.e., the inner product of the vectors λpq = (λpq,i, j) and
cpq = (cpq,i, j).

For modeling developable surfaces it is important that the planarity
criterion also works for a thin planar quad which converges to a
straight line segment. Here, the constraints in (1) serve to maintain
convexity and thereby avoid singularities, but they cannot express
planarity in the limit (the angle sum will tend to 2π in any case, as-
suming convexity). Therefore we add another planarity term: De-
note the unit vectors along the edges in quad Qi, j by ei, j := (vi, j+1−
vi, j)/‖vi, j+1 − vi, j‖, ei+1, j, fi, j := (vi+1, j − vi, j)/‖vi+1, j − vi, j‖,
and fi, j+1. Then, using the four vertices in an equal way, the pla-
narity of Qi, j is enforced by the following constraints,

c1
det,i, j := det(ei, j,ei+1, j, fi, j)= 0, c2

det,i, j := det(ei, j,ei+1, j, fi, j+1)= 0,

c3
det,i, j := det(ei, j, fi, j, fi, j+1)= 0, c4

det,i, j := det(ei+1, j, fi, j, fi, j+1)= 0.



A linear combination of these constraints as used below is denoted
by λ T

detcdet. Note that these terms are included as effective planarity
constraints only when computing PQ strips.

In addition, we introduce two energy terms to ensure that the result-
ing PQ mesh has a fair shape and stays close to the input mesh. For
aesthetic design we use the fairness term ffair, which includes sim-
plified bending energies of the mesh’s row and column polygons.

ffair := ∑i, j[(vi+1, j −2vi, j +vi−1, j)2 +(vi, j+1−2vi, j +vi, j−1)2].

At the boundary not all vertices required by the sum exist, so in
addition we define that any undefined square is set to zero. For the
PQ mesh to remain close to the surface Φ defined by the original
mesh, we need to minimize the distances of the perturbed mesh
vertices from the original mesh surface Φ by minimizing

fclose := ∑i, j ‖vi, j −yi, j‖2,

where yi, j is the closest point (i.e., footpoint) on Φ to vi, j. We put
the above terms together and define the Lagrangian function

fPQ := w1 ffair +w2 fclose +λ
T
pqcpq +λ

T
detcdet. (2)

Note that the term λ T
detcdet is needed only when computing a PQ

strip. SQP minimizes the energy term w1 ffair + w2 fclose subject to
the constraints cpq = 0 and cdet = 0. That is, the minimizer gives a
PQ mesh that has a fair shape and is close to the original surface Φ.
The desired minimum is a stationary point of the Lagrangian fPQ.
Note that λpq and λdet are determined automatically by the SQP
method, while w1 and w2 are user specified constants to control
relative weighting of fairness and geometric fidelity.

SQP uses a sequence of Newton-like iterations. In each round we
compute the Hessians and gradients of the four terms which occur
in the Lagrangian fPQ of (2) to form a local quadratic approxima-
tion of fPQ at the current point. Computation of the Hessians is
straightforward, except for the squared distance term ‖vi, j −yi, j‖2

in fclose, which involves the footpoints yi, j as dependent variables,
since vi, j − yi, j is always perpendicular to the tangent plane of Φ

at yi, j. We use [(vi, j −yi, j) ·ni, j]2 as a quadratic approximation of
‖vi, j −yi, j‖2. This approximation arises from Gauss-Newton min-
imization of the squared distance of vi, j from Φ and has been suc-
cessfully used for registration [Chen and Medioni 1991] and curve
and surface approximation (see e.g. [Blake and Isard 1998]).

Rewrite fPQ in (2) in the form fPQ(x,λ ) = f (x)−λ T c(x), where x
denotes the unknown vertex coordinates, f = w1 ffair +w2 fclose and
−λ T c(x) = λ T

pqcpq + λ T
detcdet. Let J denote the Jacobian matrix of

the constraints c(x) and H denote the Hessian matrix of fPQ(x,λ )
w.r.t. x; (note that the contribution to H by the fclose term is a Gauss-
Newton approximation). The update step x→ x+h is solved from[

H −JT

−J 0

][
h
λ

]
=

[
−∇ f (x)

c(x)

]
. (3)

We use a soft line-search strategy [Madsen et al. 2004] to determine
the actual update step size αh, 0 < α ≤ 1, to ensure stable conver-
gence and sufficient descent — so x is updated by x∗ = x+αh.

