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Figure 1: Non-static architecture: A flexing structure composed of many instances of the same flexible 6-snake of circular arcs,
each of which in turn is composed of equal pieces. This fact is very relevant for the cost of manufacturing. In the center column
one can see two stages of this flexion: two different snakes which happen to be at the same instant of their own respective flexion
are highlighted. Right: The motion of the flexible kinematic chain of arcs which this structure is based on (see Section 4.2).

Abstract
We discuss the theory, discretization, and numerics of curves which are evolving such that part of their shape, or
at least their curvature as a function of arc length, remains unchanged. The discretization of a curve as a smooth
sequence of circular arcs is well suited for such purposes, and allows us to reduce evolution of curves to the
evolution of a control point collection in a certain finite-dimensional shape space. We approach this evolution by
a 2-step process: linearized evolution via optimized velocity fields, followed by optimization in order to exactly
fulfill all geometric side conditions. We give applications to freeform architecture, including “rationalization” of
a surface by congruent arcs, form finding and, most interestingly, non-static architecture.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—

1. Introduction

Several problems in geometry processing are kinematic in
nature, meaning that they have to do with the motion of rigid
bodies. An example is the unsolved problem of deciding if
a given surface can be generated by the motion of a certain
curve. This paper is concerned with a question of this kind,
namely the evolution of curves such that their curvature (as a
function of arc length) is unchanged. If the curve in question
is treated as an object of differential geometry, of course such

an evolution does not have anything to do with the motion of
rigid bodies, but for numerical and algorithmic treatment, we
discretize a curve as a smooth union of circular arcs, and let
it evolve such that the single pieces move in a rigid manner.

Remarkably these discrete curves, which we call arc
snakes, or shortly snakes, have applications in freeform ar-
chitectural design. Some are already known, such as the ones
shown by Figure 2 (pipe-like covering of facades) and Fig-
ure 3 (easy construction of substructures from repetitive el-

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



M. Barton, L. Shi, M. Kilian, J. Wallner, H. Pottmann / Circular Arc Snakes and Kinematic Surface Generation

Figure 2: Tubular and laminar covering of a freeform hull
based on the evolution of a curve (photo of a mock-up for a
real-world project).

ements). The most interesting application, however, is non-
static architecture.

Previous work. There is quite some work on the approxi-
mation of smooth curves by a smooth sequence of arcs (“arc
splines”). We refer to the many publications by D. Walton
and D. Meek, e.g. [WM95], and also to [SACJ09], [Leo01].
It should be mentioned that the term snake was coined by
[KWT87] and meant an evolving energy-minimizing curve.

For flexible elements in freeform architecture we refer
to current academic work [Tac10], and practical work by
Hoberman Associates [Hob]. Flexible structures in general
have fascinated people for a long time. Notable examples of
flexible surfaces composed of rigid elements are polyhedral
surfaces of Voss type [Sau70], or foldable Miura-Ori struc-
tures [Miu85]. For the geometric foundations of kinematics
we refer to [PW01] and [BR79]. For kinematic surfaces in
general we refer to the textbook [PAHK07].

Figure 3: A roof surface from the Louvre’s Islamic Art exhi-
bition is covered by constant radius arcs, which are however
not congruent [BPK∗11].

From the viewpoint of architectural geometry, work re-
lated to this paper has been done by [BPK∗11], who cover
surfaces by families of circular arcs whose radius is constant
(whose size however is not, see Figure 3). Another example
of patterns of curves with special curvature properties is the
1-parameter families of geodesics studied by [PHD∗10].

Contributions and overview. This paper is structured as
follows: We begin with a general discussion of curves, dis-
crete curves (i.e., snakes), and their evolution (Section 2).
• In Section 3 we show how to compute arc snakes and
manipulate them via a first or second order kinematic anal-
ysis. We can design surfaces swept by a moving snake with

various options of guiding the motion of the snake, e.g. mov-
ing in close proximity to a given reference surface, or being
guided by rails.
• Section 4 discusses our two main applications. One is ra-
tionalization in freeform architecture (Section 4.1): Surfaces
traced by the movement of a snakes are efficiently manufac-
turable because their geometry is represented by many in-
stances of a few different arcs. This especially applies to the
manufacturing of formworks for concrete shells.
• Finally, Section 4.2 deals with non-static architecture like
actively changing roofs or facades, based on kinematic link-
ages formed by arc snakes of suitable length.

2. Evolution of smooth and discrete curves.

This section discusses curves and a discrete version of curves
which is useful for handling curves with prescribed curva-
ture. Further we look at the evolution of such curves. We
start with discretization and then proceed to general curves.
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Figure 4: Left: Torsion angle τ1 between arcs. Right: A
snake consists of N arcs and is defined by control points pi
and contact points ki. At each interior contact point ki there
is a torsion angle τi.

