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Figure 1: This architectural free form structure – built of beams of constant height meeting in optimized nodes and covered with planar glass
facets – was designed using the theory and algorithms presented in this paper. Our method also allows for the construction of secondary
parallel offsets at a variable distance, here physically realized as a structure designed to cast shadows which is optimized to reduce heat load
for particular sun positions.

Abstract

The geometric challenges in the architectural design of freeform
shapes come mainly from the physical realization of beams and
nodes. We approach them via the concept of parallel meshes, and
present methods of computation and optimization. We discuss pla-
nar faces, beams of controlled height, node geometry, and multi-
layer constructions. Beams of constant height are achieved with
the new type of edge offset meshes. Mesh parallelism is also the
main ingredient in a novel discrete theory of curvatures. These
methods are applied to the construction of quadrilateral, pentago-
nal and hexagonal meshes, discrete minimal surfaces, discrete con-
stant mean curvature surfaces, and their geometric transforms. We
show how to design geometrically optimal shapes, and how to find
a meaningful meshing and beam layout for existing shapes.
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1 Introduction

Freeform shapes in architecture is an area of great engineering chal-
lenges and novel design ideas. Obviously the design process, which
involves shape, feasible segmentation into discrete parts, function-
ality, materials, statics, and cost, at every stage benefits from a com-
plete knowledge of the complex interrelations between geometry
requirements and available degrees of freedom. Triangle meshes
– the most basic, convenient, and structurally stable way of repre-
senting a smooth shape in a discrete way – do not support desirable
properties of meshes relevant to building construction (most impor-
tantly, “torsion-free” nodes). Alternatives, namely quad-dominant
and hexagonal meshes tend to have less weight, and can be con-
structed with geometrically optimized nodes and beams. However,
the geometry of such meshes is more difficult. Especially challeng-
ing are aesthetic layout of edges and the geometric constraints of
planar faces and optimized nodes.

Only recently, researchers have become interested in the geometric
basics of single- and multilayer freeform structures which are not
based on triangle meshes. Existing literature has been motivated
by problems in the fabrication of steel/glass and other structures
and mostly aims at the realizations of freeform shapes by meshes
with planar faces [Glymph et al. 2002; Schober 2003; Cutler and
Whiting 2007; Liu et al. 2006]. The latter paper introduced con-
ical meshes which have planar faces and possess offset meshes at
constant face-face distance from the base mesh. They can serve as
the basis of multi-layer constructions, and so for the first time the
problem of multilayered realization of a freeform surface by means
of planar parts was solved in principle.

Until now the wealth of interesting geometry relevant to the con-
struction of freeform structures in architecture has been explored
only to a small extent. It is the aim of the present paper to show
how the local structure of single- and multi-layer constructions can
be analyzed with mesh parallelism as the main tool. This con-
cept allows us to encode the existence of node axes and offsets
in a discrete Gauss image, and to define discrete curvatures in a
natural way. Optimization in the linear space of meshes parallel
to a given mesh yields a modeling tool. A particularly important
and interesting type of meshes are those possessing edge offsets.
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Figure 2: Multi-layer constructions based on the geometric sup-
port structure defined by two parallel meshes M , M ′ at approxi-
mately constant distance. On the left, the lower layer of the glass
roof is suspended from the upper layer which has a structural func-
tion. The right hand image shows a rudimentary construction of a
glass facade where the closed space between layers has an insulat-
ing function.

We show how mesh parallelism establishes a connection between
meshes with edge offsets and Koebe polyhedra. Thus the research
presented here is situated at the meeting point of discrete differ-
ential geometry, modeling, geometry processing, and architectural
design.

Previous work in discrete differential geometry. Most of the
work relevant to the present study concerns quadrilateral meshes
with planar faces, which discretize so-called conjugate curve net-
works on surfaces [Sauer 1970]. They are a basic concept in
the integrable system viewpoint of discrete differential geometry
[Bobenko and Suris 2005]. Both the circular meshes and the coni-
cal meshes of Liu et al. [2006] are special cases which possess par-
ticularly nice geometric properties, and which correspond to those
conjugate curve networks which are also orthogonal, i.e., the princi-
pal curvature lines. For convergence of such meshes to the network
of principal curvature lines, see [Bobenko and Suris 2005]. The
fact that principal curvature lines are a concept of Lie sphere geom-
etry has a discrete manifestation in the unified treatment of circu-
lar and conical meshes as principal meshes of Lie sphere geometry
[Bobenko and Suris 2007]. Elementary relations between circular
and conical meshes, and meshes which enjoy both properties are
discussed by Pottmann and Wallner [2007]. Special cases of the
parallel meshes which are the topic of the present paper have been
considered by [Sauer 1970]. Our work on curvature in the present
paper extends results of Schief [2006], who defined a mean and
Gaussian curvature for circular meshes via surface areas of discrete
offset surfaces. That method apparently has first been applied to
simplicial surfaces by Nishikawa et al. [1998] in a different context.
Another classical definition of the mean curvature through varia-
tion of surface area of simplicial surfaces has been investigated by
Polthier [2002a]. Discrete minimal surfaces realized as circular and
conical meshes are the topic of several contributions (e.g. [Bobenko
and Pinkall 1996; Bobenko et al. 2006]). Attempts to construct dis-
crete minimal surfaces with planar quad meshes have been made
by [Polthier 2002b]. The discrete minimal surfaces of [Bobenko
et al. 2006] are particularly interesting because they provide a class
of polyhedral surfaces with the edge offset property introduced in
the present paper. It turns out in Section 3.2 that the edge offset
property is closely related to results on orthogonal circle patterns
[Schramm 1997; Bobenko and Springborn 2004].

Previous work in geometry processing. Only some of the pa-
pers mentioned above address the computation of the meshes they
deal with [Bobenko and Springborn 2004; Bobenko et al. 2006; Liu
et al. 2006]. The latter paper demonstrates how to design meshes
with planar faces, circular meshes, and conical meshes by subdivi-
sion and optimization, and also how to approximate a given shape

by a circular or conical mesh. As input for such mesh optimization
algorithms any mesh aligned along a network of principal curvature
lines may be used (see e.g. [Alliez et al. 2003; Tong et al. 2006]).
Approximation of smooth surfaces by meshes with planar faces,
without a focus on support structures and multilayer constructions
can be achieved by variational shape approximation [Cohen-Steiner
et al. 2004]. Cutler and Whiting [2007] modified this method with
regard to aesthetics and architectural design. More generally, var-
ious research projects on geometry for architecture in general are
promoted by the Smart Geometry group [SG].

