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Abstract

Smooth freeform skins from simple panels constitute a challenging topic arising
in contemporary architecture. We contribute to this problem area by showing
how to approximate a negatively curved surface by smoothly joined rational
bilinear patches. The approximation problem is solved with help of a new
computational approach to the hyperbolic nets of Huhnen-Venedey and Rorig
and optimization algorithms based on it. We also discuss its limits which lie
in the topology of the input surface. Finally, freeform deformations based on
Darboux transformations are used to generate smooth surfaces from smoothly
joined Darboux cyclide patches; in this way we eliminate the restriction to
surfaces with negative Gaussian curvature.
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1. Introduction

The growing interest of contemporary architects in freeform structures poses
new challenges to digital design. In this area, there are numerous open prob-
lems, one of them being the production of smooth architectural freeform skins
(surfaces). To make them affordable, they have to be composed of simple and
easily manufacturable panels (patches). The manufacturing cost of a panel
depends on the material and the process to produce it, which includes the
production of the mold.

Let us look at an example: To produce a curved glass-fibre reinforced con-
crete panel, a mold is produced from styrofoam. The cheapest way of mold
production is to use heated wire cutting, which can only produce ruled surfaces.
Hence ruled panels are an advantage. Ruled surfaces are also advantageous
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for the manufacturing of form work on which the concrete is poured, for sub-
structures and for timber constructions.

Hence, as a contribution towards fabrication-aware design, we ask ourselves
how to compose smooth surfaces from simple ruled patches. The simplest
case, smooth surfaces from bilinear patches, has been investigated recently
by Kiferbock and Pottmann [1]. The resulting surfaces possess rather strong
shape restrictions as they represent discrete versions of affine minimal surfaces
previously introduced by Craizer et al. [2].

Can we do more with rational bilinear patches? It is clear that smoothly
joined negatively curved patches will only generate models of negatively
curved surfaces S. It turns out that the only remaining restriction is on the topol-
ogy of S: the surface S has to be simply connected. As in many other instances
of geometric problems in freeform architecture [3], we are again led to discrete
differential geometry: Useful discrete representations of negatively curved sur-
faces are discrete asymptotic parameterizations, namely quad meshes with
planar vertex stars (A-nets; see e.g.[4]). Huhnen-Venedey and Rorig [5] could
show that simply connected A-nets (whose extraordinary vertices are of even
valence) can be extended to smooth surfaces via rational bilinear patches (un-
der a certain mild condition on the way how the quad strips in the mesh are
twisted, which for a sufficiently fine A-net is satisfied anyway). They call the
resulting structures hyperbolic nets (H-nets), as they are typically composed of
hyperboloid patches (but may contain patches of hyperbolic paraboloids as
well).

In the present paper, we further elaborate on hyperbolic nets by providing
a new elementary derivation: While Huhnen-Venedey and Rorig [5] work in
the Pliicker quadric model of line geometry, we just use the rational Bézier
form and thus also contribute to a simple computation based on standard
CAGD methods. Moreover, we add a proper algorithmic treatment of surface
approximation with H-nets, formulated within a global geometric optimization
framework.

1.1. Previous work

Paneling freeform skins is an important issue in architecture. Eigensatz et al.
[6] presented an optimization framework which allows one to achieve a good
balance between production cost and skin quality, the latter being evaluated
through the size of gaps and the kink angles occuring at adjacent panels. Ideally,
these measures should be zero, but this is in general not achievable, unless the
geometry and the panel seam layout are special.

Negatively curved smooth surfaces which are composed of ruled surface
strips, have been addressed by S. Flory et al. [7, 8, 9]. This work does not
employ rational bilinear patches. It can be seen as a computational approach
to semidiscrete asymptotic parameterizations, which have been investigated
from a mathematical viewpoint by J. Wallner [10].