Discrete curves and snakes. For the purposes of this paper,
a discrete curve is a smooth union of N circular arcs, which
will be called an arc snake, or snake for short. Much like
a quadratic B-spline curve which consists of parabolic arcs,
such a snake is encoded by control points {pi}, such that
the i-th arc touches the edges pi−1pi and pipi+1 in contact
points ki−1 and ki, respectively. If the curve under consid-
eration is closed, indices are taken modulo N. Otherwise we
require p0 = k0 and pN+1 = kN (see Figure 4).

This collection of points is not arbitrary, since the two seg-
ments emanating in a control point pi which are both tangent
to the i-th arc must be of equal length:

‖pi−ki−1‖= ‖pi−ki‖, i = 1, . . . ,N. (1)

Curvatures of snakes. Generally a curve in space which is
traversed by unit speed defines two functions of arc length:
the curvature which is the angular velocity of the rotation
of the tangent, and the torsion which is the angular velocity
of the rotation of the osculating plane. For a snake, the cur-
vature is piecewise-constant along each arc, its value being
the inverse of the arc’s radius. The movement of the oscu-
lating plane is not continuous, so it makes sense to consider
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an amount “τi” of torsion to be concentrated in the contact
points ki, see Fig. 4.

Evolution of snakes. The goal we have in mind is the evo-
lution of a curve such that its curvature, as a function of
arc length, remains unchanged, see Fig. 5. Letting a snake
evolve with this side condition means that each arc moves
as a rigid body, and the smooth join of successive arcs is
maintained. The torsion angles τi change during evolution.

Figure 5: Evolution of a snake within a surface, modeling a
curve whose total arc length and also whose curvature as a
function of arc length remains unchanged. See Example 3.1.

Assume that the initial position of a snake is given by con-
trol points p0

i together with contact points k0
i . A new position

of the snake is determined by the new positions pi of its con-
trol points alone, since the location of the new contact points
ki follows from the distance constraint (1). We write

x0 = (p0
0, . . . ,p

0
N+1), x = (p0, . . . ,pN+1) (2)

for initial position and new position of control points. The
evolution of the pi’s is constrained by the condition that each
arc moves in the manner of a rigid body:

‖pi−p j‖= ‖p0
i −p0

j‖, i− j = 1,2. (3)

This amounts to 2N + 1 distance constraints which have to
be fulfilled by the point x ∈ R3(N+2).

The shape space of an evolving snake. In the language of
robot kinematics, a snake evolves like a serial hinge mech-
anism, the hinges being associated with the torsion angles.
The number of degrees of freedom experienced by an evolv-
ing snake is therefore N + 5 which results from 6 d.o.f. for
the position of the snake in space, plus the N−1 torsion an-
gles which function as shape parameters.

We get the same result if we start counting from the 3(N +
2) coordinates of control points and subtract the 2N +1 dis-
tance constraints of (3) (this also means that when formu-
lated in terms of control points, a snake’s evolution is de-
scribed by a bar and joint mechanism.)

Anyway we conclude that the shape space of a snake, i.e.,
the set of all admissible “x”, is an algebraic variety, generi-
cally of dimension N +5, in R3(N+2). That shape space will
be denoted byM. A similar discussion shows that for closed
snakes the shape space is N-dimensional, provided N ≥ 6.

Evolution velocities. Later we need the individual speed ṗi
of a control point pi while a snake is evolving smoothly with
time t. Differentiating the square of the constraints (3) yields

〈pi−p j, ṗi− ṗ j〉= 0, i− j = 1,2. (4)

Conversely, if the evolution velocity satisfies (4) for all times
t, then the corresponding distances of control points remain
unchanged. The collection of velocities,

ẋ = (ṗ0, . . . , ṗN+1)

represents a tangent vector of the shape space M. If a
snake’s evolution is not fully specified, but only the tangent
vector ẋ at time t is known, then the state of the snake at time
t +h approximately equals x+h ẋ, but this tangential evolu-
tion (Fig. 6) is only a 1st order approximation to a true evo-
lution, as the constraints (3) are obeyed only in a linearized
manner.

M

xx+hẋ
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pi +hṗi

M

x0

x1

x3

p0
i

p3
i

Figure 6: The shape space viewpoint of snakes. The right
hand images show control polygons and the corresponding
arc snakes; the left hand column illustrates shape space.
Top: Tangential evolution of snakes. The collection x =
(p0, . . . ,pN+1) of control points is updated by x 7→ x + h ẋ.
This first order evolution is not exact and causes the control
polygon to leave the shape spaceM. Bottom: Exact evolu-
tion requires backprojection ontoM, see Sec. 3.2.