Meshes whose faces are mostly planar 5-gons or 6-gons have cer-
tain desirable properties, but such meshes have received consider-
ably less attention in the graphics community than triangle meshes
and quad meshes. Some notable exceptions are papers on refine-
ment processes by Akleman et al. [2005], and on combined primal/
dual subdivision [Oswald and Schröder 2003]. However, they do
not consider planarity of faces or other aspects relevant to building
construction.

2 Mesh parallelism for architecture

2.1 Motivation and introduction

Glass panels and multilayer metal sheets for roofing structures are
planar as a rule, with only a few exceptions. The reason for this is
mostly the prohibitive cost of manufacturing them otherwise. Ob-
viously, every implementation of a freeform shape in terms of flat
primitives faces the problem of approximating the given surface by
a mesh with planar faces. If triangle meshes are employed, the ge-
ometry part of the solution of this problem consists of choosing the
vertices and deciding which vertices to connect by edges. If faces
can have more than three vertices, this approximation task is not so
simple, because the condition of planar faces is no longer fulfilled
automatically. It should be mentioned that also statics is simpler
if we stay with triangle meshes. There are, however, the following
issues which make other solutions attractive:

• In a steel/glass or other construction based on a triangle mesh,
typically six beams meet in a node. This means a significantly
higher node complexity compared to other types of meshes (see
Fig. 4, right).

• Experience shows that the per area cost of triangular glass panels
is higher than that of quadrilateral panels. This is mainly due to
the fact that quadrilaterals fill their smallest rectangular bound-
ing boxes better than triangles do.

• Generally one aims at less steel, more glass, and less weight,
which also suggests the use of non-triangular faces.

• For the actual construction, torsion-free nodes are preferred. For
this concept, see Figure 4 and the text below. The geometric the-
ory however tells us that for triangle meshes in general torsion-
free nodes do not exist.

• Apart from trivial cases, triangle meshes do not possess offsets at
constant face-face or edge-edge distance; neither is it possible to
use triangle meshes as basis of a multilayer construction where
only the basic requirement of parallelity of layers is imposed.

This section shows how the concept of parallelism, which applies to
meshes with planar faces, can be used to gain a unified view of these
issues, especially geometrically optimal nodes and offset properties
[Brell-Cokcan and Pottmann 2006]. Consider two meshes M and
M ′ which are combinatorially equivalent, i.e., there is a 1-1 corre-
spondence between vertices and edges. We call the meshes M , M ′

parallel, if corresponding edges are parallel (see Figure 3). Be-
fore we consider parallel meshes from the mathematical viewpoint,
we first describe some geometric problems connected with discrete
surfaces in architecture where this concept occurs naturally.
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Figure 3: Meshes M , M ′ with planar faces are parallel if they are
combinatorially equivalent, and corresponding edges are parallel.

Multilayer constructions. Structures like those schematically de-
picted by Figure 2 include not only one mesh, but several meshes,
corresponding to the different layers of the construction. It is natu-
ral to demand that meshes which correspond to different layers are
parallel.

Geometrically optimal nodes. In the actual realization of a poly-
hedral surface M as a steel/glass roof, planar glass panels are held
by prismatic beams following the edges of M (see Fig. 4). A beam
is symmetric with respect to its central plane which passes through
the edge corresponding to the beam. A node corresponds to a ver-
tex mi and connects incoming beams in a way which supports the
force flow imposed by the overall statics of the structure. Node con-
struction and manufacturing are greatly simplified if there is a node
axis Ai, which is contained in the central planes of incoming beams
(see Figure 4, left). Figure 4, right, shows the case of a welded node
which does not have a node axis. Obviously the handling and man-
ufacturing of such ‘nodes with torsion’ is more complicated than
the case with a node axis. Geometrically, lines Ai passing through
the vertices mi of a given mesh are a collection of node axes, if and
only if

mimj is an edge =⇒ node axes Ai, Aj are co-planar.

To avoid pathological cases, we forbid that node axes lie in edges.

The following simple but fundamental proposition establishes a
property of a collection of node axes associated with a mesh M .
It relates node axes to an auxiliary mesh M ′ which is parallel to the
given mesh, and is illustrated by Fig. 4, left.

Proposition 1 If the meshes M , M ′ with vertices mi, m′
i (∀ i :

mi 6= m′
i) are parallel, then the lines Ai = mi ∨ m′

i serve as
node axes for the mesh M (provided no line Ai contains an edge).

Conversely assume that a simply connected mesh M is equipped
with node axes Ai passing through its vertices mi. Then there ex-
ists a mesh M ′ parallel to M , such that Ai is spanned by corre-
sponding vertices mi,m

′
i.

Proof: This is shown in [Pottmann et al. 2007]. Part (i) is elemen-
tary. For part (ii) we start with a vertex m′

i0 ∈ Ai0 and construct
further vertices of M ′ by the requirement that corresponding edges
of M and M ′ are parallel, and that m′

i ∈ Ai for all i. �

Geometric support structure. There is a point of view which
unifies the different cases where parallel meshes occur – regard-
less of whether a parallel mesh is physically realized, or is only
used in the definition of node axes. This point of view is that we
emphasize the construction elements which connect different lay-
ers – physically present or not – and which are transverse to the
mesh M under consideration. In Figure 2, right, these construc-
tion elements are the glass panels which connect the two parallel
meshes M , M ′. In Figure 4, left, these construction elements are
the beams. We shrink those elements until they have zero width
(this is schematically indicated in Fig. 4, left). They then become
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Figure 4: Left: This figure shows nodes, supporting beams, and the
underlying geometric support structure of a steel/glass construction,
based on a mesh M (vertices mi) and its parallel mesh M ′ (vertices
m′

i). All beams are symmetric with respect to their central plane
(blue); at an optimized (torsion-free) node mi the central planes
of supporting beams pass through the node axis Ai = mi ∨ m′

i.
Right: A node without axis, with geometric torsion.

planar quadrilaterals transverse to the mesh M , passing through the
edges of M . Those transverse quads which are adjacent to a node
mi, have a common edge which lies in the node axis Ai. Such a
collection of quads is called a geometric support structure of the
mesh M (see Figures 1, 2, 4, 6, 13, and 14).

Obviously, a collection of node axes for M almost uniquely defines
the quads of a geometric support structure for M – the only degree
of freedom left is the quad boundaries opposite to the edges of M .
By Proposition 1, any geometric support structure joins the edges of
M with the respective corresponding edges of a mesh M ′ parallel
to M . Every node axis Ai joins corresponding vertices mi, m′

i.

