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Abstract

Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a
geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area
of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are
relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable
system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding
graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing
meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without
geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main
directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open
problems which we think are significant for the future development of both theory and practice of architectural geometry.
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1. Introduction

Free forms constitute one of the major trends within contem-
porary architecture. In its earlier days a particularly important
figure was Frank Gehry, with his design approach based on digi-
tal reconstruction of physical models, resulting in shapes which
are not too far away from developable surfaces and thus ide-
ally suited for his preferred characteristic metal cladding [94].
Nowadays we see an increasing number of landmark buildings
involving geometrically complex freeform skins and structures
(Fig. 1).

Figure 1: Complex architec-
ture entails a complex work-
flow. This image shows part
of the Fondation Louis Vuit-
ton, Paris, designed by F.
Gehry. Photo: Mairie de
Paris.

While the modelling of freeform geometry with current tools
is well understood, the actual fabrication on the architectural
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scale is a challenge. One has to decompose the skins into man-
ufacturable panels, provide appropriate support structures, meet
structural constraints and last, but not least make sure that the
cost does not become excessive. Many of these practically
highly important problems are actually of a geometric nature
and thus the architectural application attracted the attention of
the geometric modeling and geometry processing community.
This research area is now called Architectural Geometry. It is
the purpose of the present survey to provide an overview of
this field from the Computer Graphics perspective. We are not
addressing here the many beautiful designs which have been re-
alized by engineers with a clever way of using state of the art
software, but we are focusing on research contributions which
go well beyond the use of standard tools. This research direc-
tion has also been inspired by the work of the smart geometry
group (www.smartgeometry.com), which promoted the use of
parametric design and scripting for mastering geometric com-
plexity in architecture.

From a methodology perspective, it turned out that the prob-
ably two most important ingredients for the solution of Archi-
tectural Geometry problems are Discrete Differential Geometry
(DDG) [84, 16] and Numerical Optimization. In order to keep
this survey well within Graphics, we will be rather short in dis-
cussing the subject from the DDG perspective and only mention
those insights which are essential for a successful implementa-
tion. It is a fact that understanding a problem from the DDG
viewpoint is often equivalent to understanding how to success-
fully initialize and solve the numerical optimization problems
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which are more directly related to the questions at hand.
In general, the approximation of an ideal design surface by

a surface which is suitable for fabrication, is called rationaliza-
tion in Architecture. This often means panelization, i.e., finding
a collection of smaller elements covering the design surface, but
it can also mean replacing the design surface by a surface which
has a simple generation like a ruled surface. Often, rationaliza-
tion is harder than the 3D modeling of a surface. A digital mod-
eling tool which automatically generates only buildable struc-
tures of a certain type (fabrication-aware design) is probably
more efficient than the still prevalent approach based on ratio-
nalization. For research, both rationalization and fabrication-
aware design are interesting, but the latter poses more unsolved
problems, at the same time going far beyond architecture.

The solution of the above-mentioned problems may become
easier if the shape under consideration has special properties, in
which case we do not call it truly freeform. E.g. a surface gen-
erated by translation is easily rationalized into flat quadrilater-
als (see Fig. 6). Special shapes have been extensively and very
successfully employed, but this paper focuses on properties and
algorithms relating to arbitrary (“freeform”) shapes.

Remark. The reader is advised that we use the word design in
its purely technical sense, meaning that a designer uses avail-
able tools (drawings, software) to convert ideas to a geometric
representation. We never refer to those aspects of design which
touch cognitive science or artificial intelligence.

Overview of the paper

This paper is a survey, discussing a wide range of topics. It
is divided into sections as follows: §2: Flat panels; §3: Devel-
opable panels; §4: Smooth double-curved skins; §5: Paneling;
§6: Support structures; §7: Repetition; §8: Patterns; §9: Statics;
§10: Shading and other functional aspects; §11: Design explo-
ration. Within each section we address the following points:

• We point out why a certain topic gets addressed and which
practical aspects are motivating it.
• We discuss the most essential and interesting aspects of

the methodology for its solution.
• Results are provided along with a discussion which is based

on real projects wherever possible.
• We address open problems and directions of future re-

search.

We tried to make this survey as self-contained as possible. How-
ever, some background on geometry processing, optimization
and elementary differential geometry is necessary. For a very
simple presentation of the geometry background along with a
path towards ongoing research in Architectural Geometry, we
refer to [77]. For collections of publications related to the field,
we especially point to the volumes [21], [43] and [11].

2. Polyhedral surfaces – structures from flat panels

In order to realize a freeform surface in architecture, one of-
ten breaks it into smaller elements, called panels. Certainly,

flat panels are the easiest and cheapest to produce and thus sur-
faces composed of flat panels, so-called polyhedral surfaces or
polyhedral meshes play a key role in Architectural Geometry.
In this section, we discuss their various types, with a focus on
meshes from planar quads. They have turned out to be the most
interesting species of panel from the viewpoint of mathematics.

Figure 2: Triangle meshes in free-
form architecture. Laying out
a triangular pattern on a free-
form surface and controlling its
density and flow is a challeng-
ing problem successfully solved
in 2000 by Chris Williams for the
Great Court Roof of the British
Museum in London (designed by
Foster+Partners). Here dynamic
relaxation was employed to aes-
thetically distribute the triangles
(Photo: Waagner-Biro Stahlbau).