Evolution of a snake within a surface. In the course of
collecting useful properties of snakes we now consider the
evolution of a snake such that it remains as close as possible
to a given reference surface Φ (see Figures 7 and 5 for exam-
ples). It turns out that we can expect three essential degrees
of freedom for the evolution of an open snake.

This is seen by the following argument: An evolution of
a snake is characterized by contact points and also the mid-
points of arcs moving tangentially to Φ. Since those points
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Figure 7: Curves of constant
curvature, determined by ini-
tial point and tangent vector
(visualizing the three degrees
of freedom stated by Prop.
2.1). The curvature increases
from left.

can be expressed as linear combinations (with constant co-
efficients) of the pi’s, the evolution is actually characterized
by p0, . . . ,pN+1 moving tangentially to Φ. This amounts to
N +2 conditions. Since unconstrained evolution has already
been shown to have N + 5 d.o.f., this leaves 3 d.o.f. for evo-
lution constrained to Φ.

Evolution of a general curve within a surface. The previ-
ous paragraph established that evolution of a snake within a
surface has 3 degrees of freedom. The same d.o.f. count oc-
curs for rigid motions in R2, and for the motion of geodesics
in surfaces [dC76]. Below we show the interesting fact that
the evolution of a curve within a surface has also 3 degrees of
freedom if the curvature is prescribed (see Fig. 7, this can be
seen as a point in favour for using snakes as discrete curves).

Proposition 2.1. For a given surface Φ, curvature function
κ(s) ≥ 0, initial point c(s0) and initial unit tangent vector
cs(s0) there exist generically and locally two curves c(s) in
Φ which are parametrized by arc length s and which fit both
the initial values and the given curvature function.

In conclusion, evolution of a curve with invariant curva-
ture function has 3 degrees of freedom.

Proof. We show that once we have decided if the sought-af-
ter curve makes a left turn or a right turn, it obeys a 2nd order
differential equation. It thus smoothly depends on the initial
conditions, which amount to 2 d.o.f. for the location of the
initial point c(s0) and one d.o.f. for the unit tangent vector
cs(s0) (using subscript notation for differentiation w.r.t. s).

To find this equation we observe that geodesic curva-
ture κg, normal curvature κn, and curvature κ of the curve
c obey κ

2
g + κ

2
n = κ

2 and ctang
ss = κgJcs, where J is rota-

tion about +90 degrees in the tangent plane, and the su-
perscript “tang” indicates the tangential component of a vec-
tor. Further, κn depends on cs only [dC76]. This implies
ctang

ss = ±
√

κ2−κn(cs)2Jcs, where the sign decides if the
curve makes a left turn or a right turn.

It would be nice if a curve could evolve such that its cur-
vature remains constant, and at the same time the evolution
velocity of each point is orthogonal to the curve. Unfortu-
nately this is not possible in general:

Proposition 2.2. Assume an evolution of curves c(t)(s) in
time t, where all curves are traversed with unit speed and the

evolution velocity is perpendicular to the curve. Then these
curves are geodesics.

Proof. We use a dot to indicate differentiation w.r.t. evolu-
tion time t. We observe the conditions 〈cs,cs〉 = 1 of unit
speed and 〈cs, ċ〉= 0 of orthogonality and differentiate them
w.r.t. arc length s and also w.r.t. evolution time t. This yields
〈css,cs〉 = 0, 〈ċs,cs〉 = 0, 〈css, ċ〉+ 〈cs, ċs〉 = 0, adding up
to css being orthogonal to the independent tangent vectors ċ
and cs. This property characterizes geodesics [dC76].

These remarks conclude the section on definitions and
properties of snakes and their evolution. We proceed to Sec-
tion 3, which deals with implementation and algorithms.

3. Implementation and numerics of snake evolution.

Our numerical approach to the evolution of a snake is based
on two basic ingredients:

• One is to compute evolution velocities, which enables us
to approximately do one evolution step. Obviously this
computing of velocities depends on the application.

• The other one is to optimize control points which are not
quite admissible in order to make them so (see Fig. 6).