As we deal here with a smooth extension of a mesh, we point to the related
problem of extending the vertices of a circular mesh (quad mesh all whose



quads possess a circum-circle) smoothly with Dupin cyclide patches [11]; a
computational treatment of these cyclidic nets along with generalizations aim-
ing at substructures in freeform architecture, has been presented by Bo et al.
[12]. The theoretical beauty of the approach by Huhnen-Venedey and Rorig [5]
lies in the use of the Pliicker quadric model, which reveals the close relation
to cyclidic nets, in accordance with the famous line-sphere transformation of
S. Lie (which is of theoretical interest, but not directly applicable as it is not real).
Independently from our work, Huhnen-Venedey and Schief [13] developed an
affine approach to H-nets which is related to ours and which they use for the
study of Weingarten transformations.

While cyclidic nets are always arranged along curvature lines, we may ask
for generalizations by replacing Dupin cyclides by Darboux cyclides [14]. Like
Dupin cyclides, the latter also contain families of circles (up to six!), which
is an advantage for production on the large architectural scale. As a first step
towards the most general Darboux cyclide patchworks we address here a simple
computation from hyperbolic nets via so-called Darboux transformations.

1.2. Contributions and overview

The contributions of the present paper are as follows:

1. We provide a simple CAGD proof of the main result of Huhnen-Venedey
and Rorig [5] along with formulae for computations based on the rational
Bézier form (Section 2).

2. We show how to approximate a given negatively curved surface with a
smooth union of rational bilinear patches, through a numerical optimiza-
tion algorithm which combines A-net generation and its smooth extension
with ruled quadric patches (Section 3).

3. We apply Darboux transformations to obtain smooth surfaces from Dar-
boux cyclide patches; these surfaces are no longer restricted to negative
Gaussian curvature (Section 4).

2. An elementary approach to hyperbolic nets

2.1. Some basics on rational bilinear patches

A rational bilinear patch with control points by, ..., bz and positive weights
Wy, ..., ws is given by the parametric representation

(1—u)(1 —v)webg + u(1 — v)wiby + (1 — u)vwsbs + uvw,b,
(1—uw)(A —v)wy + u(l —ov)wy + (1 — u)vws + uvw,

x(u,v) =

(1)

with (u,v) € [0,1]?. One can obtain it from a bilinear patch x(u,v) in R*, with
vertices b; := (w;b;, w;), by mapping it into 3-space with help of the canonical
projection (x1,...,x4) — (x1/X4,X2/X4, x3/x4). The patch lies on a ruled quadric
and carries two families of straight line segments (rulings), namely the u— and
v—isoparameter lines.



Figure 1: A rational bilinear patch lies on a ruled quadric. The frame points f;
divide the edges in the inverse ratio of the corresponding vertex weights (left).
Without loss of generality, one can set 3 of the four weights equal to 1 (right).

Let us first discuss why it is sufficient to set three of the four weights equal to 1,
say
wo =wy =wsz =1, 2)

without losing the possible variety of quadric patches with a given boundary
polygon by...bs. One way of proving this uses the so-called frame points
which are the canonical projections of the edge midpoints of x. These points
fo = x(1/2,0), 1 = x(1,1/2), £ = x(1/2,1),£5 = x(0,1/2), are expressed as
fi := (wib; + wit1biy1)/ (Wi + wiy1) (with indices taken modulo 4). They divide
the boundary edges in the inverse ratio of the corresponding weights (see Fig. 1,
left). Frame points on opposite edges are connected by straight line segments
which lie entirely on the patch x (isoparameter lines u = 1/2 and v = 1/2,
respectively). A given ruled quadric patch has infinitely many rational bilinear
parameterizations: We can choose a ruling in each of the two families as those
connecting the frame points, and this determines the weights and hence the
parameterization of the patch. Let us choose rulings so that two frame points
on adjacent edges, say fo, f3, are edge midpoints (Fig. 1, right). This implies
wo = w1 = ws, and as only the ratio of weights matters, we can set these three
weights to 1. Hence we are left with a single “shape parameter”, the weight w,,
in accordance with the fact that there is only a one-parameter family of ruled
quadric patches through a given skew quadrilateral with vertices by, ..., bs.
Note that w, = 1 characterizes a patch of a hyperbolic paraboloid; otherwise
the patch lies on a one-sheeted hyperboloid.