2.1. History of polyhedral surfaces in architecture
Until the 20th century, polyhedral surfaces in architecture ap-
peared predominately as rotational surfaces used for roof and
dome structures. Quads were the base polygon of choice for
most of these early examples, mainly due to their aesthetic qual-
ities and their economic advantages.

In 1928, engineers of the Carl Zeiss optical company used a
triangulated spherical dome structure for a planetarium in Jena,
Germany. The triangulation was derived by projecting the ver-
tices of a platonic solid with regularly triangulated faces to a
sphere. 20 years later, R. Buckminster Fuller reinvented, devel-
oped and popularized this concept under the name of “geodesic
dome”. The increased stability of triangular elements compared
to quads was one of the advantages of geodesic domes.

Later, Computer-Aided Design, by augmenting and replac-
ing the more traditional tools for modeling freeform geometry,
not only enabled more complex structures, but even created a
demand for them. Designers suddenly had significantly more
powerful design tools at their disposal, which in turn drove en-
gineers to meet the challenge and again provide means of cost-
effective production. Last, but not least, the gap between design
freedom and production was the main driving force for mathe-
maticians and computer scientists to found the interdisciplinary
research field of Architectural Geometry.

We discuss the newer developments regarding meshes and
free forms below, starting with triangle meshes.

2.2. Triangle meshes from the architectural perspective
Triangle meshes are ubiquitously used in Graphics. Their use in
architecture has different reasons and different aspects become
important. We list some of them:

• Edges are often visible and smoothness (or lack of smooth-
ness) of mesh polylines is an important part of the design. This
is in contrast with geometry processing and computer graphics,
where triangle meshes serve as amorphous representations of
shapes and the orientation of edges hardly plays a role.
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Figure 3: Complexity of nodes in triangle meshes. This image shows part of the
roof of Zlote Tarasy in Warsazaw, designed by The Jerde Partnership, which is
based on a triangle mesh, and a detail of a connector element between beams.
The highlighted central lines on the beams demonstrate clearly that this is a
vertex with torsion, i.e., the beams are in general position relative to each other
(Photos: Waagner-Biro Stahlbau).

• The same is true for the placement of singularities (non-
valence 6 vertices). The combinatorics (i.e., connectivity) is to
be chosen in line with the architect’s vision. The designer will
need tools for connectivity editing such as [62].
• There might be side conditions like the alignment of edges

with other elements (e.g. floor slabs).
• There may be restrictions on the size of panels (for in-

stance, the strict upper bound furnished by the biggest glass
panels which are available, or the soft lower bound presented
by the aim for lightness of the structure).
• Standard methods of designing meshes like subdivison may

not provide enough flexiblity for mesh resolution control.
• The unit normal vectors of faces constitute the Gauss im-

age of the mesh, which is inscribed in the unit sphere. The
aesthetic quality of the Gauss image is observed indirectly, as
oscillations in the surface; its algorithmic treatment is analo-
gous to the treatment of the mesh itself.

Of course these aspects are true in general, not only for triangle
meshes. We illustrate these questions with descriptions of real
projects in §2.7.

Figure 4: Optimization of triangle
meshes: The Blob (left, photo by
Evolute) in Eindhoven underwent
Laplacian fairing subject to con-
straints like following floor slabs.
Similar techniques were used for
the Baku Funicular in 2012 (right,
photo by T. Lorenz ZT).

The main point in favor of using triangle meshes to repre-
sent freeform shapes is the ability to freely move vertices for de-
sign purposes without having to worry about the side-condition
that panels remain planar. Furthermore, triangle meshes have
good structural properties. Triangular panels also have some
disadvantages. Firstly, cutting typical triangular panels from
rectangular sheets tends to generate more waste than cutting a
typical quadrilateral panel. A more substantial disadvantage is
that in a triangle mesh, a typical vertex is incident with 6 edges
and thus is significantly more complex than the valence 4 ver-
tices typical for quad meshes (see Fig. 3). Generally triangle
meshes require more parts and are heavier than quad meshes.

Figure 5: Pros and Cons of triangle meshes: The roof of the Islamic art exhi-
bition in the Louvre, Paris, by Mario Bellini Architects and Rudy Ricciotti, is
based on a hybrid triangle-quad mesh, combining the many degrees of freedom
of triangle meshes with the lightness and smaller number of parts of a quad
mesh. Photo: Waagner Biro Stahlbau.

A compromise between these pros and cons might be furnished
by hybrid meshes, see Fig. 5.

2.3. Planar quad meshes
Meshes from planar quadrilaterals (PQ meshes) do not have
the disadvantages of triangle meshes mentioned above. Early
projects by Schlaich, Schober and others [92, 37] use special
types of PQ meshes whose faces are parallelograms or trape-
zoids and which are discrete versions of surfaces with a simple
kinematic generation. We refer to Fig. 6 for the Berlin “hippo
house”, and we also mention the Sage Gateshead music hall.
While representing striking designs, these shapes are not truly
freeform, because they are generated by sweeping a curve and
are therefore intrinsically one-dimensional. They are not the
result of designing a two-dimensional surface in space.