We let snakes evolve by iterating between these two proce-
dures. If evolution is constrained to a surface, then a third
ingredient is important for finding snakes in the first place:

• Initialization: computing snakes of prescribed curvature
which are constrained to surfaces.

compute ve-
locities (§3.1)

initialize (§3.3)

optimize (§3.2)

compute ve-
locities (§3.1)

optimize (§3.2)

Iteratively evolving snakes
constrained to surfaces

Iteratively evolving snakes
without surface constraint

Figure 8: Snake evolution flowchart

From the abstract viewpoint of shape spaces (see Figure 6),
finding velocities is the computation of tangent vectors of
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the shape spaceM, while optimization amounts to applying
closest-point projection ontoM to points which almost, but
not quite, lie inM. The above-mentioned three ingredients
are discussed in the following subsections. In any concrete
example we may have to employ them in a different order,
e.g. starting with initialization, and subsequently performing
evolution, alternating between projection and the computa-
tion of velocities, see Fig. 8.

3.1. Computing evolution velocities.

We describe how to compute evolution velocities ẋ = (ṗ0,
. . . , ṗN+1) for various applications, starting with the evolu-
tion of a snake which is constrained to a surface.

1st order evolution of snakes in surfaces. We have already
discussed that for all practical purposes, evolution of a snake
within a surface is characterized by single evolution veloc-
ities ṗi being tangential to Φ. We also make the model as-
sumption that the speed of evolution is given or at least sug-
gested by the application at hand: Around the control point
pi, it is desired that the snake moves sideways with the ve-
locity di (measured orthogonal to the current position of the
snake). We find a suitable ẋ by minimizing an appropriate
target functional

Fgliding(ẋ) = Ftang(ẋ)+λFoffset(ẋ), (5)

where Ftang penalizes deviation from the reference surface
andFoffset strives to achieve the desired sideways speed. The
factor λ > 0 steers the importance of Foffset. We let

Ftang(ẋ) = ∑i〈ni, ṗi〉2, Foffset(ẋ) = ∑i(〈ṗi,di〉−di)
2.

Here ni is unit normal vector of Φ at the footpoint of pi, and
di is a unit vector tangential to the surface and orthogonal
to the snake. Minimization of Fgliding is performed within
the linear space of admissible ṗi’s which obey (4). Note
that even if no sideways velocities are specified, we can use
Foffset as a regularizer, by choosing λ� 1, di = 1.

Further objectives when modeling evolution. Controlling
the speed of evolution via Foffset is not the only aim we
might have. By adding appropriate terms to the target func-
tional (5) we achieve various properties of the evolution:

• We might require the velocities ṗi to be close to given
vectors ṗ0

i , or to planes with normal vectors ni. This is
done by adding Fprox(ẋ) = ∑i wi‖ṗi− ṗ0

i ‖2 + w̃i〈ṗi,ni〉2
to (5). Here weights wi, w̃i encode the importance which
is attached to the individual proximity conditions.
• Our aim might be that velocities are orthogonal to the

snake (i.e., ṗi is orthogonal to the plane carrying the arc
belonging to ṗi, which is assumed to be spanned by basis
vectors e+

i ,e−i ). We do that by augmenting (5) by

Fortho(ẋ) = ∑i〈ṗi,e+
i 〉

2 + 〈ṗi,e−i 〉
2.

Prop 2.2 states that orthogonality can in general not be
achieved, but anyway Fortho may act as a regularizer.

• We might require the differential distance constraint (4)
also for control points further apart, by adding

Frot-min(ẋ) = ∑i〈pi−pi+3, ṗi− ṗi+3〉2.

The name ‘rotation minimizing functional’ is not directly
related to the well known rotation minimizing frames as-
sociated with space curves [Bis75], but to the fact that
Frot-min→ 0 causes the snake to move as rigidly as possi-
ble, with torsion angles changing minimally.

3.2. Closest-point projection onto shape space.

Similar to the text around Equation (2), we assume a snake is
given and has control points x0 = (p0

0, . . . ,p
0
N+1). The corre-

sponding shape spaceM is the set of possible control points
of snakes which are reachable via evolution of the given
snake. It is defined by the constraints (3).

Assume further that a control point collection y is given
which does not lie in M. We wish to find x ∈ M closest
to y. This closest point projection of ambient space ontoM
is formulated as least squares optimization of a nonlinear
target functional F , constructed so as to penalize deviation
of x from y, and to penalize violation of (3):

F(x) = Fgeom(x)+µ‖x−y‖2→min, where

Fgeom(x) = ∑i− j∈{1,2}
(
‖pi−p j‖−‖p0

i −p0
j‖
)2

.

p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5

ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5ṗ5

Figure 10: Evolution of a snake via optimization of veloc-
ity vectors ṗi at each discrete time step. Evolution updates
control points by the rule pi 7−→ pi +h ṗi, followed by back-
projection onto the shape space. For more details on this
particular figure see Ex. 4.1.