While it is convenient for some of our discussions to have three weights
equal to 1, we also need to convert to the general case: Two rational bilinear
patches with the same control points and weights w; and w;, respectively, define the



same quadric patch, if and only if

/ /
wowy Wy, 3)
wws  wywy

This follows easily from projective geometry, namely the fact that the cross
ratios determined by control points and frame points on one pair of opposite
edges of the control quad have to agree (then they also agree on the other edge
pair),

Cr(bl,bz, f1, fll) = Cr(bo,b3, f3, fé),
which is equivalent to (3) and once again shows that we can set three of the
weights equal to 1. If the value

Wow2
w1ws

W= 4)
approaches 0 or oo, the patch exhibits increasing curvature along a diagonal
of the control quad, and in the limit it becomes a pair of triangles. As this is
very undesirable for our applications, we want W to be sufficiently close to 1,
which we will later use in our optimization algorithm. Note that the value W
depends on the selection of a diagonal in the quad. The product of weights of
the vertices of this diagonal are in the numerator. Depending on the diagonal
selection, the value of the shape parameter is W or 1/W.

2.2. Smoothly joining two rational bilinear patches along a common edge

Figure 2: Two rational bilinear patches, joined smoothly along a common edge,
together with auxiliary planes used in Proposition 1 and its proof.

Using the notation from Fig. 2, we prove a simple condition for smoothly
joined rational bilinear patches:

Proposition 1. Let us consider two rational bilinear patches with vertices bg, b1, bz, bz
and by, bz, by, bs, and weights w; of b; equal to one, except weights w, and wy. Then
these patches join smoothly along the common edge bobs if the vertex stars at the



common vertices are planar, i.e., points by, b1, bz, bs and by, by, b3, by are coplanar,
and if the following condition holds,

wo det(b30, b50, bzo) = W4 det(b30, blg, b40), with sz = bl‘ — b] (5)

Proof. It is well known that two ruled surfaces join smoothly along a common
ruling as soon as we have agreement of tangent planes at three points of that
ruling. Two of these points are by, bz, and so we just need to ensure a common
tangent plane at a third point. We choose the frame point (by + b3)/2 and get
the condition

b1 +w;by; by + bz bs +wsbs by + b3

det(bao, 4= =~ =5 T, 2

) =0.

This equation can be rewritten as
det(bsg, b1g + b1z + wabas + wybag, bsg + bsz + wibasz + wybsg) = 0,

and by adding (1 + w»)bzg to the 2nd vector and (1 + wy)bsg to the third, we
arrive at
det(bsg, 2b1g + 2wy bag, 2bsg + 2wsbyg) = 0.

Due to the planarity constraints at by and bs, we have det(bs, big, bsy) =
det(bsg, bao, bso) = 0 and this reduces the condition to equation (5). ¢

Remark 2. Positive weights w,, w4 for the smoothly joined patches require
equal sign of the two determinants det(bsg, bso, bap) and det(bsg, b1g, bao) (called
equitwist condition in [5]). Let us denote the tangent planes of the vertex stars
at by and b3 by T and T3, respectively. Then, a practically useful net will have
(i) b1 and bs on different sides of the common edge bybs (inside plane Tj) and
(if) b2 and by on different sides of bobs (inside plane T3); the latter implies that
b, and by are on different sides of Ty, and thus the sign condition is satisfied.
Hence, ensuring positive weights does not cause any problems in the practical
computations discussed below.

Remark 3. For general weights w;, we obtain in view of (3) the following con-
dition for a smooth connection,

wyws det(bsg, bso, bao) = wiws det(bsg, big, bao). (6)

We can nicely rewrite this condition in terms of the shape parameters W defined
in (4). Selecting the diagonal bgb, for the left patch, we define the shape
parameter W, := wow,/wiws. Selecting the diagonal byby for the right patch,
we have W, := wyws/wsws. Then, (6) can be rewritten as

Wr _ det(bso, bso, bao)
W, det(bsp, bio, bao)
Hence, any two smoothly joined pairs of quadric patches have shape param-

eters with a constant ratio, W, : W; = W/ : W;, which is determined by the
control points alone.

(7)



2.3. Smooth extension of an A-net
We allow extraordinary vertices v (with planar vertex star) in an A-net, but
note that they must be of even valence. This is so, since the quads assembled
around a vertex v have their free vertex (the one which is not connected to v by
an edge) alternately on different sides of the tangent plane T at v (see Remark 2).
We are now in a position to provide a simple proof of the main result of
Huhnen-Venedey and Rorig [5].