Figure 6: PQ meshes of sim-
ple geometry. Parallel translation
of a polyline along another poly-
line generates a quad mesh with
parallelogram faces (Hippo house,
Berlin zoo, 1996. Photo and En-
gineering: Schlaich Bergermann &
Partners).

2.3.1. Differential geometry of planar quad meshes
General PQ meshes were first addressed in Discrete Differen-
tial Geometry [84, 16], where they appear as discrete coun-
terparts of conjugate curve networks. Let us give the defi-
nition: Assume that s(u, v) is a parametrization of a surface.
With the unit normal field n = (su × sv)/‖su × sv‖, we de-
fine the coefficient matrix

(
L
M

M
N

)
=
(

suu·n
suv·n

suv·n
svv·n

)
. Vectors tan-

gent to the surface in a point s(u, v) are described as linear
combinations of the partial derivatives: t1 = u1su + v1sv and
t2 = u2su + v2sv. We say that these two vectors are conju-
gate, if the second fundamental form on them evaluates to zero:
II(t1, t2) = Lu1v1 + M(u1v2 + u2v1) + Nu2v2 = 0. It is also well
known that the principal curvature directions are those conju-
gate directions which are at the same time orthogonal (see §2.4
below).

To derive a network of conjugate curves on a given surface,
one can start with an arbitrary family of curves covering the
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surface. In each point of the surface, pick a vector t1 tangent
to that family of curves, and compute t2 by solving the linear
system II(t1, t2) = 0. Finally integrate the vector field t2 to get
another family of curves which is conjugate to the first one.

This procedure unfortunately in practice does not work near-
ly as well as the theory suggests, because many networks of
conjugate curves are not useful as a guide for edges of a quad
mesh. Problems occur in connection with self-conjugate (as-
ymptotic) directions of which there are two in each hyperbolic
surface point. This is the reason why PQ remeshing of a given
surface is especially difficult in negatively curved regions. The
danger to obtain quads with very small angles is high unless
one is close to the principal directions. As a consequence, one
is almost forced to use the principal curvature lines to guide a
quad remeshing, and almost no design freedom ist left. This
topic is explored in more depth by Liu et al. [65] and Zadravec
et al. [116]. We also refer to A. Schiftner [85] who uses relative
principal directions.

Figure 7: Example of a freeform
PQ structure: The Roppongi Canopy
at Tokyo Midtown Plaza, realized in
2005 by Buro Happold. Little docu-
mentation about this project is pub-
licly available, but it appears to be
based on a planar quad mesh follow-
ing the principal curvature lines of
the design surface.

2.3.2. Computing Planar Quad Meshes
The design and computation of PQ meshes have first been ad-
dressed in full generality by Liu et al. [64]. They based PQ
mesh computation on nonlinear optimization, with face pla-
narity as nonlinear constraint, and with an objective function
which considers fairness of the main mesh polylines and – if
applicable – proximity to a given reference surface or boundary
curves. Optimization will fail, however, if it does not start from
an initial mesh which is already close to planar and which, in
view of the corresponding theory, is not close to a conjugate
curve network covering the design surface. As an effective de-
sign method circumventing this problem, the authors propose
to alternate between a quad-based subdivision scheme and op-
timization to maintain planarity of faces throughout all scales.

2.4. Nearly rectangular panels, support structures and offsets

It is natural to ask for PQ meshes whose faces are as close as
possible to rectangles. This would probably generate the least
waste when cutting the panels, as most materials come in rect-
angular shapes. Moreover, one does not have to deal with too
small angles. As it turns out, such meshes are discrete versions
of the principal curvature lines (which is a topic well known in
Discrete Differential Geometry, see [16]). This connection is
visible e.g. in the mesh of Fig. 7, whether intentional or not.

There are two major types of “principal” meshes: Circular
meshes were first addressed by R. Martin et al. [67] (without re-
gard to freeform architecture) and are defined by all faces hav-
ing a circumcircle. Liu et al. [64] introduced conical meshes
where all vertices are conical. This means that each vertex has
a right circular cone which is tangent to the faces which meet
there. The geometry of these meshes is remarkable:

• Alternative definitions involving angles between edges may
be given: If α1, . . . , α4 are the angles between edges in the
vertices of a face, then essentially this face has a circumcircle
⇐⇒ α1 + α3 = α2 + α4 = π. If ω1, . . . , ω4 are angles between
successive edges emanating from a vertex, then this vertex is
conical ⇐⇒ ω1 + ω3 = ω2 + ω4.
• Conical meshes are characterized by existence of an off-

set mesh at constant face-face distance. Analogously, for quad
meshes we have the equivalence of circularity and existence of
an offset mesh at constant vertex-vertex distance. In both cases,
the correspondence of original mesh and offset mesh is so that
not only corresponding faces are parallel, but also correspond-
ing edges (parallel meshes, cf. [80]).

For freeform architecture in particular the conical case is
relevant, e.g. when realizing freeform shapes with plates of con-
stant thickness and perfect alignment – see [79] and Fig. 8.
There are close relations between offset properties of meshes
and the torsion-free support structures of §6.