Using closest point projection for evolution. Assume that
we have, from Section 3.1, a procedure for computing a
collection of evolution velocities ẋ for a control point col-
lection x. How do we now move x in direction of ẋ? The
simplest way is by choosing a time increment h, updating
control points by x 7−→ x + h ẋ, and applying one round of
closest-point projection onto the shape space according to
the formulae in the previous paragraph. Now we can com-
pute velocity vectors again and iterate (see Figs. 6, 10).
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(a) (b) (c) (d)

Figure 9: Illustration of the initialization procedure of Section 3.3. (a) Dense polyline approximating a curve of constant
curvature in a given mesh. (b) Initial guess at control points for a snake which follows that curve. (c) The result of optimization
is a snake with 4 arcs. (d) An analogous procedure produces a 12-arc snake of constant curvature.

3.3. Initialization

This section discusses how to find a snake of given curvature
which lies in a surface Φ, which itself is given as a triangle
mesh. This is a rather lengthy procedure. Our discussion first
deals with the smooth case, then with a numerical integration
scheme on the triangle mesh Φ, and finally describes how to
make use of the optimization techniques described above.

Computing curves of prescribed curvature in surfaces.
Consider a parametric surface x(u,v) and a curve c(s) =
x(u(s),v(s)) in that surface. For the following discussion,
subscripts indicate differentiation. The point c(s) is to travel
with unit speed, i.e., ‖cs‖2 = 1. This condition expands to

‖usxu + vsxv‖2 = 1. (6)

For such curves the curvature simply equals the length of the
2nd derivative, i.e., κ = ‖css‖. The chain rule yields

κ
2 =

∥∥ussxu + vssxv +u2
s xuu +2usvsxuv + v2

s xvv
∥∥2

. (7)

Our numerical scheme discretizes the curve
(u(s)

v(s)

)
as a poly-

line in the uv parameter domain. We show how to iteratively
compute its vertices. Suppose vertices

(ui
vi

)
,
(ui+1

vi+1

)
are already

known. The parameter increment hi between these two in-
stances of the curve is not yet known, but in any case the
discrete derivative equals

(us,i
vs,i

)
= 1

hi

(ui+1−ui
vi+1−vi

)
. Thus we can

determine hi by requiring that
(us,i

vs,i

)
fulfills (6).

The derivative
(us,i+1

vs,i+1

)
is also unknown, but fulfills (6) and

is related to 2nd derivatives via
(uss,i

vss,i

)
= 1

hi

(us,i+1−us,i
vs,i+1−vs,i

)
. We

plug this relation into (7). Obviously, (6) reduces Equation
(7) to a linear equation for the unknowns

(us,i+1
vs,i+1

)
. Omitting

the details, (7) describes a straight line whose distance from
the origin goes to zero as hi → 0. Since (6) describes an
ellipse centered in the origin, we conclude that for small hi
we have 2 solutions (in accordance with Prop. 2.1). Which
one to choose depends on our choice if the curve is supposed
to make a left hand turn or a right hand turn. This procedure
is now iterated. Once an entire sequence of parameter values
ui,vi is known, we let ci = x(ui,vi) and we are done.

Computing curves of prescribed curvature in meshes. In
order to apply the procedure described in the previous para-
graph to a triangle mesh we choose a local coordinate system
in each face and fit a cubic polynomial to a mesh-neighbour-
hood of that face. Thus we replace the mesh by a parametric

surface and can apply the procedure described above as long
as we work over the face under consideration. After leaving
that face, we repeat the procedure for the next face, and so
on (see Fig. 9a).

Fitting snakes to curves. Having computed a numerical
polyline representation {ci} of a curve of prescribed cur-
vature, we now fit a snake to that curve. S We want to ap-
proximate the given polyline {ci} by a snake consisting of
N congruent arcs, where the j-th arc has radius r j, with 1/r j
as an average curvature of the original curve in the interval
being replaced by the j-th arc.

Uniform sampling of the given polyline yields initial
guesses of N − 1 interior contact points k j (see Fig. 4),
and the polyline’s unit tangent vectors t j there yield initial
guesses for the control points, as follows: The distance d j
of control point and contact point is known from the arcs’
radius r j and length L j as d j = r j tan L j

2r j
, so both k j−1 +

d jt j−1 and k j−d jt j should result in the same control point.
In our computations we initialize the control points p j as the
arithmetic mean of these expressions (Figure 9b).