Specific problems considered in this paper. We are going to
discuss meshes with certain geometric properties relevant to archi-
tectural design, especially support structures. An important prop-
erty of this kind is that a mesh possesses a support structure whose
beams are of constant height – this is the class of edge offset meshes
defined later. Generally speaking, the more properties we require a
mesh to have, the fewer degrees of freedom are available. We there-
fore encounter the following problems:

• The approximation problem. Is it possible to approximate a given
shape by a mesh contained in a specific class of meshes? For
example, this is pssible for the conical quad meshes, as shown
by Liu et al. [2006], but not for the quad meshes with the edge
offset property. However we shall see that we can approximate
arbitrary surfaces if we relax the requirement of constant height
a little bit.

• The design problem. How can we explore or even completely
describe the set of meshes with a specific geometric property?
This question is especially important in cases where the approx-
imation problem is not solvable. For example, we will intro-
duce some geometric transformations which change shape but
preserve the edge offset property.

2.2 Basics of mesh parallelism

Mesh parallelism and the spaces C(M ) and P(M ). A mesh
M is represented by the list (m1, . . . .mN ) ∈ R3N of vertices
and the mesh combinatorics, i.e., the information which vertices
belong to common edges and faces. We use C(M ) to denote the lin-
ear 3N -dimensional space of meshes combinatorially equivalent to
M . If M ′, M ′′ have the same combinatorics, a linear combination
λ′M ′ + λ′′M ′′ is defined vertex-wise; this operation corresponds
to the linear combination of vectors in R3N .
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Figure 5: The set P(M ) of meshes parallel to a given mesh M is
a linear space and can be explored by a linear blend of some of its
elements.

Meshes M , M ′ are parallel, if M ′ ∈ C(M ) and corresponding
edges are parallel (see Figures 3 and 5). We use that definition
only if the faces of M are planar. Clearly then corresponding faces
of M and M ′ lie in parallel planes (parallelity of planes alone is
sufficient to guarentee parallelity of edges, if no pair of adjacent
faces are co-planar). We denote the set of meshes parallel to M
by P(M ). To avoid pathological cases we require that the mesh
M which defines the space P(M ) has only nonzero edges. Trivial
ways of producing meshes parallel to M are to translate and scale
M . Since triangles with parallel edges are scaled copies of each
other, two parallel triangle meshes are scaled copies of each other
[Pottmann et al. 2007]. This is the reason why we do not consider
triangle meshes in the rest of the paper.

Suppose M ′, M ′′ ∈ P(M ). Then, for each edge mimj , the vec-
tors m′

i−m′
j , m′′

i −m′′
j are multiples of mi−mj . It follows that

any expression (λ′m′
i +λ′′m′′

i )−(λ′m′
j +λ′′m′′

j ) is a multiple of
mi −mj . This shows that the linear combination λ′M ′ + λ′′M ′′

is also parallel to M , so P(M ) is a linear subspace of C(M ). The
zero vector of both P(M ) and C(M ) is the mesh o = 0 · M , all
of whose vertices coincide with the origin of the coordinate sys-
tem. Linear blending between three meshes in the space P(M ) is
illustrated by Figure 5.

The space P(M ) does not only contain ‘nice’ meshes. We may see
various undesirable effects such as unevenly distributed faces, sharp
edges of regression, or overlapping regions. Nevertheless, it is both
theoretically and practically useful to have the entire space P(M )
at our disposal. Even visually unpleasant meshes in P(M ) will
turn out to be helpful in the computation of optimal beam layouts
(see Fig. 14d).

Computing in the space of parallel meshes. As P(M ) is a lin-
ear space, it is important to determine a basis. We observe that a
mesh M ′ ∈ C(M ) is contained in P(M ) if and only if

mimj is an edge =⇒ m′
i −m′

j = λij(mi −mj). (1)

We can therefore determine P(M ) as the solution space of the sys-
tem of equations

(m′
i −m′

j)× (mi −mj) = 0 for all edges mimj . (2)

A rough count of degrees of freedom (one d.o.f. per edge, two
closure conditions per face, 3 d.o.f. for the translations in space)
shows that e.g. for open meshes we can expect dimP(M ) =
# edges − 2 × # faces + 3. The actual solution of (2) is done via
SVD. Thresholding of small singular values is supported by an a
priori estimate for dimP(M ).

Once a basis is available, the minimization of linear and quadratic
functionals (e.g. a fairness functional) under constraints (like fixed
points) and linear side conditions (like edge length inequalities)
presents no problems.

3 Offset meshes

Meshes are offsets of each other, if they are parallel, and in addition
their distance from each other is constant throughout the mesh. This
notion is similar to the concept of smooth offset surfaces [Maekawa
1999], but in contrast to the smooth case, for meshes there are var-
ious different definitions of distance. Consequently, there are also
various different notions of offset mesh. Two of them, face offsets
and edge offsets are relevant to problems of architectural design of
freeform surfaces considered in this paper.

For multilayer constructions (cf. Figure 2) it is natural to require
that the distance of corresponding faces is constant. Parallel meshes
with this property (face offsets) are the topic of [Liu et al. 2006].

Another type of offset occurs when we employ parallel meshes for
the layout of beams in a steel/glass construction based on a given
mesh M . The beams are a physical realization of a geometric
support structure which connects two parallel meshes M and M ′.
If the distance of corresponding edges in M and M ′ is constant
throughout the mesh, then beams of constant height are perfectly
aligned on both the upper (outer) and the lower (inner) side of the
construction, provided that the mesh is convex (see Figure 6).

If, on the other hand, the distance of corresponding edges in M and
M ′ is not the same throughout the mesh, then one could still use
beams with the same cross-section throughout the mesh, but these
beams will not be aligned on both sides (see Figure 7). Still, if M
and M ′ are at almost constant edge-edge distance, a physical re-
alization may use beams of the same cross-section throughout the
mesh, without too much misalignment being visible. As exact dis-
tance requirements are sometimes hard or impossible to fulfill, we
consider offsets at an exactly constant distance (in this section) as
well as offsets at approximately constant distance (in Section 4).

Figure 6: This construction (a detail of Fig. 1) is based on an edge
offset mesh and has beams of constant height. In the positively
curved areas, edges (red) of beams with rectangular cross-section
have an exact intersection at the nodes, which follows from Prop. 3.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

Figure 7: This geometric support structure is defined by two paral-
lel meshes which are not of constant edge-edge distance. We nev-
ertheless employ beams of constant height to physically realize that
support structure. The resulting misalignment is not visible from
the outside (a), hardly visible from the beams’ mid-sections lying
in the respective central planes (b), but is clearly visible from the in-
side (c). Still, nodes have no torsion and symmetry planes of beams
intersect in the node axis.