Figure 8: Offset properties of conical meshes. This hex mesh has planar faces
and an offset at constant face-face distance, meaning that it represents the outer
and inner boundaries of an arrangement of panels of constant thickness (im-
age taken from [79]. Note: This particular mesh trivially enjoys the conical
property, since all vertices have valence 3.

Remark on panel shapes. It turns out that quad meshes whose
faces are nearly squares (or rectangles with fixed edgelength ra-
tio) are able to approximate only shapes which are contained in
the catalogue of “isothermic” surfaces. This includes the min-
imal and soap bubble surfaces. We do not go into details, but
only mention the work by Sechelmann et al. on quasi-isother-
mic mesh layout [93].

2.5. Polyhedral hex-dominant meshes

Hexagonal meshes (more precisely, meshes of vertex valence 3)
are challenging to design. The low vertex degree mandates the
use of varying and non-convex face shapes in order to capture
different curvature regions. In addition, such meshes are more
rigid and not as susceptible to deformation and planarization
methods as quad meshes might be. The most direct approach
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to design such meshes is by means of the duality to triangle
meshes. One approach to leveraging this duality is to use the
unit normal vector field to map the surface to the unit sphere
(i.e., the Gauss image), triangulate the image domain on the
sphare, and map that triangulation back to obtain a planar-hex
meshing of the original surface, cf. [1]. While this approach is
simple, it is quite difficult to control the shapes of faces created
in this way. Another approach is to assign a single plane for
each primal vertex of a triangle mesh, and then the dual ver-
tices are obtained by the intersection of these planes [102, 103].
Variational approaches can be applied in order to control the lo-
cation of intersection vertices, by establishing proper plane co-
efficients [118]. However, the dual approach couples the topol-
ogy and the quality of the resulting hex mesh with that of the
primal triangle mesh.

Thus, Li et al. [121, 122] propose to remesh the triangle
mesh into an “ideal triangulation”, oriented with the principal
directions. This triangulation produces dual planar-hex meshes
with some guarantees on the quality of face shapes and ap-
proximation in non-parabolic regions. Specifically, [121] han-
dles singularities by first producing a quad mesh aligned with
principal curvatures, triangulating the mesh by diagonal split-
ting, and then taking the dual of this triangulation. In addition,
they handle principal singularities of degree ± 1

2 by splitting into
smaller 7-gons and 5-gons, and add corrections for parabolic
lines which are not curvature lines in order to control hexago-
nal shapes between curvature regions. However, the algorithm
requires some manual adjustments, such as the extraction of
parabolic lines.

Other variational approaches, e.g. [23], seek to produce gen-
eral polyhedral meshes that approximate the surface without
necessarily being hexagonally-dominant or structured. Approx-
imation is done by choosing a partition of the surface into patch-
es. These patches are found by segmenting the shape according
to a shape metric that measures normal variation and deviation
from planarity. Thus, planar faces are considered a good ap-
proximation to these patches.

2.6. Computational methodology

Achieving geometric properties like planarity of faces as a rule
has to be done by global optimization or a related procedure.
Various numerical approaches have been used: constrained min-
imization, nonlinear least squares, penalty methods, augmented
Lagrange methods, and others. For computing polyhedral sur-
faces, we mention [64], the work by R. Poranne et al. [76, 75],
the projection method of Bouaziz et al. [20], the augmented La-
grangian method of Deng et al. [25], and the guided projection
method of Tang et al. [100]. This list is not exhaustive.

Frequently it has been the case that such a numerical method,
if used as a black box, would not succeed. Initialization proved
very important. Usually, understanding a continuous analogue
of the discrete objects under consideration is key for initializa-
tion, as described in §2.3.2 for the special case of quad meshes
with planar faces. We return to computation in §11.

2.7. Real projects

The images in this section already show an overview of projects
based on polyhedral surfaces which have been realized. As
to triangle meshes, let us again point to Figure 2 (great court
roof, British museum) for a mesh optimized for aesthetics, and
to Figure 4 (the Blob) for a mesh optimized for floor align-
ment in addition to aesthetics. The undisputed advantages of
quad meshes over triangle meshes mentioned above have led
to projects based on PQ meshes: Fig. 6 shows an example of
restricted design freedom, while Fig. 7 illustrates the first ex-
ample of a freeform PQ mesh. Despite the fact that research in
Architectural Geometry has provided various tools for layout
and optimization of PQ meshes, still very few real projects use
them (see however Fig. 33 for the Eiffel tower pavilions which
are based on the same theory). For hybrid meshes which try
to combine the advantages of both quadrilateral and triangular
surfaces, see Figure 5.

2.8. Open problems and research directions

The following list is a collection of problems which are un-
solved and of situations which are not fully understood at the
moment.