A subsequent round of optimization applied to x =
(p0, . . . ,pN+1) achieves the exact desired geometric proper-
ties of the control points (see Fig. 9c; very similar to Section
3.2), as well as proximity of the snake to the input data. In
order to measure that deviation we introduce the center o j of
the j-th arc which is a fixed linear combination of the control
points; and we use the notation c j,k for those samples of the
given polyline which belong the j-th arc. Summing up, we
minimize Fgeom(x)+νFprox(x), where

Fgeom(x) = ∑i− j∈{1,2}(‖pi−p j‖−dintended
i j )2,

Fprox(x) = ∑ j
1

# samples ∑k(‖o j− c j,k‖− r)2.

3.4. Improving Opimization

Computing evolution velocities as described in Sec. 3.1 al-
lows us to perform a first order update, followed by a closest-
point projection. It is not difficult to improve this first order
method and do a second order update of the form

x 7−→ x+h ẋ+
1
2

h2ẍ,

which is based on a velocity vector ẋ and an acceleration
vector ẍ. Such a second order update allows greater time
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steps. To achieve this, we differentiate (4):

〈pi−p j, p̈i− p̈ j〉+‖ṗi− ṗ j‖2 = 0, i− j = 1,2. (8)

Given control points x = (p0, . . . ,pN+1) and evolution ve-
locities ẋ = (ṗ0, . . . , ṗN+1), this is a linear system for the
2nd derivative vectors ẍ = (p̈0, . . . , p̈N+1).

For the evolution of snakes constrained to surfaces we
now show how to choose ẍ subject to conditions (8). This
is done by solving an optimization problem, which involves
the following data:

• closest-point projection π onto the reference surface Φ,
• footpoints qi = π(pi +h ṗi),
• the tangent planes Tqi in those footpoints.

We minimize the target functional

F2nd(ẍ) = ∑i dist(Tqi , pi +h ṗi + h2

2 p̈i)2 (9)

+α∑i dist(qi, pi +h ṗi + h2

2 p̈i)2 (α� 1)

within the linear space of solutions of the linear system (8).
Here the function dist() refers to the Euclidean distance
between the two arguments. The particular form of F2nd
is intended to penalize deviation from Φ in a nicely lin-
earized manner, but still allowing tangential movement. This
is achieved by measuring distances from tangent planes,
with a small regularizing contribution which involves dis-
tances from footpoints.

3.5. Examples

Example 3.1. Figure 5 shows the evolution of a closed snake
within the design surface of the Warszawa Lilium tower.
Evolution endeavours to keep the distance of successive po-
sitions of the snake constant, but this is of course not possi-
ble, since the snake’s arc length is also invariant. Evolution
works from the bottom upwards and stops when the devia-
tion from the reference surface exceeds a certain threshold.
This happens when the surface becomes too highly curved
to allow the snake to proceed.

Example 3.2. In order to visualize the kinematics of a snake
on a surface and its 3 degrees of freedom of movement, we
fix one end point of a snake and let the snake glide on the
surface (by “rotation” around the fixed center). The result
looks just like Figure 7.

Example 3.3. Figure 11 shows open curves of constant cur-
vature (modeled by a snake) evolving along the outer offset
of the mesh shown in the figure (“Skipper Library” design
by Formtexx). For evolution, velocities have been optimized
using Foffset and Frot-min with weights 1 and 10, resp.

Example 3.4. Figure 12 illustrates the limitations of gliding
of a snake in a surface. The evolution is optimized such that
it is as rigid as possible, using Frot-min. One can observe that
not in all cases the snake is able to reproduce surface features
of high curvature, and deviates from the reference surface to
some extent.

Figure 11: Both figures show a curve of constant curvature
evolving along a mesh Φ (Ex. 3.3). The evolution is opti-
mized using the target functionals Frot-min. For regulariza-
tion, Foffset is also used (otherwise the successive snakes
would not cover Φ nicely).

Figure 12: Evolution of a snake within a surface (Ex. 3.4).
The evolution of these curves is as rigid as possible, and
curvature is unchanged. The reference mesh is rendered as
a transparent surface, one can observe to which extent the
evolution is able to reproduce the surface’s features.

Implementation details. The nonlinear optimization prob-
lems which occur in this paper are solved by a damped
Gauss-Newton with line search. Our linear solver uses
CHOLMOD for sparse Cholesky factorization [CDHR08].
As to the choice of weights λ,µ,ν,α: In this academic im-
plementation the weights were chosen manually. we used
λ = 0.1 (seems to be not critical) and µ = ν = 0.005 (higher
values won’t work). The value α in the distance term was
chosen as 0.01 (again, this is not critical and works just as
well with α = 0.001).

4. Applications

We have in mind mostly the application area of freeform ar-
chitecture. There are several different particular applications
where the concepts and algorithms developed in previous
sections play a role.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



M. Barton, L. Shi, M. Kilian, J. Wallner, H. Pottmann / Circular Arc Snakes and Kinematic Surface Generation

4.1. Efficient manufacturing of auxiliary constructions.

It has been observed before that approximating a shape by a
collection of circular arcs makes it possible to manufacture
that shape by using only simple elements [BPK∗11]. One
application of this is supporting elements which are not visi-
ble in the final building, either because they are inside some
outer skin, or they are present only during building construc-
tion (e.g. when realizing freeform shapes in concrete).