3.1 Types of exact offset meshes

Recall that a mesh M ′ ∈ P(M ) at constant distance from M is
an offset of M . Different ways to define the precise meaning of
“dist(M , M ′) = d” lead to different kinds of offsets:

• vertex offsets: The distance of corresponding vertices mi, m′
i

equals a constant d, which does not depend on the vertex.
• edge offsets: The distance of corresponding parallel edges (actu-

ally, lines which carry those edges) does not depend on the edge
and equals d.

• face offsets: The distance of faces (actually, planes which carry
faces) is independent of the face and equals d.

Discrete Gauss images. If p is a point of a smooth surface and n
is the unit normal vector there, then p′ = p + dn would be a point
of an offset surface at distance d. If p,p′ are given, we can recover
the unit normal vector by n = (p′−p)/d. If M ′ is an offset mesh
of M we can mimick this construction and define a discrete Gauss
image mesh S := (M ′−M )/d, whose vertices si = (m′

i−mi)/d
can be regarded as discrete normal vectors.

Proposition 2 Consider a mesh M , its offset mesh M ′ at distance
d, and define the Gauss image mesh S = (M ′ − M )/d. Then the
following is true:

1. M ′ is a vertex offset of M ⇐⇒ the vertices of S are con-
tained in the unit sphere S2. If S is a quad mesh and no edges
degenerate, then M has a vertex offset if and only if M is a
circular mesh, i.e., each face has a circumcircle.

2. M ′ is an edge offset of M ⇐⇒ the edges of the Gauss image
mesh S are tangent to S2.

3. M ′ is a face offset of M ⇐⇒ the faces of the Gauss image
mesh S are tangent to S2. A mesh has a face offset if and only
if it is conical, i.e., the faces around a vertex are tangent to a
cone of revolution.

So in all three cases we have the equivalence dist(M , M ′) = d
⇐⇒ dist(S ,o) = 1, which means that the vertices, or the edges,
or the faces of S are at distance 1 from the origin.

Proof: The equivalence dist(M ′, M ) = d ⇐⇒ dist(S ,o) = 1
is elementary. The statements about circular and conical meshes
are reviewed in [Pottmann and Wallner 2007]. �

This relation between a pair of offset meshes M , M ′ and the Gauss
image mesh S is illustrated by Figure 8. Proposition 2 has an im-
portant consequence: If the mesh M has an offset mesh at constant
vertex/edge/face distance, then every mesh parallel to M has this
property. This is because the Gauss image mesh S ∈ P(M ) can

S2

S

M ′ = M + dS

M

Figure 8: A mesh M with an edge offset mesh M ′ at distance d
has a parallel mesh S = (M ′ −M )/d whose edges are tangent to
the unit sphere S2. The faces of S intersect S2 in a circle packing,
cf. Section 3.2.

be used to construct an offset not only for M , but for any further
mesh in P(M ). Another observation will be important later: We
can first construct a mesh whose vertices/edges/faces are at distance
1 from the origin. Then any mesh M ∈ P(S) has offset meshes
M ′ = M + dS .

3.2 Meshes with edge offsets

We are interested in meshes which have edge offsets (EO meshes)
because they can be built with beams of constant height meeting at
the nodes in a geometrically optimal way (see Figure 6). Proposi-
tion 2 mentioned that a mesh M has an edge offset mesh, if there is
a mesh S parallel to M whose edges are tangent to the unit sphere.
The following paragraphs deal with the interesting mathematical
theory of EO meshes, with a focus on the geometry of S .

Proposition 3 If a mesh M has an edge offset M ′, then for each
vertex mi of M , the edges emanating from mi are contained in a
cone of revolution Γi. The node axis Ai spanned by corresponding
vertices mi ∈ M , m′

i ∈ M ′ is the axis of the cone Γi.

Proof: The statement about cones is true for the mesh M if and
only if it is true for at least one mesh in P(M ) which does not have
zero edges (because corresponding edges are parallel). It is thus
sufficient to show it for the Gauss image mesh S = (M ′ −M )/d,
where d = dist(M , M ′). According to Proposition 2, the edges
of S are tangent to the unit sphere S2 (see Figure 8 and especially
Figure 9). Obviously, all lines emanating from a vertex si which
touch S2 lie in a cone of revolution eΓi, so the statement is true for
S . Consequently it is true for M . The axis of eΓi passes through
the origin, so it is parallel to the vector si. It follows that the axis
Ai of the cone Γi associated with the vertex mi contains the point
m′

i = mi + dsi. �
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Figure 9: A Koebe polyhedron and related circles and cones.

EO meshes and Koebe polyhedra. A mesh S with planar faces
whose edges e touch S2 in points te (a so-called Koebe poly-
hedron) has very interesting geometry [Bobenko and Springborn
2004; Ziegler 1995]. Each face F intersects S2 in a circle cF which
touches the boundary edges of F from the inside (see Figures 8 and
9). For any vertex si, the vertex cone eΓi touches the unit sphere in a
circle csi . Obviously the edge e has a point of tangency te with S2,
and two circles of either type pass through te. Circles of the same
type touch each other, and circles of different types intersect at 90
degrees. The computation of such circle patterns via minimization
of a convex function is known [Bobenko and Springborn 2004] and
even possible on-line [Sechelmann 2006]. Closed Koebe polyhe-
dra are uniquely determined by their combinatorics up to a Möbius
transformation (i.e., a projective mapping which transforms S2 into
itself). For open polyhedra there is an additional degree of freedom
for each boundary vertex.
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Figure 10: Creation of the mesh M ′ which Figure 1 is based on. This example demonstrates that meshes with properties interesting from the
mathematical viewpoint can yield aesthetically pleasing results; and that a designer has access to additional degrees of freedom by applying
some nonstandard geometric transformations. Here we start with the Koebe polyhedron S and construct the mesh M which is of constant
mean curvature with respect to S (the Gauss mapping σ : M → S has an overfolding, with the inflection circle on M corresponding to
the apparent boundary of S ). Applying a Laguerre transformation results in the EO mesh M ′, which has the Gauss image mesh S ′. This
L-transform was found interactively.

3.3 Designing with EO meshes

The edge offset property is rather restrictive. Quad-dominant mesh-
es which have vertex or face offsets (i.e., the circular and conical
meshes), are capable of approximating arbitrary shapes. This is no
longer the case with EO meshes.