• Rationalization with PQ meshes is still a challenge as we
are lacking a good overview of all suitable PQ remeshings (only
those PQ meshes which resemble a smooth curve network are
well understood via their connecton to conjugate curve net-
works).
• PQ remeshing becomes more difficult if constraints on panel

sizes and shapes are imposed. Very little is known on how
to properly properly initialize optimization algorithms if such
side conditions are present (initialization includes the choice of
mesh combinatorics, which is relevant to the success of opti-
mization as well as for aesthetics).
• In our research on polyhedral meshes, good results were

obtained with objective functions which try to achieve nearly
equal panel areas. However, we are not aware of results con-
cerning the smooth limit of the quad mesh case. Such a smooth
limit would be an area-preserving conjugate parameterization
(i.e., a parametrization where the determinant of the first fun-
damental form is constant, and the second fundamental form is
diagonal). Knowledge in this area would help with remeshing.
• There has been progress on quad patch layout algorithms,

see e.g. [18, 29]. It would be interesting to use similar ideas
for PQ remeshing by addressing the problem in a more global
way (in contrast to local considerations using conjugate vector
fields). Even a rather coarse PQ remeshing would mean sig-
nificant progress, since subdivision combined with optimiza-
tion can be employed for refinement. Automated initialization
of subdivision-based approximation is currently not well un-
derstood, even without the additional constraint of planarity of
faces.
• A number of open problems arise from the combination of

shape design with aspects of statics (see §9). This applies to
polyhedral meshes, but also to other kinds of shape representa-
tions.
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• Many additional criteria, e.g. related to energy performance
or fabrication play a role in practice. This shows that in this
area, like elsewhere, there is much demand for robust, fast, and
efficiently usable multi-criteria optimization tools (for initial re-
sults see §11).

Figure 9: A pioneer of using devel-
opable freeform surfaces is Frank
Gehry. A combination of physi-
cal and digital modeling has been
used for the 1997 Guggenheim Mu-
seum in Bilbao as well as for other
projects like the 2003 Walt Disney
Concert Hall in Los Angeles (at
left, photo by Jon Sullivan).

3. Developable panels and semi-discrete models – skins from
smooth strips

3.1. Developable surfaces as limits of PQ meshes.

Developable surfaces, also known as single-curved surfaces,
can be unfolded into the plane without stretching or tearing.
Thus it is easy to cover them with panels from metal or other
materials with a similar behavior. They are characterized by
containing a family of straight lines, each of which possesses a
constant tangent plane – see Figure 10 for an illustration of this
fact and a limit process which transforms a sequence of planar
quads into a developable strip. Their developability is not the
only property of such surfaces relevant to fabrication: also the
straight lines contained in developables have advantages for the
fabrication of the substructure.

−→

Figure 10: Generating developable strip models by refining a PQ mesh so that
the quads stay planar in all stages. In the limit (right) one gets ruled strips with
a constant tangent plane along each ruling (namely, the limit of a face plane in
the PQ strip).

The work of Frank Gehry (Figures 1, 9, 11) is an excel-
lent example for the use of developable surfaces in architecture
and for the influence of digital technology. The metal cladding
in early projects is less perfect than the one in later projects
where Gehry could already use specialized software for repre-
senting developable surfaces, integrated by Gehry Technologies
into the CAD system Catia [94].

The limiting process that generates a developable strip from
a strip of planar quads, may also be applied to an entire PQ
mesh (see Figure 10). The result is a D-strip model [81]. This
piecewise developable surface can be seen as a semidiscrete sur-
face, smooth in one parameter direction and discrete in the other

one. Computationally, one may not want to work with a repre-
sentation which exhibits very thin quads. It is better to represent
the individual strips as B-spline surfaces of degree (1, n) (usu-
ally n = 3) and optimize them towards developability [81]. For
the rather large literature on developable spline surfaces, see
e.g. [3, 22, 83].

Figure 11: Each of the ‘sails’
of the Fondation Louis Vuitton
by Frank Gehry consists of devel-
opable strips – for a mathematician
this is an example of a semidiscrete
conjugate surface. For the actual
building, the strips were approxi-
mated by cylindrical glass panels
(Photo: Mairie de Paris).

3.2. Special cases of strip models

The strip boundaries and the rulings across the strips represent
a network of curves (much like the edge polylines in a regu-
lar PQ mesh) which is known to be a semidiscrete version of
a network of conjugate curves. Special instances of conjugate
networks correspond to special kinds of D-strip models. For
example, imposing the condition of orthogonality yields the
principal curvature lines, whose semidiscrete counterparts have
properties similar to the circular and conical meshes encoun-
tered earlier [81]. One of them is the existence of a semidiscrete
support structure which is important for fabrication and which
is visualized in Fig. 33: There is a developable approximately
orthogonal to the surface through each strip boundary; such de-
velopables may serve as the sides of curved beams with rect-
angular cross-section which are manufacturable by bending, cf.
[89, 4]. We treat this topic in detail in §6.1.

Figure 12: The Eiffel Tower Pavil-
lons feature near-deveopable strips;
it follows that this design essen-
tially represents a semidiscrete con-
jugate surface. That property also
led to a very good rationalization
of the developable glass strips by
cylinders. The image shows the de-
sign with one cylinder belonging to
a glass panel.

Another special case are geodesic D-strip models, whose
strips follow geodesic curves, modeling straight strips of pa-
per which are put onto curved surfaces. They have interesting
applications in paneling with wood. Since wooden strips are
easily subject to torsion, they can be modelled as developable
surfaces to a lesser degree than skins made from sheet metal.
Wooden panels in the Burj Khalifa (2010, Dubai) provide an
example, see Figure 13 and [69].
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Figure 13: Geodesic strips. Putting straight bendable strips onto a surface yields
a pattern which follows geodesic lines (left). The image at right shows a panel-
ing of a freeform ceiling (Burj Khalifa, design by Gehry Technologies) which
is guided by this principle.