Theorem 4. Any simply connected A-net whose interior vertices are of even valence
and which satisfies the equitwist condition (cf. Remark 2) possesses a one-parameter
family of smooth extensions to a hyperbolic net (patchwork of smoothly joined rational
bilinear patches).

b7 b6

b —/b,

Figure 3: Smoothly joined rational bilinear patches, assembled around a com-
mon vertex.

Proof. We arbitarily fill a patch into one quad of the A-net and then obtain
the others through application of the smoothness condition (5). As we have
a simply connected A-net, there are no global closure problems. Hence, it is
sufficient to prove consistency around vertices. At a vertex by of even valence
n, we have to ensure that successive patches P; and P;;; meet smoothly,

wy; det(baiy1,0, b2it30, b2io) = Waitr det(baiy1,0, b2ic1,0, b2it20), i=1,...,n, (8)

where indices are taken modulo 27 (see Fig. 3). Starting to fill in patch P,
ie., selecting w,, these smoothness conditions yield ws, wg, ..., w,, and then
the last patch P, must join smoothly with P; along boby. This amounts to the
closure condition

n n
H det(b2it1,0, b2it3,0,b2ip) = n det(b2i11,0, b2i—1,0, b2i420)- )
i=1 i=1
A determinant is a signed volume of a parallelepiped. Fixing an orientation of
the tangent plane Ty at vo, we consider the signed area A; of the parallelogram
defined by by;_1,, bai+1,0 and the signed distance d; of P;’s free vertex by; from
To. Then, we have

det(bait1,0, b2it30,b2ip) = Air1di, det(baiy1,0, b2im1,0, boitoo) = —Aidit1,



so that left and right hand side of (9) are equal, since # is even. ©

Remark 5. We have seen that there is a one-parameter family of smooth exten-
sions of an A-net. The shape parameters W; of these solutions are very closely
related: To see this, let us select diagonals in the A-net so that diagonals of
quads with a common edge meet at a common vertex of that edge. In view of
equation (7), we just need to compute one set of parameters, say (Wo, Wy,...).
Any other solution must have the same ratio of shape parameters and thus be
of the form A - (Wy, Wy, ...).

3. Approximating a negatively curved surface with smoothly joined rational
bilinear patches

In this section, we show how to approximate a simply connected, negatively
curved surface S (given as a triangle mesh) by a hyperbolic net H. This includes
a global optimization algorithm which we use to get high quality results for
problems where we have direct constructions, like extending an A-net to an
H-net. Moreover, optimization can be employed also in scenarios where we
have no theoretical guarantee that an H-net exists; this is illustrated by surfaces
S that are not of disk topology.

The computational pipeline of the approximation algorithm is as follows:

e Compute the frame field of asymptotic directions of the input surface
S and approximate S by a quad mesh Q which follows the asymptotic
directions (subsection 3.1).

e Optimize Q to a hyperbolic net H approximating S (subsection 3.2).

3.1. Approximating a negatively curved surface with a quad mesh guided by the frame
field of asymptotic directions

Initialization: computing the asymptotic directions. Given a triangle mesh S, we
firstly estimate the curvature tensor for the barycenter of each face by the 3rd
order jet fit of Cazals and Pouget [15] and compute the asymptotic directions
from it. These asymptotic directions can be considered as a special frame
field. Singularities of the asymptotic direction field occur at flat points of the
surface S, therefore they are also singularities of the principal direction field.
Singularities of a frame field are classified via the cross field of bisectors (in our
case, principal directions), and thus — as for the principal direction field — the
indices of the asymptotic field are integer multiples of 1/2 (for a proof, see e.g.
[16]). However, we can show even more (for a proof, see the Appendix):

Theorem 6. An ordinary flat point (i.e., a surface point whose tangent plane has 2nd
order contact with the surface, but not 3rd order contact) which lies inside a surface
region with negative Gaussian curvature, is a singularity of index -1/2 for the principal
field and the asymptotic field.