Figure 5: PQ perturbation without a closeness term applied to a
highly un-planar mesh consisting of only a few quads.

fPQ,penalty
= 2.5×10−6

fPQ,penalty = 5.2×100

Figure 6: PQ perturbation acting on a quad-dominant mesh (left)
extracted from principal curves (cf. Section 5). All faces, not only
quads, are planarized (planarity is visualized via flat shading). The
shape change noticeable at the ears is due to concentration of highly
nonplanar quads in the original mesh. Higher geometric fidelity at
the cost of fairness is easily possible. At right: color coded devia-
tion from original mesh (max. 3% of object size).

The above coefficient matrix is highly sparse and has the size (3M+
5N)×(3M+ 5N) or (3M+N)×(3M+N) if not including the terms
λ T

detcdet, where M is the number of vertices and N the number of
faces of the input mesh. We use the sparse matrix packages TAUCS
and UMFPACK. Our implementation of SQP works efficiently for
meshes of small or medium size (up to 1000 vertices). Our experi-
ence shows that for larger meshes it is more efficient to use a penalty
method: We combine the angle constraints in (1) in the function

fangle := ∑i, j(φ
1
i, j + . . .+φ

4
i, j −2π)2, (4)

and similarly the determinant terms in fdet. Then, we minimize the
objective function

fPQ,penalty = w1 ffair +w2 fclose + µ fdet + fangle. (5)

This is an unconstrained least squares problem which can be solved
effectively by the Gauss-Newton method with L-M regularization
[Kelley 1999]. We let µ = 1 when considering a PQ strip, and µ = 0
otherwise. For stability reasons, the coefficients w1 and w2 have
higher values at the start of the iteration. Later, we let w1 and w2
tend to zero, so that planarity can be achieved with high accuracy.
The following strategy works in practice: At the beginning, w1,w2
are chosen such that fangle dominates in (5), and they are divided
by 2 in every iteration. In case of small values of w1 and w2, near-
singular linear systems are solved via SVD.

In many cases the method exhibits much faster convergence than
the SQP method. An inherent problem of the penalty method are
stability deficiencies near the optimum. Therefore in practice we
use the penalty method to quickly derive an initial mesh near a local
minimum, and then employ SQP. PQ perturbation works very well
if the input quad mesh is reasonably close to a PQ mesh (cf. Fig.
6). Fig. 5 shows an input mesh which is far from planar, so PQ
perturbations results in large deviations from the original. In order
to planarize n-gons with n > 4, we use the fact that condition (1)
generalizes to n-gons.

3 Subdividing developables and PQ meshes

To generate a PQ mesh from a coarse control mesh, we combine
the PQ perturbation algorithm with a quad based subdivision algo-
rithm like Doo-Sabin or Catmull-Clark in an alternating way: We
subdivide a given PQ mesh once, and then apply PQ perturbation
to make the resulting faces planar (see Fig. 7). These two steps are
iterated to generate a hierarchical sequence of PQ meshes.
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Figure 7: (a)–(c): Hierarchy of PQ meshes obtained by iterative
application of Catmull-Clark subdivision and PQ perturbation.

A single PQ strip can be subdivided by applying a curve subdivi-
sion rule like Chaikin’s to its boundaries, and subsequent applica-
tion of PQ perturbation in order to achieve face planarity. Alternat-
ing application of these two steps is a subdivision algorithm which
generates developable surfaces. Because of our treatment of PQ
perturbation as a black box it is in general not possible to write
down the limit of this subdivision process explicitly. Nevertheless
it is a much simpler design tool than developable B-spline surfaces,
whose control points have to satisfy a set of nonlinear constraints.

As illustrated in Fig. 8, the relation of the input PQ strip to the final
developable surface is very intuitive – certainly more so than the
dual control structure in terms of tangent planes, which can be used
to avoid nonlinear constraints (cf. [Pottmann and Wallner 2001]).

In the perturbation phase of the algorithm, the term fdet in (5) is
important for maintaining planarity. The term fangle discourages
self-intersecting quads and thus acts against the common problem
that the singular curve enters the designed patch. Finally, ffair helps
to prevent a zig-zag effect in adjacent quads.

(a) (b) (c)

Figure 8: Developable subdivision surfaces generated with the per-
turbed cubic Lane-Riesenfeld algorithm; this nonlinear subdivision
scheme keeps the planarity of quads and thus achieves developa-
bility of the limit. The control entity (a) is a piecewise-planar PQ
strip. (b) and (c): 1 and 3 rounds of subdivision.