3.3. Curved folding
The planar developments of the individual strips of a D-strip
model do in general not fit together. However, there are devel-
opable surface strips which are glued together in a way such
that the development keeps them together. Here one speaks of a
curved fold. Designs made via curved folding may have a strik-
ing elegance and have been computationally addressed via PQ
strips within an appropriate optimization framework by Kilian
et al., see [58] and Fig. 14.

Figure 14: Curved Folding. Folding paper along the pattern outlined at left cre-
ates the “car” surface at right. Colors indicate the various types of developables
which occur: red for cones, green for cylinders, light brown for planar patches,
and blue for general developables (image courtesy M. Kilian).

3.4. Technology for single-curved skins and real projects
Various technologies are used to produce single-curved skins.
An important part is played by the ability of CAD systems to
handle such surfaces. Regarding materials, sheet metal is popu-
lar (cf. Disney concert Hall by Gehry, Fig. 9). For recent devel-
opments in industrial processes see e.g. the paper [91] by Bemo
systems.

Glass as a material is more challenging than metal because
of the high cost of hot bending glass into curved shapes. An
interesting technology is cold bending of laminated glass. Cold
warping, in the literal sense, of laminated units up to or ex-
ceeding the tolerances guaranteed by manufacturers has been
employed for quite some time; the IAC building in New York
by Frank Gehry is an example of this. A later innovation is to
apply the laminating process, involving 130◦ C heat and 10 bar
pressure, to pre-bent glass. This was done first on a large scale
by RFR for the 2007 Strasbourg train station (Fig. 16).

Another approach rests on the availability of cylindrical glass
panels: Single-curved skins, approximately decomposed into
cylindrical panels, have been employed for the Fondation Louis
Vuitton (Fig. 11) and the Eiffel tower pavilions (Fig. 33).

Figure 15: Curved Folding. Left: ARUM installation at the 2012 Venice bien-
nale (Photo: Zaha Hadid press release). Right: A “waves in glass” sculpture by
Erik and Martin Demaine.

Also wood is suited to realise developable shapes, which
has long been utilized in ship building and the early aerospace
industry. There seem to be no really large scale freeform struc-
tures using single-curved wooden panels. However we point to
the “geodesic” paneling of the Burj Khalifa ceiling (cf. [69] and
Fig. 13), and to the research done by the Laboratory for timber
constructions at EPFL (see http:// ibois.epf.ch).

The application of developable surfaces with curved folds
is rare in architecture. An exception is the company Robofold
which specialises on bending thin metal sheets with robots. A
recent example of their work is Arum installation for Zaha Ha-
did Architects (Fig. 15). That figure also shows other artwork
involving curved folds.

Figure 16: The so-called cold bend-
ing technology allows the production of
general developable shapes from a sin-
gle glass panel. The first large scale ap-
plication of this technique was the 2007
canopy over the Strasbourg train sta-
tion (at left, photo and engineering by
RFR). Here panels are cylindrical, but
the technique is applicable also to more
general shapes (with the limitation of
relatively large minimal bending radius
compared to hot bending).

3.5. Open problems and research directions

Due to the theoretical proximity of PQ meshes and D-strip mod-
els, most open problems for PQ meshes also translate to the
present setting. We add a few which are not direct counterparts
and which are not yet mentioned in §2.8.

• A general D-strip model is not yet useful for materials like
glass. It is to be expected that for some time, producing cylin-
drical gass will remain much cheaper than producing general
developable shapes, so the question of rationalization arises
(see Figures 11, 33). D-strip models whose individual strips can
be well approximated by sequences of simpler panels such as
cylinders, are an open question, especially rationalization with
such structures.
• Digital design of objects via curved folding is pretty wide

open. So far, mainly the digitial reconstruction of physical
models and simple deformations have been addressed, and in-
deed curved folding itself has yet to be applied on a larger scale.
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• The interactive isometric deformation of developable sur-
faces is only easy if we restrict ourselves to those deformations
which preserve rulings. To our best knowledge, there is no el-
egant handling of more general isometric deformations, apart
from efficient simulations based on triangle meshes, cf. [97].

4. Smooth double-curved skins

Realizing a double-curved freeform surface as a large and com-
pletely smooth (tangent plane continuous) architectural skin is a
great challenge, and for some materials is only affordable when
deviating from perfect smoothness or when accepting restric-
tions on the possible shapes. In this section we only address
perfect smoothness; the successful play with tolerances is dis-
cussed in connection with the paneling problem in §5.

Figure 17: An early 20th century freeform geometry shaped in masonry is the
1910 Casa Milà in Barcelona by Antonio Gaudı́ (Photo at left by Kyle Taylor).
Later, freeform shapes were realized at a grander scale in concrete, such as the
TWA flight centre at JFK airport by Sarinen in 1962 (right).