Previous sections demonstrated that we are typically able
to nicely cover the greater part of a given reference surface
by an evolving snake of constant curvature, see e.g. Fig-
ure 11. Such a covering would mean that we are able to
approximate the given design surface by a smooth surface
whose manufacturing is greatly simplified by the repetition
of a single curved element, namely an arc of constant radius
and length. We should mention that [BPK∗11] also deals
with the covering of a surface by circular arcs, but not with
arcs having the same length.

Surface generation with snakes. Functional architectural
design already takes manufacturing into account. The evo-
lution of snakes is a valuable tool in this respect, since it
allows us to generate surfaces which possess a simple in-
trinsic structure useful for manufacturing in the same ways
as mentioned by the previous paragraph, with the difference
that the entire surface is a priori generated in a kinematically
simple way.

Example 4.1. We can guide certain points along curves
(rails), by making evolution velocities equal to the deriva-
tives of these curves, using Fprox: In Figure 10 the snake’s
endpoints are guided along rails, and in addition Frot-min has
been used for the rotation-minimizing property. Guiding the
snake along a rail without requiring the rail to be an evolu-
tion path can also be done with Fprox: in each evolution step
we constrain the evolution velocity of the contact point to
lie in plane spanned by the tangents of snake and rail (see
Figures 13 and 15).

Example 4.2. Kinematic surfaces: In continuation of Ex-
ample 4.1 we consider a snake whose boundary runs along
rails such that the distance of boundary points is constant;
we have one additional interior guiding rail (see Figure 14).
Here the rotation-minimizing property actually makes all in-
stances at times ti of the snake congruent: instead of evolving
the initial snake until time ti we could simply move it by a
rigid body motion such that the boundary points match those
at time ti, and use the remaining degree of freedom of rota-
tion about the boundary to put the snake in a position where
it hits the interior guiding rail.

4.2. Flexible elements and non-static architecture.

Non-static architecture has great appeal and is a topic of cur-
rent interest, even if it appears that little of the many avail-
able results on mechanisms and flexible structures has been

Figure 13: Surface generation by snake evolution yields
shapes which are manufacturable using many instances of
a single curved element (shown here in yellow and white).
Here a snake evolves such that its boundary moves along 2
rails, while the snake itself glides in a manner tangential to
further guiding rails. The evolution is optimized towards the
rotation-minimizing property.

Figure 14: Kinematic surfaces, continuing Figure 13: Since
here we have only 1 interior guiding rail, the small num-
ber of constraints on the evolution lets optimization make
instances of the snake congruent.

Figure 15: Evolution of a snake using Fprox (in order to
guide 2 vertices along rails) and Foffset with a constant vec-
tor di pointing upwards, in order to achieve equal spacing.

systematically applied to architecture. We show how circular
arc snakes can be employed in creating flexing roofs.

We consider an arc snake consisting of N successive arcs,
constrained such that the arcs at the boundary are allowed
only one rotational degree of freedom, instead of the usual
six. We are left with (N + 5)− 10 degrees of freedom, and
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(a) (b)
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k1 k2

k5
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Figure 16: Arc snake which is the basis of non-static architecture. (a) 3 instances in time of a 1-parameter evolution of a 6-arc
snake with boundary constraints. (b) the same, together with the entire motion cycle. (c) The paths of the contact points during
evolution: k1,k5 are moving back and forth (but not in a synchronized manner), while k2,k3,k4 travel around a loop. This fact
is important for actuating the flexion.

in case we use 6 arcs, as illustrated by Figure 16, we get the
most interesting case of 1 degree of freedom. The following
text shows how to compute the flexion of this snake and how
to build non-static architecture from it.

Computing evolutions. A closer inspection of the flexion
of snakes constrained in this way – see Figure 16 – shows
that on a real-world model, the flexion cannot always be ac-
tuated by simply rotating the first arc: Here, A complete mo-
tion cycle of the snake causes the 1st arc simply to rock back
and forth. The same is true for the last arc, but the two rock-
ing motions are not synchronous. Figure 16c shows that only
the interior part of the snake does anything like a ‘rotation’.
However, we can make the snake move by driving either the
first or the last arc, and obviously we have to use less force if
we drive that arc which is moving faster than the other. This
observation is guiding our evolution algorithm:

0. As a preparation, choose whether to drive the snake by
the 1st or by the 6th arc, by letting i0 = 2 or i0 = 5. Fur-
ther choose which way to turn. We start from an admissi-
ble position x = (p0, . . . ,p7) of control points. Note that
control points p0,p1,p6,p7 are fixed during evolution.