4 Conical meshes

Principal curvature lines form a special network of conjugate curves
on a surface. Apart from umbilic points, where this network pos-
sesses singularities, it behaves nicely, since its curves intersect at
right angles. This is not necessarily true for an arbitrary conjugate
curve network; asymptotic (self-conjugate) directions give rise to
degenerate situations that make such networks unsuitable for mesh-
ing purposes (Fig. 4).

A particular discretization of the network of principal curvature
lines are the circular meshes, which are quad meshes whose quads
are not only planar, but also have a circumcircle [Martin et al. 1986;
Bobenko and Suris 2005]. Even though they are not the focus of the
present paper, it is however easy to extend our PQ perturbation al-
gorithm to the computation of circular meshes (see Section 5 and
Fig. 17). It turns out that another discrete analogue of the principal

Figure 9: Developable Möbius band in the shape of a trefoil knot.
Left: PQ strip as control structure. Right: Result of subdivision
augmented by PQ perturbation. Numerical smoothness is C2, as
seen from smooth reflection lines ( fPQ,penalty = 2.9×10−11).

curvature lines – the conical meshes to be introduced in this sec-
tion – have geometric properties essential for architectural design
of freeform structures. For their computation via an augmented PQ
perturbation algorithm, see Sec. 5.

A vertex v of a quad mesh is a conical vertex if all the four (ori-
ented) face planes meeting at v are tangent to a common (oriented)
sphere. This is equivalent to saying that these oriented face planes
are tangent to a common oriented cone of revolution Γ (see Fig.
10a). The axis G of Γ can be regarded as a discrete surface normal
at that vertex.

We call a PQ mesh a conical mesh if all of its vertices of valence
four are conical. For theoretical investigations, we consider only
regular quadrilateral meshes whose vertices have valence 4, except
for valence-2 or valence-3 vertices on the boundary. A conical mesh
is in some sense dual to a circular mesh. Instead of requiring the
four vertices of a quad to be co-circular, we require that the four
(oriented) faces incident with a mesh vertex be tangent to an (ori-
ented) cone of revolution. We will see that conical meshes, like
circular meshes, discretize the network of principal curvature lines.

There are exactly three types of conical mesh vertices, which can be
characterized geometrically as follows. A small sphere S centered
in a mesh vertex v intersects the mesh in a simple 4-sided spherical
polygon P. If the four vertices pi of P cannot be contained in the
same hemisphere, v is of the hyperbolic type. Otherwise (i.e., the
four vertices pi are contained a hemisphere) v is either of elliptic
type (see Fig. 10a) or of parabolic type, depending on whether P

Γ

G

R1

L1

R2

L2 R3

L3

R4
L4

ω1
ω2

ω3
ω4

Qi−1, j−1

Qi−1, j

Qi, j−1

Qi, j

Qi+1, j−1

Qi+1, j

Gi, j Gi+1, j

vi, j vi+1, j

ri, j
(a) (b)

Figure 10: (a) Configuration of the faces of a conical mesh at a ver-
tex. The faces touch the common cone Γ along rulings R1, . . . ,R4,
and have interior angles ω1, . . . ,ω4. (b) Faces of a conical mesh at
two adjacent vertices vi, j and vi, j+1, and the intersection point ri, j
of neighboring axes Gi, j, Gi, j+1.



is convex or not. These three types of mesh vertices are discrete
analogues of hyperbolic points, elliptic points and parabolic points
on a smooth surface.

An angle criterion for conical meshes. There is a simple con-
dition characterizing a conical mesh in terms of the interior angles
of its quads. This characterization is also important for computing
conical meshes (see Equ. (6) in Section 5).

Geometry Fact 1 A vertex of a quad mesh is a conical vertex if
and only if the angle balance ω1 + ω3 = ω2 + ω4 is satisfied (see
Fig. 10 for notation).

Here we assume that no two adjacent faces incident with a mesh
vertex are co-planar, for otherwise the vertex is always conical. The
(oriented) great circles that carry the edges of the spherical polygon
P are tangent to a common (oriented) circle if and only if the vertex
is conical. For elliptic vertices, Geometry Fact 1 follows from a
result by A. J. Lexell which states that a convex spherical quadri-
lateral has an incircle if and only if the sums of opposite sides are
equal. A proof of Geometry Fact 1 for all types of mesh vertices is
given in [Wang et al. 2006]. As an example we now use the elliptic
vertex in Fig. 10a to illustrate why the angle balance holds in this
case.