Obviously, we need smooth double-curved panels which for
most materials require the fabrication of a mould. There are
only very few instances of double curved surfaces which can
efficiently be produced. The most promising among those are
ruled surfaces. Their production is rather easy in fibre-rein-
forced concrete, because the required moulds can be fabricated
with hot wire cutting from styrofoam. However, they are only
suitable to model negatively curved surfaces (§4.3). On arbi-
trary surfaces, we so far know no better approach than using
surface patches composed of (possibly congruent) circular arcs
(§4.4).

Figure 18: The 2006 Kaka-
migahara funeral hall by Toyo
Ito is a freeform concrete shell
without panels, still represent-
ing an instance of the “panel-
ing problem” with respect to
the formworks needed for pour-
ing concrete (photo: Toyo Ito &
Associates).

4.1. History and technology of double-curved freeform shapes

Building beyond traditional forms has long been the aim of
architects, and engineers. In the late 19th century, industrial-
ization led to a more systematic approach to the problem, and
new tools became available. In the second half of the 20th cen-
tury, greater scale and complexity were achieved with concrete
shells. See Fig. 17 for some such earlier examples. Shapes

which are apparently “freeform” were frequently achieved by
physical principles, e.g. Heinz Isler’s thin shells constructed on
top of pneumatic pillows. Concrete remains a popular material,
its limitations being weight and cost. Prominent recent exam-
ples are the Rolex Learning Center at EPFL (Lausanne), or the
2006 Kakamigahara funeral hall by Toyo Ito, see Fig. 18.

Another method (not dicussed here) to realise smooth dou-
ble curved surfaces is via tensile membranes, again achieving
form by means of physical principles.

Figure 19: Digital work flow for the BMW ‘bubble’ design by Franken Archi-
tects (engineering and images: Bollinger and Grohmann).

With NURBS modeling becoming available in architectural
design, the demand for cost-efficient realisations of smooth curved
skins reached a new peak. One of the first true freeform shapes
in a modern sense and one of the first projects that was com-
pletely created with digital means (from design to construction)
is the 1999 BMW Bubble, see Fig. 19. Like the Kunsthaus
in Graz (2003), it is cladded with acrylic glass. Also double-
curved glass panels have been used, see Fig. 20 for a shape
which is truly freeform and Fig. 22 which is less so. The pro-
duction of such panels by hot bending via molds can be quite
expensive, especially if they are to form a watertight skin.

Figure 20: Double-curved glass
panels with neoprene seals are
covering Hungerburg station,
one of a series by Zaha Hadid,
built for the Innsbruck Hun-
gerburgbahn in 2004 (photo:
Wikipedia user Mattes).

More recently, CNC milled wood and double curved metal
have been used to produce smooth freeform surfaces, such as
the Kamppi Chapel, Helsinki 2012, or the Dongdaemun Design
Plaza and Park. The Chicago Cloud Gate, see Fig. 21, is an
artistic version of a “perfect smooth bubble”.

Figure 21: Reflections prove smoothness vi-
sually. The Cloud Gate sculpture by Anish
Kapoor (Chicago 2006) has a seamless metal
cladding (photo: Tim Schapker). Compare this
image with Figure 23, where kinks in the reflec-
tion lines (at strip boundaries) reveal curvature
discontinuities of the surface.

4.2. Hidden repetitivity
The high cost of producing double-curved skins has led to ideas
how panels or molds used for manufacturing panels may be

8



used more than once. A famous instance of this is the Syd-
ney Opera House where concrete elements were produced with
molds, and the overall spherical geometry ensured that molds
could be reused. It should be noted that this was one of the first
recorded instances of “computer programs” being used to solve
problems of geometry, logistics, and structural analysis. On a
smaller scale, but for more complex geometry and with differ-
ent materials, this thought guides the shape of the 2003 lentille
at Saint Lazare Metro Station in Paris, see Fig. 22.

For the cost-effective manufacturing of double-curved skins,
hidden repetitive geometry is obviously highly relevant. Unfor-
tunately it is very difficult to detect in general. We return to the
topic of repetition – hidden or not – in §7.

Figure 22: Repetition aides man-
ufacturing efficiency. The lentille
at Saint Lazare metro station is
composed of a sphere and a torus,
and has a rotational symmetry no
longer apparent after panelization.
This symmetry enabled the reuse
of molds used in the manufactur-
ing of glass panels (engineering and
photo: RFR).

4.3. Smooth negatively curved surfaces from ruled patches

We here return to mathematical and algorithmic questions, dis-
cussing general smooth surfaces of negative Gaussian curvature
and how they can be approximated by a smooth union of ruled
surface strips. Such a representation is a semidiscrete model
of a surface similar to the developable case discussed earlier in
§3.1, but now with a different side condition: Individual ruled
strips should join smoothly. The relevance of a ruled rational-
ization of a smooth surface for architecture lies in the fact that
they are easy to manufacture.

(a) (b) (c) (d)

Figure 23: Ruled strips can join smoothly even if their rulings do not. This
sequence of images shows 3 ruled strips with rulings (a), without rulings (b),
both rulings and strip boundaries removed (c), and with visual proof of G1

smoothness by continuity of reflection lines (d).