It has to be expected that higher order flat points can be seen as limit cases
of several nearby ordinary flat points. Since indices in an area add up, we
conjecture that the index is always negative. For rationalization of freeform
structures, the non-generic case is very unlikely to appear: According to Smyth
and Xavier [17], umbilics with an index different from +1/2 are critical points of
Gaussian curvature K, mean curvature H and, additionally, the 3-jet of H?-K
vanishes there.

Quad re-meshing guided by the asymptotic direction field. Once we have the asymp-
totic directions on each face, we re-mesh S to obtain a quad mesh Q whose edges
follow the asymptotic directions. We can make use of quad re-meshing algo-
rithms such as QuadCover [18] or mixed-integer quadrangulation [19]. In our
implementation, we adopt the method of Liu et al. [20], which is a version of
mixed-integer quadrangulation.

Since we aim at the optimization of Q towards an A-net that is extendable
to an H-net, we have to make sure that all inner vertices of Q have even
valence. As discussed above, a flatpoint of the input surface S will most likely
be an ordinary one (index -1/2) and thus lead to a vertex of valence 6. If our
conjecture that the index is always negative holds true, we would only get even
valences and thus be able to model all cases.

3.2. Optimization of a quad mesh towards a hyperbolic net

In a quad mesh Q which follows the asymptotic field, the vertex stars are
nearly planar, and thus Q serves as a good initialization for optimization to-
wards an A-net A and subsequently towards an H-net H. We proceed as
follows (see the flowchart in Figure 4):

1. Taking the quad mesh Q as input, we optimize it towards an A-net A,
i.e., we flatten its vertex stars while keeping fairness and proximity to the
reference surface S.

2. We extend the A-net A to a hyperbolic net H by computing the best
possible shape parameters, avoiding unnecessarily high mean curvature
in patches. This step has an explicit solution.

3. We fix the shape parameters and update mesh vertices by a global opti-
mization of the H-net H to achieve an even better curvature behavior and
satisfaction of constraints to higher precision. This step is iterated with
the 2nd step, as illustrated in Figure 4.

These steps are detailed below.

Step 1: Optimization towards an A-net. The quad mesh Q provides a good initial-
ization for optimization towards an A-net A, which we obtain by minimizing
the following objective function,

Fanet(b) = Zz’ Fp(bi) + Alpfairness + A2Fprox- (10)



[ Step 1: Optimization towards an A-net]

i

‘ Step 2: Extend the A-net to

a hyperbolic net with op-
timal shape parameters
v
Step 3: Global optimization of the
hyperbolic net to higher quality: vertex
update with fixed shape parameters

Figure 4: Overview of the optimization of a quad mesh (which follows the
asymptotic field of a reference surface) towards a hyperbolic net. We iterate
step 2 and step 3 several times to achieve better curvature behavior and to
satisfy constraints to higher accuracy. This is particularly important when we
apply the algorithm to surfaces which are not simply connected.

Here F,(b;) ensures planarity of the vertex star around vertex b, F fiuess aims
at high mesh fairness and Fj,,, makes sure that the mesh stays close to the
reference surface S.

The proximity term F. is composed of two parts: the squared distance
of each vertex b; to its closest point bl? on S and the squared distance of b; to
the tangent plane of S at b{. This yields a good approximation of the squared
distance function of S, especially in our case, where one is close to S and gives
the tangent plane distance a higher weight (see e.g. [21]).

Fairness is achieved with an energy Ffyjmess which is a sum of squares of
second or third order differences at vertices of all those mesh polylines which
should be fair; we follow Deng et al. [22].

To handle planarity of vertex stars, we have two options: (i) We can add to
each mesh vertex b; a vertex normal n; as additional variable and in this way
define the plane of the vertex star. Then F), is the sum of squared plane distances
of direct neighbor vertices (see [22]). (ii) Planarity of a vertex star is expressed
by planarity of a number of quads, where quad planarity is measured by the
squared diagonal distance d°. In fact, as a planarity measure of a quad by, ..., bs
we only employ the following approximation of d?,

Fquad(bOr bl/ bZ/ b3) == (n . d)z,

where n = (bp x bi3)/|bp2 x byz| is a unit vector orthogonal to both diagonals
and d := (bg + b, — b; — b3)/2. Obviously, to achieve planarity of a vertex star
of valence 11, we need to ensure planarity of n — 2 quads. This is the approach
taken in our implementation.