Consider the right circular cone Γ tangent to all the four faces
incident with v, the vertex of Γ. Suppose that the face plane
Qi touches Γ along the ruling Ri. Let Li denote the intersection
line of Qi and Qi+1. Denote αi = ^(Li,Ri). Then, by symme-
try, ^(Li,Ri+1) = ^(Li,Ri) = αi. Since ωi = αi + αi+1, we have
ω1 +ω3 = α1 +α2 +α3 +α4 = ω2 +ω4.

Figure 11: A conical mesh has conical offset meshes, here illus-
trated by a planar cut through a sequence of offsets.

Offsetting conical meshes. Meshes with planar faces (includ-
ing triangle meshes, cf. e.g. [Kim and Yang 2005]) in general do not
have the property that offsetting all faces by a fixed distance leads
again to a mesh with the same connectivity, since planes meeting at
a common point in general do not meet again at a common point af-
ter offsetting. Conical meshes, however, have this property — they
possess conical quad meshes as offset meshes, as illustrated by Fig-
ures 11 and 12: The faces of a conical mesh incident with a vertex
vi, j are tangent to an oriented cone with axis Gi, j. After offsetting,
they are still tangent to a cone with the same axis. This behavior
of the discrete surface normal Gi, j is consistent with the behavior
of the ordinary surface normal of a smooth surface under offsetting
(which also does not change).

Remark: It is easy to show that any PQ mesh having the offset-
ting property is a conical mesh; that is, the offsetting property is a
characterizing property of conical meshes. Offsetting planes by a
fixed distance along their normal vector is a simple instance of a
Laguerre transformation [Cecil 1992]. It is not difficult to see that
general Laguerre transformations map conical meshes to conical
meshes, whereas the property of a mesh being circular is preserved
under Möbius transformations [Bobenko and Suris 2005].

(a) (b)

Figure 12: A conical mesh discretizes the network of principal cur-
vature lines. (a) A conical mesh has conical offset meshes and a
discretely orthogonal support structure connecting the offsets. (b)
Cone axes of neighboring vertices intersect in the discrete principal
curvature centers. Connecting these axes leads to discrete row and
column developables orthogonal to the mesh.

The normals of a conical mesh. Starting from a planar mesh
with quads Qi, j , we construct a mesh in the unit sphere whose ver-
tices ni j are the unit normal vectors of Qi j. It is called the spherical
image of the original PQ mesh. For conical meshes, the spherical
image has special properties: As the four faces which meet in a
vertex vk,l are tangent to a common cone Γk,l , the normal vectors
of these faces enclose the same angle with the cone’s axis. Thus
these four normal vectors lie in a circle contained in the unit sphere;
the spherical center of this circle gives the unit direction vector of
Gk,l . Thus the spherical image of a conical mesh is a circular mesh.
This property is a discrete analogue to the well known fact that the
spherical image of the network of principal curvature lines is an
orthogonal curve network on the sphere.

Support structures of conical meshes. Fig. 10b illustrates two
neighboring vertices vi, j and vi+1, j of a conical mesh. There are
two faces Qi, j and Qi, j−1 containing both vertices. These two faces
are tangent to both cones Γi, j and Γi+1, j. It follows that their axes
Gi, j and Gi+1, j lie in the bisector plane of the oriented faces Qi, j
and Qi, j−1. The important fact derived here is that neighboring axes
(discrete surface normals) are co-planar, and they are contained in
a plane orthogonal to the mesh in a discrete sense.

It follows that an edge of the mesh, the discrete normals at its end-
points, and the corresponding edge of any offset mesh, lie on a com-
mon plane. This property can be used to build ‘orthogonal’ support
structures as shown in Figures 1, 12 and 15, which are important
for the construction of freeform glass structures based on conical
meshes. Co-planarity of axes Gi, j and Gi, j+1 implies:

Geometry Fact 2 Successive discrete normals of a conical mesh
along a row or column are co-planar and therefore form a discrete
developable surface (see Fig. 12).

Recall that the surface normals of a smooth surface along a curve
constitute a developable surface if and only if that curve is a princi-
pal curvature line. Fact No. 2 is a discrete analogue of this classical
result, and shows the following important property:

Geometry Fact 3 If a subdivision process, which preserves the
conical property, refines a conical mesh and in the limit produces a
curve network on a smooth surface, then this limit curve network is
the network of principal curvature lines.