Computing EO meshes from Koebe polyhedra. We may use the
following general procedure when designing a mesh M with the
edge offset property: First we determine the combinatorics of the
mesh and compute a Koebe polyhedron S with that combinatorics,
using the procedure of [Bobenko and Springborn 2004]. The mesh
M we are looking for is then found within the space P(S), e.g. by
optimization. An example of this is shown by Figure 11, where S
is a Koebe polyhedron with pentagonal faces and M is found by
minimizing the fairness functional fLaplacian defined by

fLaplacian(M ) =
X

vertices mi

`
mi −

1

deg(mi)

X
mj∈star(mi)

mj

´2
, (3)

under appropriate sign constraints for the factors λij of Equ. (1)
(see the figure caption for more details). Once an EO mesh is found,
we may apply geometric transformations to it – this is the topic of
the next paragraph. It is obvious that these methods are not useful
for geometric modeling in the usual sense, but only for form finding
purposes.

Laguerre transformations of EO meshes. From the various
equivalent descriptions of Laguerre geometry [Cecil 1992], the fol-
lowing, which employs the spheres of R3 as basic elements, is per-
haps shortest: A sphere S with center (m1, m2, m3) and signed
radius r is identified with the point xS = (m1, m2, m3, r) ∈ R4.
We think of normal vectors of spheres pointing to the outside if and
only if r > 0. Points are spheres of zero radius. An L-transforma-
tion then has the form xS 7→ A · xS + a, where a ∈ R4 and A is
a 4× 4 matrix with AT JA = J and J = diag(1, 1, 1,−1). Every
Euclidean transform permutes the set of spheres and can be writ-
ten as an L-transform. Another simple example of an L-transform
(A = I4 and a = (0, 0, 0, d)) is the offsetting operation which
increases the radius by the value d. It is well known that the set
of spheres tangent to an oriented cone of revolution is mapped by
any L-transform α to a set of the same type [Cecil 1992]. Thus, an
oriented cone of revolution Γ becomes an entity of Laguerre geom-
etry: Take two spheres S1, S2 tangent to Γ and define α(Γ) to be
tangent to the spheres α(S1), α(S2). After these preparations we
can state:

Proposition 4 An L-transformation maps an edge offset mesh M
to another edge offset mesh M ′, if both are seen as the respective
collection of vertex cones Γi, Γ′

i according to Proposition 3.

The proof is not difficult, but exceeds the scope of this paper. We
use Proposition 4 for the modification of edge offset meshes. An
example is furnished by the mesh Figure 1 is based on; the trans-
formation we use is illustrated by Figure 10.

Possible shapes of EO meshes (quad and hex mesh cases).
For a mesh M with the edge offset property, the Gauss image mesh
S is a Koebe polyhedron. Bobenko et al. [2006] show that in case of
quad meshes, S is a so-called s-isothermic mesh and thus the mesh
M is a discrete variant of a curvature line parametrization whose
Gauss image is an isothermic curve network. Such “L-isothermic
surfaces” are mentioned by Blaschke [1929], but not much seems to
be known about their shapes. Likewise, the description of the pos-
sible shapes obtainable by quadrilateral EO meshes is an unsolved
problem at the present time.

Hexagonal meshes, which here is a synonym for meshes with pla-
nar faces and vertices of valence three, have better approximation
properties (cf. e.g. [Cutler and Whiting 2007]). In order to create
a hexagonal EO Mesh M which approximates a given surface Φ,
we could start with any Koebe polyhedron S which is a hexagonal
mesh (cf. Figures 10 and 18) and determine the vertices mi of M as
follows: Parallel translate the three planes which are adjacent to the
vertex si in the mesh S so that they touch Φ, and intersect them. By

M

S

Figure 11: Edge offset mesh of negative curvature. The mesh M
with pentagonal faces has a parallel mesh S whose edges are tan-
gent to the unit sphere, so M has the edge offset property. Cor-
responding edges of M and S are parallel, but the correspondence
is orientation-reversing for some edges. The general pattern which
edges keep their orientation and which do not is indicated by the
schematic diagram. The mesh S is a Koebe polyhedron; M was
found by minimizing the Laplacian energy of Equation (3) in the
space P(S), under appropriate sign constraints on the coefficients
λij of Equation (1).



construction, M has the edge offset property and the planes which
carry its faces touch Φ. Unfortunately it is apparently difficult to
guarantee that M is a nice polyhedral surface without self-intersec-
tions, so much work remains to be done before such a procedure
can be used as an effective design tool. The present paper does not
enter the topic of approximating general surfaces with hex meshes.

4 Optimizing support structures

In view of Proposition 2 we cannot expect a general mesh with
planar faces which is neither circular nor conical to have vertex off-
sets or face offsets. The class of meshes with edge offsets is even
more restricted, as discussed in Sections 3.2 and 3.3. Therefore
the problem of constructing offsets at approximately constant dis-
tance is important. This section first discusses such approximate
offset meshes from a theoretical viewpoint, and then shows how
to compute them by minimizing a quadratic function in the space
P(M ). We also treat the problem of finding a mesh with planar
faces which approximates a given shape in the first place. This
completes the processing pipeline from shape to mesh, and further
to support structure. The last part of this section deals with more
complex optimization problems.

4.1 Approximate offsets

The mesh M ′ which is parallel to the mesh M is said to be an ap-
proximate offset of M , if M ′ = M + dS , where S ∈ P(M ) is a
mesh which approximates the unit sphere. We say that the distance
of M ′ from M is approximately constant, and that S is an approx-
imate Gauss image of M . As there are different kinds of (exact)
Gauss image anyway, we will drop the attribute ‘approximate’ and
simply speak of a Gauss image. The vertex si of S corresponding
to a vertex mi of M is considerd as an approximate normal vector
for the vertex mi. Then the approximate offset at distance d has
vertices mi +dsi, which is directly analogous to the previous nota-
tion (see Figure 12). We use the symbol σ : M → S for the natural
correspondence between the meshes M and S (σ is the Gauss map-
ping). The computation of an approximate Gauss image for a given
mesh with planar faces is discussed in Sections 4.2 and 4.3 below.

S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M )S = σ(M ) M + dSM + dSM + dSM + dSM + dSM + dSM + dSM + dSM + dSM + dSM + dSM + dSM + dSM + dSM + dSM + dSM + dS

M

mj

mj + dsj

si

sj

mi
mi + dsi

Figure 12: This figure illustrates how we assign a geometric sup-
port structure to a given mesh M and thus make it buildable with
optimized nodes and controlled beam heights. Optimization in the
spaceP(M ) yields a parallel mesh S approximating the unit sphere
S2, thus defining offsets M ′ = M + dS at approximately constant
distance d. Here S has an overfolding due to a change in the sign
of curvature in M , and is contained in the layer between radii 0.98
and 1.04.