For numerical optimization, we use a Gauss-Newton method. At the end
of this step, we have an A-net A.

10



Step 2: Extend the A-net to a hyperbolic net with optimal shape parameters. Based on
the smoothness condition (7) and Remark 5, we can easily extend an A-net A to
an H-net H by computing the shape parameter W; of each patch P;. Starting at
an arbitrary patch Py to which we assign an initial parameter Wy = 1, we move
to neighboring faces and compute via (7) their shape parameters. This results
in an initial set of parameters (W), W9, ...). Any other shape parameter set is of
the form A - (Wg, W?, ...). To determine the optimal factor A, we try to achieve
patches whose shape parameter W; is not close to 0 or co. This is achieved by
minimizing
Fshupe = Z[(Wl - 1)2 + (% - 1)2]/

or equivalently
1
Fshapf?(/\) = Z[(AW? - 1)2 + (A_I/V? -

1

1)2]. (11)

Minimization of this univariate function amounts to computing the roots of a
quartic polynomial and thus this problem has an explicit solution.

Step 3: Global optimization of the hyperbolic net H to higher quality. This step
is taken for two reasons. (i) Numerical optimization is limited to a certain
accuracy and thus vertex stars in A are not fully planar, resulting in small
deviations from smooth patch joints in H. (ii) More importantly, the shape
parameters for H are computed from a given A, and there is hope that by
slightly changing ‘A we get an even better curvature behavior of the quadric
patches in H.

The entire global optimization of H alternates between Step 3, which up-
dates the mesh vertices (shape parameters fixed) and Step 2 (which updates
shape parameters, but keeps vertices fixed). Here, we only have to discuss
the update of vertices in /H. We want to jointly address the A-net property
and smoothness of patch joints (with fixed weights). For a smooth joint of two
patches along an edge, say by, b3, frame points f;, f; should be co-planar with
that edge, see Fig 2. Hence, we add an extra planarity term for the frame points.
Recall that the frame points are computed from the weights (shape parameters),
which are fixed in this step. Summarizing, the target functional is

Ffmme(b) = Fzmet (b) + /\3 Z] Fqugd(bé, fjl, bé, fé]l)
Here the superscript j is used to enumerate all adjacent quad faces (inner edges).

3.3. Results and discussion

We provide a number of examples which partially go beyond the limits of
the theory and demonstrate the capabilities and limitations of our optimization
framework.

11



Evaluation of smoothness. For visualization of surface quality, we provide a
sensitive analysis tool, namely isophotes. Isophotes are those curves on a surface
® along which the angle between the surface normal and a given fixed vector
is constant. Thus, isophotes are typically one differentiation class below that
of the surface. In particular, for a smooth (tangent plane continuous) surface
@, isophotes are continuous, but in general exhibit tangent discontinuities at
curvature discontinuities of @. Discontinuities in isophotes belong to tangent
plane discontinuities of ®.

Example 1: Simply connected surfaces. Results of our optimization on simply
connected surfaces are depicted in Figure 5. We can clearly see the smoothness
of the surfaces. In fact, isophotes do not exhibit large kinks, indicating that the
surfaces are in most parts nearly curvature continuous. This is also confirmed
by the mean curvature plots in Figure 6, which further show that only few
patches are highly curved at a diagonal.

Example 2: Going beyond simply connected surfaces. To test the limits of optimiza-
tion, we applied the algorithm to surfaces which are not simply connected. As
Figure 7 shows, the resulting H-nets of non-simply connected surfaces can be
reasonably smooth. The kink angles are shown in Table 1. These mild de-
viations from smoothness are visible in partially rather strong discontinuities
of isophotes. Figure 7 shows three minimal surfaces which are not simply
connected.

Example 3: Approximating a real data set. We use a part of a design by Zaha Hadid
Architects for the Cagliari Contemporary Arts Center project. The model is
basically a negatively-curved surface. However, small parts of the model are
nearly flat or of positive Gaussian curvature. We model it with a fixed boundary
curve, but allow a higher deviation from the reference surface in the areas of
non-negative Gaussian curvature. The resulting H-net is shown by Figure 8.