Focal surfaces with conical meshes. In a conical mesh, neigh-
boring axes (discrete surface normals) in a row intersect, and so do
neighboring axes in a column. These intersection points are dis-
crete row and column curvature centers, which define, in general,
a two-sheet discrete focal surface. It is easy to see that the two
quad meshes defined by the row centers and the column centers are



actually PQ meshes, and that singularities of discrete offsets occur
at these two discrete focal sheets. This is analogous to the smooth
case [Porteous 1994].

Remark: We might ask if there are meshes which are both circular
and conical. The answer is in the affirmative, and it is not diffi-
cult to construct some. Interesting examples of conical meshes of
constant cone opening angle, which are at the same time circular
of constant circle radius, are derived from the discrete surfaces of
constant negative Gaussian curvature of [Wunderlich 1951]. One
of them is shown in Fig. 12. However, meshes with both properties
may be too inflexible to be useful for modeling and approximation.

5 Computing conical meshes

We would like to approximate a surface Φ, which is given in any
representation, by a conical (or circular) mesh. Since both types
of meshes converge to principal curvature lines under refinement,
it is a good choice to use a quad mesh extracted from principal
curvature lines (e.g., the meshes from [Alliez et al. 2003]) as input
for an optimization algorithm which achieves the conical or circular
property by perturbing the vertices as little as possible.
Robust computation of principal curves. For computing prin-
cipal curves, we employ a method different from previous ap-
proaches [Cohen-Steiner and Morvan 2003; Clarenz et al. 2004].
In view of the desired average size of faces in a principal mesh, we
find it appropriate to use as input robust principal curves on a given
scale r (Fig. 13), which are computed as follows. The procedure an-
alyzes neighborhoods of points p of the given surface Φ. We choose
a kernel radius r, which defines the scale on which we would like to
work. The domain of space which, locally around p, lies to one side
of the surface is denoted by D. For each point p ∈ Φ we perform a
principal component analysis (PCA) of the set Nr(p) = Br(p)∩D,
where Br(p) is a ball of radius r centered in p. This means that we
compute the barycenter sr of Nr and the eigenvectors tr

1, t
r
2, t

r
3 and

corresponding eigenvalues λ r
1 ≤ λ r

2 ≤ λ r
3 of the covariance matrix

J :=
∫

Nr (x−sr) ·(x−sr)T dx. In the limit r→ 0, tr
3 converges to the

surface normal at p, and tr
1, t

r
2 converge to the principal directions.

What we actually compute is a kind of average of these geometric
characteristics over a small neighborhood of p. Most importantly,
directions tr

1, t
r
2 are more robust against noise and minor perturba-

tions than those of classical differential geometry or than those in
[Clarenz et al. 2004], which are computed via PCA on the surface
patch neighborhood Br(p)∩Φ. For proofs and details on efficient
implementation we refer to [Pottmann et al. 2005].

The directions tr
1, t

r
2 need not be tangent to the given surface at p.

However, we can still obtain meaningful principal directions at p
if we just project them onto the tangent plane at p. The direction
of this projection shall be given by the third eigenvector tr

3, which
estimates the surface normal. The projected directions do not have
to be orthogonal anymore, which is actually no loss and rather en-
hances stability when we now integrate these two vector fields to
obtain principal curves at the chosen scale r (see Fig. 13). Our
algorithm for vector field integration and quad mesh extraction is
based on ideas in [Alliez et al. 2003; Dong et al. 2005; Marinov
and Kobbelt 2004]. We do not give more details, since this part is
not considered the topic of the present paper.
Conical and circular optimization. It is not difficult to mod-
ify the PQ perturbation algorithm from Sec. 2.2 so that it produces
conical meshes. For perturbation into a conical mesh, we keep the
constraints of (1) and, according to Geometry Fact No. 1, for each
vertex add the constraint

ω
1
i, j +ω

3
i, j −ω

2
i, j −ω

4
i, j = 0. (6)

Figure 13: Principal curves computed with different kernel radii.

The perturbation algorithm for computing a circular mesh is similar.
A quad is planar, convex, and has a circumcircle, if and only if the
four angles enclosed by its four edges have the property

φ
1
i, j +φ

3
i, j −π = 0, φ

2
i, j +φ

4
i, j −π = 0. (7)

We therefore replace the planarity constraint φ 1
i, j + . . .+φ 4

i, j−2π =
0 in Equ. (1) by the two constraints in (7). The modifications of the
penalty method proceed along the same lines. We do not enforce
the conical condition for vertices of valence greater than four, as in
architectural applications such vertices are expected to get special
treatment anyway. We could however easily make such a vertex
conical by imposing the conical condition for any four faces adja-
cent to the vertex. Similarly, for circular meshes the circular con-
dition is not enforced for n-gons with n > 4, except for artificial
5-gons which arise from quads at T junctions, where the original
quad’s vertices are made cocircular.