1. The linearized distance constraints (4) together with the
conditions ṗ0 = ṗ1 = ṗ6 = ṗ7 = 0 define a 1-dimensional
linear space of possible velocities ẋ. Choose a solution
where ṗi0 has a prescribed magnitude, and from the 2
vectors with this property choose the one which points in
roughly the same direction as in the previous time step.

2. Perform 1st order evolution, combined with backprojec-
tion onto the shape space according to Section 3, with the
obvious additional constraints on the 1st and 6th arc.

3. Compare the angular velocites of the 1st and 6th arc: if
‖ṗi0‖< ‖ṗ7−i0‖, switch to the other end of the snake for
driving it (i.e., let i0 := 7− i0). Repeat from step 1 until
we reach a position we had before.

Surfaces from 6-arc snakes. We now go one step further
and imagine a sequence of snakes which are composed of the
same arcs, but which are at a different instance of its flexion,
see Figure 17. If we cause all snakes to flex simultaneously
we achieve a flexing series of arcs which e.g. constitute a
flexing roof structure such as illustrated by Figures 1 and 17.

Figure 17: Non-static architecture made from copies of the
flexing arc snake shown in Fig. 16, each in a different state of
its flexion. All snakes are actuated in a synchronous manner,
creating a wave-like effect. See also Fig 1.

Arc snakes as 6R linkages. A sequence of rigid bodies,
starting with a zeroth “fixed” system and 6 further ones, is
called a 6R kinematic chain, or 6R linkage, if each is con-
nected to the previous one with a hinge. Our 6-arc snakes are
just that, with hinge axes spanned by ki,pi+1 (i = 0, . . . ,5,
see Fig. 4); in addition the 6th arc is further constrained by
another axis of rotation passing through k6,p6. Since the in-
verse kinematic problem for 6R linkages is solved, one can
compute the position of arcs No. 1–5 from the position of
the 6th arc [HPS07]. Unfortunately this procedure is multi-
valued and of high algebraic degree, so it is not so useful for
obtaining an explicit description of the flexion of our snakes.

Singularities and design of moving snakes. A classifica-
tion of the types of motion which can possibly occur when
one of our 6-arc snakes moves, is beyond this paper. In or-
der get an impression, the interested reader is referred to
the classification of 4-bar mechanisms instead, see [Hun78].
The same is true for designing the desired shape of flexions,
where we cannot hope to have a systematic approach. A little
bit of guidance is offered by geometric knowledge:

A singular position of a 6R linkage means that actuating
the 6 d.o.f. of rotation yields not 6 but only 5 degrees of
freedom in its 6th element. It is well known that this occurs
exactly when the Plücker coordinates of rotation axes are
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linearly dependent [PW01], i.e., when

det
(

p1−k0 . . . p6−k5
k0× (p1−k0) . . . k5× (p6−k5)

)
= 0.

In this case we cannot hope to constrain the 6th arc in the
way we do without halting the flexion altogether; such singu-
lar positions must therefore be avoided. Being close to a sin-
gularity will likely produce interesting motions, with large
differences in the velocities of the individual arcs, such as
shown by Figure 18.

Figure 18: Experimenting with 6-arc snakes. Here two time
instances of the motion of an appropriately constrained 6-
arc snake is shown, overlaid on the surface swept by the
complete motion cycle. A path of a joint is shown in yellow.

Directions of Future Research

An obvious direction of further research is to study the
problem of automatic segmentation of a given surface into
parts which can be nicely covered by an evolving curve
of constant curvature (the analogous problem for geodesics
has been solved by [PHD∗10]). Another difficult geometric
problem is an immmediate extension of our work: Finding
out if a given surface can be generated by a single sweep of
a curve, moving as a rigid body. Extensions of this question
are the approximation with sweep surfaces, and the segme-
nation of surfaces into parts which can be well approximated
in this way. Another direction of research is a more system-
atic approach to the design of snakes which have 1 d.o.f.
and which exhibit interesting flexions. Here one can proba-
bly draw on the extensive literature on 6R linkages.

Conclusion

We have studied geometric and numerical properties of arc
snakes which constitute an effective discretization of smooth
curves if one is interested in evolution of curves such that
the curvature is unchanged. We have shown applications in
functional architectural design, e.g. for efficiently manufac-
turable underconstructions, and for surface generation. Fi-
nally we discussed the flexions of 6-arc snakes and their use
for non-static architecture.
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