We also show the optimization details of our examples in Table 1. As
expected, the simply connected surfaces require a smaller number of patches
to achieve a good approximation, while the surfaces with multiple connections
need larger H-nets and still produce higher kink angles.

Table 1: Optimization details for our examples. Here, |F| and |V| denote
the number of faces and vertices, respectively; A1, A2, A3 are the weights in
the objective functions used for optimization, see 3.2; dyax and e, are the
maximum and mean value of kink angles at patch joints.

Examples |F| V| M As A3 Qpmax Cmean
mass spring surface 247 214 0.6 010 06 0417 0.046
minimal surface 1 139 168 0.86 0.08 0.60 0.439 0.063
minimal surface 2 84 105 086 0.12 065 0.044 0.009
minimal surface 3 754 840 056 0.03 060 6.101 0.400

catenoid 1320 1408 040 0.02 0.60 3.316 0.850
Schwarz surface 702 802 060 0.04 0.60 4.553 0.542
Cagliari model 1623 1741 0.76 0.02 0.80 4.322 0534
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Figure 5: H-nets approximating simply connected surfaces. Left: H-nets, show-
ing patches with some rulings. Right: Isophotes are continuous, confirming
smoothness of the surface composed of rational bilinear patches. From top to
bottom: “mass spring” surface, minimal surface 1 and minimal surface 2.

4. Smoothly joined Darboux cyclide patches via Darboux transformation

Using smoothly joined ruled patches we can only model negatively curved
surfaces. In order to get rid of this restriction, we need more general patches.
Next to straight lines, circular arcs are probably easiest to manufacture, and thus
we look for patches which carry two families of circular arcs. Darboux cylide
patches are good candidates for this task, especially since they can easily be
obtained from ruled quadric patches (see e.g. [14], in particular Proposition 9).
For our purposes it is sufficient to realize that so-called Darboux tansformations
(discussed below) transform ruled quadrics into Darboux cyclides (Remark 10
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Figure 6: Mean curvature analysis of H-nets computed to minimal surfaces 1
and 2 from Figure 5. Here green color shows that the mean curvature H is close
to zero. Red color indicates positive H, blue color belongs to negative H.

in [14]). Therefore, they transform hyperbolic nets to smooth surfaces com-
posed of Darboux cyclide patches.

Darboux transformations occur in non-Euclidean geometry, where they are
used for the transfer from the projective model of elliptic or hyperbolic geometry
to the corresponding conformal model. Without reference to non-Euclidean
geometry we may define them in 3D as follows: Embed points x € R® into
4-space R%, e.g. as (x,1), and project them from a center C onto the unit sphere
L: x] +...+x; = 1. Then, perform stereographic projection ¢ of ¥. We
choose the projection center C as (0,0,0,c) with ¢ # 1. Then, the straight line
connecting C and (x, 1) is parameterized as (Ax,c + A(1 — c)). Its intersection
points with I are characterized by

R VI G VR T
B X2+ (c—1)?

Stereographic projection from center (0,0,0,1) onto x4 = 0 is given by
o: (x1,...,x4) — (x1,%2,%3)/(1 — x4),

and thus we obtain for the Darboux transformation,

Ax
(1-c)(1-A)

X —

We prefer to scale the image with 1 — ¢, and this finally yields the Darboux
transformation

2 —ct/(c—1)2+(1-c2)x?

O:xm— - X.
X +1—cFA/(c—1)2+(1—-c2)x

(12)
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Figure 7: H-nets approximating multiply connected pieces of minimal surfaces.
Left: H-nets with rulings. Right: isophotes exhibit some discontinuities, which
points to tangent plane discontinuities. From top to bottom: minimal surface
3, catenoid and Schwarz surface.

By construction, the two image points 6(x) are related to each other by an
inversion with respect to a (not necessarily real) sphere A. This sphere is
obtained as follows: Intersect the polar hyperplane x4 = 1/c of C with respect to
X with X; this results in general (C ¢ L, i.e. ¢ # —1) in a real or imaginary sphere
< X whose stereographic image has the equation x; + x5 +x3 = (c+1)/(c—1).
After scaling with 1 — ¢, we arrive at the sphere A : x] + x5 + x5 = ¢> — 1.