4.2 Offset meshes by optimization in P(M )

We approach the problem of computing offsets at approximately
constant distance as follows: For a given mesh M we must find a
mesh S ∈ P(M ) which approximates the unit sphere (S is a Gauss

image of M ). We can convert this problem into minimization of a
quadratic functional: For each face F , we have its normal vector
nF , and a vertex mi(F ) ∈ F . For each vertex mi, we estimate a
unit normal vector eni. The vertex of S corresponding to the vertex
mi is denoted by si. We set up the functionals

ffaces =
X

faces F

(nF · (si(F )−nF ))2, fvert =
X

vertices mi

(si − eni)
2,

and minimize a linear combination of ffaces, fvert, and the fairness
functional fLaplacian of Equation (3). The aims fvert → min and
ffaces → min express the requirement that indeed the mesh S is an
(approximate) Gauss image of M . Results are shown by Figures 12
and 13. Also the processing pipeline described in Section 4.3 uses
this construction (cf. Figure 14). We may assign a low weight to the
fairness term for S , as a lack of fairness for S is hardly noticeable
in the support structure (Fig. 14d). It may be more important that
beam heights are approximately constant.

4.3 A processing pipeline from shape to beam layout

Section 4.2 describes how we can find, for a given mesh M with
planar faces, an approximate offset, which can be used e.g. for the
definition of beams of approximately constant heights. This section
considers also the problem which in the overall processing pipeline
comes earlier: How to find a mesh which has planar faces and ap-
proximates a given shape.

Liu et al. [2006] compute a quad-dominant mesh with planar faces
for a given surface by optimizing a mesh which follows a network
of conjugate curves (of which Figures 14, a–c show some exam-
ples). Obviously the angle of intersection of such curves is im-
portant for the quality of the mesh, but for negatively curved sur-
faces it is not guaranteed that a network of conjugate curves has
only transverse intersections. The special case of principal curva-
ture lines has an intersection angle of 90◦ throughout the network.
However, we would like to have more degrees of freedom at our
disposal when choosing the curve network.

Figure 14 illustrates our approach to this problem. We apply an
affine transformation α to the given surface, compute principal cur-
vature lines for the transformed surface, and transform them back
with α−1. Conjugacy of curves is invariant with respect to affine
transformations, and the intersection angle of the resulting curves
is close to 90◦ if α is close to the identity transformation. So we
are able to create a number of suitable curve networks simply by
choosing different affine mappings (see Figures 14, a–c).

We then lay out a quad-dominant mesh along a curve network
which fits the design intent best, e.g. has few singularities, or has
the singularities in the right places (we choose Figure 14c). This
mesh is optimized such that its faces become planar, using the
procedure employed by Liu et al. [2006]. Having computed the
mesh M , we next need to find a support structure with beams of
approximately constant height. This is done by finding a mesh
S ∈ P(M ) which approximates S2, using the minimization pro-
cedure described in Section 4.2. A result is shown by Figure 14d.
The geometric support structure which is bounded by the meshes
M and M ′ = M + dS is illustrated by Figure 14e.

4.4 Other ways of optimization

Combined optimization of mesh and Gauss image. Section 4.2
discussed the problem of computing a geometric support structure
– or an approximate Gauss image S – for a given mesh M , and in
that section we described how to solve that problem by quadratic
optimization in the space P(M ). Here we go one step further and
optimize both M and S at the same time.



(a) (b) (c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 13: This figure illustrates that finding a support structure according to the method of Section 4.2 can be done with little change in the
original mesh. (a) a mesh M created by subdivision. (b) In order to create a geometric support structure with nice offset properties, we first
follow [Liu et al. 2006] and make the mesh conical by perturbing vertices. As the intersection angles of mesh polylines in M are far from 90
degrees, the optimized mesh deviates much from M . (c) If M is optimized to become planar, not necessarily conical, the deviations from the
original mesh are small. (d) We apply our procedure for creating a support structure with approximately constant beam heights.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

S

(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)

Figure 14: Meshing and construction of a support structure with optimized nodes for a given architectural freeform design. (a)–(c). A study
of different conjugate curve networks is performed. We lay out a quad mesh M along the network in (c) and use the method of [Liu et al.
2006] to optimize M such that its faces become planar. M is shown in subfigure (e). (d) We recompute a Gauss image S of M which
approximates the unit sphere S2. (e) S leads to a support structure with optimized nodes and approximately equal beam heights for M .

The purpose of this computation is to design a mesh which has off-
set or curvature properties useful for architectural design. We know
that any such mesh has to approximately follow a network of prin-
cipal curves. We start with a mesh with this property and set up
an optimization problem as follows. We consider the functionals
fclose,1 :=

P
i dist(mi, Φ)2 and fclose,2 :=

P
i ‖si‖2, which ex-

press proximity of the vertices of M , S to their respective reference
surfaces Φ, S2; further, the functional

fpar :=
X

edges mimj

‖ mi −mj

‖mi −mj‖
× (si − sj)‖2,

which expresses parallelity of meshes M and S ; the fairness func-
tionals fLaplacian(M ), fLaplacian(S) according to Equation (3); and
the functional fdet of [Liu et al. 2006] which expresses planarity of
the mesh M . We then use a penalty method to minimize a linear
combination of the functionals above. Other functionals may be in-
cluded. An example which includes a functional aiming at constant
mean curvature is presented in Section 5 (Figure 19).

Methods of optimization and numerics. The solution of the
nonlinear optimization problems which arise when minimizing the
functionals above, under the side condition of planarity of faces
and parallelity of meshes, usually is difficult. We have employed a
penalty method analogous to the mesh optimization procedure de-
scribed by [Liu et al. 2006]; actually the problems to be solved in
the present context are similar to that paper. In order to minimize
a functional F under k different constraints G1 = 0, . . . , Gk = 0,
we consider the auxiliary minimization problem λF +

P
µjG

2
j →

min: For stable convergence, λ has a higher value at the beginning,
and tends to zero as optimization progresses. The unconstrained
minimization problem λF +

P
µjG

2
j → min can effectively be

solved by the Gauss-Newton method with LM regularization [Kel-
ley 1999]. In our case, F is a linear combination of fclose,1, fclose,2,
fLaplacian(M ), fLaplacian(S), while the constraints are given by fdet

and fpar. This method usually requires user interaction when bal-
ancing the weights of the individual functionals.