Figure 14: The conical mesh in front was obtained by a combi-
nation of Catmull-Clark subdivision and conical optimization from
the control mesh behind. This conical mesh is the basis for the glass
structure in Fig. 1.

6 Results and discussion

Developable surfaces. Our experiments show that the proposed
subdivision approach to developable surface modeling is a power-
ful new tool (see Figures 9 and 16). The elimination of the singular
curve from the actually designed patch is simplified by the multi-
scale approach inherent to subdivision: Planarization results in con-
vex quads and thus eliminates singularities from the designed patch
at each subdivision level (Fig. 16). This multiscale elimination of
the singular curve appears to be more efficient than the methods
known in the literature [Pottmann and Wallner 2001].

The PQ perturbation method described in Section 2.2 makes use of
a reference surface. If only a coarse PQ strip is available as a control
structure for a smooth developable, such a reference surface may be
generated by applying the unperturbed subdivision rule to the strip.
Numerical evidence for the C2 smoothness of the perturbed cubic
Lane-Riesenfeld rule is furnished by the apparent smoothness of
reflection lines in Fig. 9.



Figure 15: Design studies with conical meshes and their offset meshes produced by subdivision and conical perturbation. The figure shows a
wide-angle perspective of the interior (left), an exterior view (center), and an offset detail (right).

Conical and circular meshes. The combination of subdivision
and conical/circular perturbation produces high quality meshes suit-
able for aesthetic design (see Figures 1, 14, and 15). Without sub-
division, it is essential that perturbation which aims at principal
meshes (circular or conical) is applied to a mesh which is not too far
away from a principal mesh. This is achieved by deriving a mesh
from principal curves (cf. Fig. 17). Otherwise, we either get large
deformations, or – if the surface is subject to further constraints
such as fixed points or closeness to a reference surface – we may
obtain self-intersections, creases, and other undesirable effects.

Efficiency. The performance of our non-optimized PQ perturba-
tion code depends not only on the size of the input data, but also on
the geometry and the nature of nearness constraints. To give a few
numbers, on a 2 GHz PC we experienced computation times of 0.08
(penalty) and 0.75 seconds (sequential quadratic programming) for
PQ perturbation applied to the trefoil knot with 336 faces in Fig. 9.
Thus interactive modeling of developable surfaces is easily possi-
ble. Total mesh computation time for Fig. 15 was 13 seconds, of
which 80% was for 4 iterations of conical perturbation (penalty) at
the finest subdivision level with 5951 vertices. There is still room
for improvement when processing large meshes. The number of

Figure 16: Design studies with developable surfaces. Two of four
developable strips in the top figure show control structures, and
the other two show the result of subdivision together with singu-
lar curves.

iterations can be as high as 20–50 for the SQP method with a close-
ness term present. Surface approximation by conical and circular
meshes would certainly benefit from even better initial meshes, but
this aspect of quad-dominant remeshing is not a focus of the present
paper.

Convergence. It should be mentioned that there are meshes
where PQ perturbation fails because of topological obstructions.
On the other hand we did not encounter problems with meshes
based on principal curves, and PQ perturbation is capable of large
deformations when that is necessary for achieving planarity.

7 Conclusion and future work

We have shown how to construct and approximate surfaces with
meshes composed of planar quadrilaterals. To our knowledge, ap-
proximation with conical, circular, or even just PQ meshes has not
been treated before. Combining an optimization algorithm for the
computation of these PQ meshes with quad-based subdivision algo-
rithms results in a powerful modeling tool. It adapts subdivision for
applications in architecture and also provides a new way of mod-
eling developable surfaces. In particular, we have introduced and
studied conical meshes, which discretize the network of principal
curvature lines. They are well suited for designing free-form glass
structures in architecture, and provide a simple and natural offset-
ting operation and the construction of a support structure from dis-
crete surface normals.

The many directions for future research include studies in discrete
differential geometry such as the investigation and computation
of special discrete surfaces (such as surfaces of constant mean or
Gaussian curvature, Willmore surfaces, etc.) in a principal mesh
and especially conical mesh representation. This would also be very
welcome for aesthetic design [Sullivan 2005]. Further research di-
rections are the incorporation of statics, stability and other aspects
of construction and fabrication into the computation of quad meshes
for architecture and the use of conical meshes and their offsets as a
discrete model for simulation problems with shells and plates.
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