It is appropriate to use Mobius geometry in image space, i.e., consider
straight lines as circles and planes as spheres. Then we can state: A Darboux
transformation maps a straight line to a Mobius circle and a plane to a Mobius
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Figure 8: H-net approximation of part of the design surface of the Cagliari Art
Center by Zaha Hadid Architects. We model the A-net with fixed boundary
and allow part of the net to go beyond the reference surface (in areas where it
is not negatively curved).

sphere (these circles and spheres are orthogonal to A). If the center C is not
inside T (|c| > 1), these images need not be real. If C lies on X (c = —1), 6
becomes an inversion. To get the most general Darboux transformations, we
may at first apply a projective map in 3-space and then the mapping (12).

The most important property for our purposes is the fact that a rational
bilinear patch is mapped to a pair of Darboux cyclide patches (inverse with
respect to the sphere A) and thus a hyperbolic net is mapped to a pair of smooth
surfaces composed of Darboux cyclide patches.

We implemented a free-form deformation tool based on Darboux transfor-
mations. The H-net to be tansformed is embedded in a box acting as a control
cage. The cage is then deformed exploiting the 16 degrees of freedom (15 for the
choice of an initial projective transformation and 1 for c). Note that the trans-
formed cage pair has circular edges and spherical faces. The transformation of
the cage allows one to get a better feeling of the way how 0 will transform an
object embedded in it. Examples are shown in Figure 9.

Conclusion and future work

Applying CAGD methods to a very recent development in discrete differen-
tial geometry, namely H-nets, and combining it with numerical optimization,
we showed how to approximate a given negatively curved surface S with a
smooth surface composed of ruled quadric patches. Limitations have been dis-
cussed and the applicability of the optimization framework beyond theoretical
guarantees has been tested. Through Darboux transformations, we obtained a
first method for smoothly joining Darboux cyclide patches.

Smooth or approximately smooth patchworks from Darboux cyclides will
require further studies; in particular, we did not yet show how to approximate
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Figure 9: Darboux transformations map hyperbolic nets to smooth surfaces
composed of Darboux cyclide patches. Top: To better understand the effect of
the transformation, we embed the model to be transformed into a bounding
box and show the transformed box. Bottom: One can clearly see that one
is no longer restriced to surfaces with negative Gaussian curvature. The left
images are obtained from the model in Fig. 5, middle row; the right images are
D-transformed versions of the H-net in Fig. 5, bottom row.

general freeform surfaces. This may require an approach which avoids Darboux
transformations and directly works with an appropriate control structure of the
cyclide patches.

More generally, we are interested in smooth extensions of discrete structures
— or slightly reformulated — in discrete structures which are actually smooth
composites of simple elements. It could turn out that certain low degree spline
curves and surfaces possess remarkable properties in discrete differential ge-
ometry, especially in those groups (affine, projective) where the classical theory
requires higher order derivatives.
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Appendix: Proof of Theorem 6

We use a local coordinate system with the flat point p at the origin and with
z = (0 as tangent plane at p. Locally, the surface can be written in Monge form,
z = f(x,y), and since z = 0 is a 2nd order approximant, the Taylor expansion
of f(x,y) starts with cubic terms (which do not vanish since the flat point is
ordinary). Hence, it suffices to prove the result for the special surface,

z = f(x,y) = box® + bix®y + baxy? + by (13)

There are 3 types of ordinary umbilics, which are sometimes called star (index
-1/2), monstar and lemon (both of index 1/2). The star type is characterized by
(see [23]),

boby — b3 + bibs — b < 0. (14)

We claim that this inequality is always fulfilled since the flat point lies in
a negatively curved area: Negative Gaussian curvature K is expressed by a
negative determinant of the Hessian of f: fi.f,, — ny < 0. For the surface (13),
this condition reads

(3boby — b3)x* + (9bobs — biby)xy + (3bibs — b3)y* < 0.
It has to hold for all (x, y) # (0,0), which implies
3bob, — b2 < 0, 3bibs — b3 < 0,
and shows that (14) is satisfied. ¢
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