Translating the Gauss image. We want to mention a simple fact
which nevertheless has an interesting application: If S is a Gauss
image for the mesh M , then formally any translate S ′ = S + x
is a valid Gauss image, simply because it was never specified how
well S ′ must approximate the unit sphere, and meshes S ′ and M
are parallel. It is a different question if we can still call the vertices
of S ′ normal vectors of the polyhedral surface M without violating
geometric intuition, but if x is small, we surely can (see Fig. 15).

Figure 1 shows an architectural design based on a mesh M and two
different geometric support structures: One is defined by a Gauss
image mesh S whose edges are tangent to S2. It is used to create
the supporting beams (then of constant height). The other one is
based on the Gauss image S ′ = S +x, and is physically realized as
shading elements. The vector x has been found by subjecting it to
optimization: We select parallel light (for particular sun positions)
and compute x such that the total area of shadow cast by the shading
elements is maximal, under the constraint ‖x‖ ≤ 0.99.

M M

Figure 15: These two systems of ‘approximate normal vectors’ of
a mesh M are defined by a Gauss image S , whose edges are tan-
gent to S2 (left image), and the Gauss image S + x (right image).
They correspond to the two different support structures employed
in Fig. 1.



5 Curvatures in meshes with planar faces

It has been observed many times that properties of smooth or dis-
crete surfaces which are interesting from the mathematical view-
point often lead to very aesthetic figures [Sullivan 2005]. This is
even more important in our current work which focuses on archi-
tecture and design. Therefore the aim of this section on curvatures
is not only to create geometric functionals useful for smoothing and
other optimization tasks, but to lay the foundations for interactive
design and form finding tools. We want to demonstrate that the ear-
lier theory developed in the paper, namely offset properties and sup-
port structures based on parallelism, is compatible with the second
one, namely the definition of curvatures based on mesh parallelism.
Not only they are compatible, but surfaces of constant or vanishing
mean curvature, as well as other special surfaces, serve as basis of
architectural designs with functional properties.

Preparation: Mixed areas and Steiner’s formula. Assume that
P = (p0, . . . ,pk−1) and Q = (q0, . . . ,qk−1) are planar poly-
gons whose corresponding edges are parallel (‘parallel polygons’).
Then also the polygon P + dQ = (p0 + dq0, . . . ) is par-
allel to P and Q. We are interested in the oriented area of
P + dQ, with the orientation defined by a normal vector n of
the plane which contains P . Its computation is based on the for-
mula 1

2
det(b− a, c− a,n) for the area of a triangle with vertices

a,b, c, lying in a plane with unit normal vector n. It follows that
area(P + dQ) = 1

2

Pk−1
i=0 det(pi + dqi,pi+1 + dqi+1,n), with

indices modulo k. This implies that

area(P + dQ) = area(P ) + 2d area(P, Q) + d2 area(Q), with

area(P, Q) =
1

4

k−1X
i=0

[det(pi,qi+1,n) + det(qi,pi+1,n)]. (4)

The computation so far is well known – area(P, Q) denotes the
mixed area of polygons P and Q in the terminology of convex ge-
ometry [Schneider 1993].
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Figure 16: Parallel polygons with vertices pi, qi, and pi + dqi.

Curvatures of faces. Curvatures in polyhedral surfaces can be de-
fined in different ways. One may be guided by the idea that a dis-
crete surface approximates a smooth one, and define a curvature
by way of numerical differentiation. Another method is to observe
relations between curvatures and geometric properties in smooth
surfaces, and to postulate an analogous relation for the discrete
case, like in the definition of the mean curvature vector by Polthier
[2002a] as the gradient of the area functional for triangle meshes.
In our setting we consider the variation of surface area when pass-
ing from a surface Φ to an offset surface Φd: Each point x ∈ Φ is
moved to x + dn(x), where “n” is the field of unit normal vectors.
Then the surface area changes according to

area(Φd) = ∫Φ
`
1− 2dH(x) + d2K(x)

´
dx, (5)

with H as mean and K as Gaussian curvature (Steiner’s formula).
In the discrete case the change in area exhibits a quite similar be-
haviour:

Proposition 5 The surface area of the (approximate) offset M d =
M + dS of the mesh M w.r.t. to the Gauss image mesh σ(M ) = S
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Figure 17: Construction of simple minimal quad meshes via paral-
lelity of diagonals. The meshes M , S carry ‘horizontal’ polylines in
horizontal planes and ‘meridian polylines’ in planes through a fixed
axis. S , M are parallel – note corresponding faces Qij and Q∗

ij –
but the correspondence is orientation-reversing. The mean curva-
ture of the face Qij in the mesh M with respect to the Gauss image
S vanishes if and only if diagonals in Qij are parallel to diagonals
in Q∗

ij (13 ‖ 2∗4∗ and 24 ‖ 1∗3∗).

obeys the law

area(M d) =
X

F: face of M

(1− 2dHF + d2KF ) area(F ), with (6)

HF = −area(F, σ(F ))

area(F )
, KF =

area(σ(F ))

area(F )
. (7)

Here each face F of M is oriented such that area(F ) > 0.

Proof: It is sufficient to show (6) and (7) for a single face F . This
follows directly from (4) by comparing coefficients. �

When we compare Equations (5) and (6), we see that it is natural
to define mean curvature and Gaussian curvature of the face F by
the quantities HF and KF given by (7). This definition of curva-
tures does not refer to the mesh M alone, but implicitly assumes
that the Gauss image mesh S is given. The values of HF and KF

behave exactly like they should also in other respects. One is that
the Gaussian curvature is the quotient of areas between Gauss im-
age and original surface, as in the smooth case. Another one is that
for most faces F , meaningful principal curvatures κ1,F , κ2,F can
be defined, such that

HF = (κ1,F + κ2,F )/2, KF = κ1,F κ2,F .

The curvatures κ1,F , κ2,F are the roots of the polynomial f(x) =
x2 − 2HF x + KF ; they exist if and only if

H2
F −KF ≥ 0.

We do not give details, but it is not difficult to show that this in-
equality is true whenever the face F , or its Gauss image σ(F )
is strictly convex. This follows from Minkowski’s first inequality
“area(P, Q)2 − area(Q) area(P ) ≥ 0”, which applies when both
P, Q are convex [Schneider 1993].

Meshes of constant mean curvature. Discrete surfaces of con-
stant mean curvature HF (cmc meshes) or discrete minimal sur-
faces, which have HF = 0, are interesting not only from the purely
mathematical viewpoint, but also from the viewpoint of aesthetics.
The condition that a mesh M has constant curvatures with respect
to a Gauss image mesh S is not as rigid as one might expect, and it
is possible to construct a great variety of such meshes (both quadri-
lateral and hexagonal), even meshes with the edge offset property.

First we discuss minimal meshes. The condition of minimality
means that for all faces F , we have HF = 0, and consequently
the parallel polygons F and σ(F ) have vanishing mixed area. It is
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Figure 18: A discrete minimal EO mesh. The mesh M is con-
structed from the Koebe polyhedron S by the conditions that M
and S are parallel meshes, and that the mixed areas of all corre-
sponding faces vanish. Both M and S have rotational symmetry.
The correspondence between M and S is orientation-reversing for
some edges; the sign pattern is schematically illustrated at right.

Figure 19: This design with convex faces is composed from
pieces of discrete cmc surfaces obtained in different ways. The
junction piece (quad mesh) was originally computed as a tri-
noid (cf. [Grosse-Brauckmann and Polthier 1997; Schmitt 2004])
by the applet at [Schmitt 2003]. After combined optimization
of mesh and Gauss image in order to achieve planarity of faces
and HF = const ., we arrive at a planar quad mesh which has
HF ∈ [0.966, 1.048]. The bulging pieces are hexagonal EO
meshes whose mean curvature with respect to a previously chosen
Koebe polyhedron as Gauss image is exactly constant.

easy to show that in the case of parallel quadrilaterals Q = 1234
and Q∗ = 1∗2∗3∗4∗, we have

area(Q, Q∗) = 0 ⇐⇒ 13 parallel 2∗4∗, 24 parallel 1∗3∗ (8)

(see Figure 17). It is worth noting that this parallelity of diago-
nals in corresponding quads also occurs in the Christoffel duality
constructions of [Bobenko and Pinkall 1996] and [Bobenko et al.
2006], which has gone unnoticed so far. For this reason we would
like to call parallel meshes Christoffel transforms of each other, if
corresponding faces have vanishing mixed area.

We should note that not every mesh S has the property that there ex-
ists a mesh M which is minimal with respect to S as Gauss image.
In the following we therefore restrict ourselves to special cases.

Example: minimal and cmc quad meshes of simple geometry. For
quad meshes M and S of ‘generalized rotational symmetry’ as de-
scribed by Fig. 17, we can construct a minimal mesh M for given
S by starting with one vertex, say the one denoted by “1”, and com-
puting the faces of M step by step. They are uniquely determined
by the requirements of parallelity of edges and parallelity of diago-
nals. The construction of a cmc mesh M from S is quite analogous
to the minimal surface case; instead of the condition HF = 0 we
have now HF = const (we omit the details) Surfaces of revolu-
tion where the vertices of the Gauss image mesh S lie in the unit
sphere (and therefore M is a circular mesh), have been considered
by [Hoffmann 1998].

Example: Hexagonal meshes of rotational symmetry which have
vanishing or constant mean curvature. The previous example con-
cerning quad meshes extends to hex meshes as well, if we restrict
ourselves to meshes with rotational symmetry (see Figures 10, 18,
and 19). We do not provide details here, because they are not dif-
ficult and would take up too much space. We only mention that by
splitting symmetric hexagons into quads we can treat this case in a
way very similar to the previous example.

6 Discussion

Limitations. With highly nonlinear optimization problems, there
is in general no guarantee that optimization achieves success and
is not stuck in a local minimum. Therefore it is very important to
know beforehand which meshes can be optimized towards the goal
under consideration. E.g. if a quad-dominant mesh is to become
planar by moving vertices as little as possible, then this mesh must
originally have been aligned with a conjugate network of curves
[Liu et al. 2006]. We did not experience problems when the orig-
inal mesh was chosen appropriately. However, this issue is very
important for applications in practice. We also emphasized on eas-
ier optimization tasks like optimization in P(M ) for computing a
support structure, which exhibit quite tame behaviour.

The complexity of the modeling task shown by Figure 14 is rather
high. It is hard to satisfy all design requirements if the underlying
reference surface is not very smooth. This problem becomes even
more severe if boundary conditions have to be met. As a conse-
quence it would be difficult to find a geometrically optimal support
structure for data sets like the Stanford bunny, for instance. Fortu-
nately, architectural designs tend to be smoother.

Implementation and run times. The most computationally ex-
pensive tasks in the present paper are nonlinear optimization proce-
dures, for which we employed a Gauss-Newton method, and com-
puting a basis of P(M ) which is done by SVD. SVD runs well
even if it needs a long run time, because we estimate the dimen-
sion of P(M ) beforehand. The run times of code on a 2 GHz PC
with 1 GB RAM are as follows: Computation of principal curves
in Fig. 14a–c (not a topic of the present paper) and meshing costs
25 seconds each. The resulting mesh M has 649 vertices and 568
faces. Planarization costs 3 seconds, and a basis of P(M ) is com-
puted with SVD in 4.4 minutes; the Gauss image of Fig. 14d takes
0.68 seconds to compute. As to Fig. 19, simultaneous optimiza-
tion of the mesh and its Gauss image towards H = const. needs 3
minutes.

Conclusion. We have presented mesh parallelism as a basic meth-
od for the solution of problems which occur in the design and con-
struction of architectural freeform structures. It allows us to find an
optimized beam layout with torsion free nodes, even after the de-
sign phase when we are just given a mesh with planar faces. More-
over, it is a key tool for modeling meshes with special offset proper-
ties. We introduced the new class of edge offset meshes which yield
the cleanest possible nodes, if built with beams of constant height.
Our results apply to EO quad meshes as well as to the more flexible
pentagonal and hexagonal meshes. As a contribution to aesthetic
design and a component for geometric optimization algorithms, we
introduced a novel discrete curvature theory which is based on par-
allel meshes. In our examples we have pointed to invariance under
certain transformations, which turned out to be of great practical
value (blending of meshes, Laguerre transformations).

Future research. There is plenty of possibilities for future re-
search, and we want to mention just a few directions. The discrete
curvature theory presented here possesses many more extensions
of the classical theory than could be described here. They will be



published in a forthcoming paper. A particularly interesting topic
is the new type of Christoffel duality which applies to exactly those
planar quad meshes whose diagonal meshes can be brought into
static equilibrium. This will result in new insights on discrete min-
imal surfaces and cmc surfaces, and thus deliver new interesting
shapes useful in particular for architectural design. Future research
should also address aesthetic meshing of given shapes, for both the
quad mesh and hex mesh cases. In general, the interactive design of
meshes with functional properties relevant to architecture is a topic
of high interest.
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