Figure 23 illustrates this situation: If successive strips have
the same tangent plane in each point of the common bound-
ary curve ci, then successive rulings pi−1 pi and pi pi+1 must
be coplanar with the tangent of ci in the point pi. If the se-
quence of strips with this property is refined and converges to
a surface of C2 smoothness, then the polyline {pi} of rulings
converges to a curve, and the plane spanned by 3 successive

points pi−1, pi, pi+1 will converge to the osculating plane of that
curve. The polyline of rulings is therefore seen as a semidis-
crete version of an asymptotic curve on the limit surface. This
fact is used by S. Flöry et al. [32, 34, 33] for the initialization
of algorithms for optimization, rationalization and design with
smooth surfaces from ruled strips (cf. Fig. 24). If also strip
boundaries correspond to asymptotic curves, then we obtain
semidiscrete asymptotic parameterizations which have been in-
vestigated from a mathematical viewpoint by [110].

Figure 24: Approximation by ruled surfaces of different kinds: A reference sur-
face (blue) which is an unmodified part of the Cagliari museum project by Zaha
Hadid architects is approximated by Flöry et al. [33] with a conoidal ruled sur-
face (green) and with a general ruled surface (orange). We show these surfaces
superimposed onto each other in order to visualize approximation quality.

One can ask for smooth surfaces composed of especially
simple ruled surface patches. Bilinear patches result in (smooth,
but still discrete) models of so-called affine minimal surfaces
and thus can only model special shapes [53]. However, smoothly
joined rational bilinar patches (called hyperbolic nets) are suf-
ficient to approximate arbitray simply connected surfaces. This
has first been proved by Huhnen-Venedey and Rörig [48] using
the Plücker quadric model of line geometry. A CAGD approach
based on the rational Bezier representation and algorithms for
remeshing are due to Shi et al. [95] (see Fig. 25). The patch
boundaries of a hyperbolic net form an asymptotic net (A-net),
i.e., a quad mesh with planar vertex stars. A-nets are well stud-
ied discrete asymptotic parameterizations [16].

Figure 25: Negatively curved surfaces may be approximated by a smooth union
of rational Bézier quads of degree 1-1. Left: Patches with rulings. Right: Con-
tinuity of isophotic curves proves C1 smoothness, but non-smoothness of these
curves reveals C2 discontinuities.

Remark. Hyperbolic nets are remarkable structures in discrete
differential geometry. Huhnen-Venedey and Schief [49] use
them for the study of discrete Weingarten transformations, and
there is ongoing research by W. Schief who employs them in a
discrete theory of projective minimal surfaces.

4.4. Smooth surfaces covered by circular arcs
After ruled surfaces, the next step in complexity are surfaces
covered by circles. Sophus Lie’s sometimes mysterious line-
sphere correspondence [70] provides a direct way to convert
surfaces carrying lines to surfaces carrying circles:

• Ruled quadrics (covered by 2 families of rulings) corre-
spond to Dupin cyclides (envelopes of 2 families of spheres).
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• Asymptotic parameterizations correspond to principal ones.
• Smooth surfaces composed of ruled quadric patches cor-

respond to cyclidic nets covered by Dupin cyclide patches.

Cyclidic nets have been first addressed by R. Martin [67]
and stimulated a lot of research on the use of Dupin cyclides in
computer-aided geometric design. Only recently, Bobenko and
Huhnen-Venedey [17] presented a complete theory and showed
that every circular mesh can be extended smoothly to a cyclidic
net. A computational treatment of these cyclidic nets along with
generalizations aiming at substructures in freeform architecture
has been studied by Bo et al. [14]. Even if cyclidic nets are cov-
ered by 2 families of simple curves (namely, circles), structures
covered by circles of constant radius are more relevant to ar-
chitecture. Patches which carry one family of congruent circles
have been considered by Bo et al. [14]. Barton et al. [6] study
the evolution of an arc spline curve (smooth curve composed of
circular arcs) so that its arcs stay rigid but can rotate about the
common tangents. This generalized sweeping concept is useful
to design smooth freeform surfaces composed of congruent cir-
cular arcs, but exhibits restrictions in approximating arbitrary
surfaces – see Fig. 26.

Figure 26: A non-static roof composed of many instances of the same flexible
6-snake of circular arcs. This object is composed of many copies of a single
circular arc, which is relevant to the cost of manufacturing. The small figures
show two different stages of flexion.

4.5. Open problems and research directions
For “real projects” we refer to Sections 4.1 and 4.2, and also to
the discussion of paneling in §5. The theoretical work surveyed
in this section has yet to be applied in practice. Open questions
in this area are:

• The main question here is whether there are useful pan-
els that can generate smooth architectural freeform surfaces be-
yond surfaces of negative curvature. It is probably related to
new manufacturing technologies for panels.
• Promising research directions connected with this section

are in Discrete Differential Geometry and based on discrete
models which are actually smooth surfaces from simple patches.
The example of hyperbolic nets already turns out to be useful
in discrete projective differential geometry, and thus one would
also expect cyclidic structures having an important role in dis-
crete differential sphere geometry.

5. Paneling and the quality—cost tradeoff

5.1. Geometric and algorithmic aspects of panelings
The paneling problem refers to realizing double curved archi-
tectural freeform surfaces by rationalization, i.e., replacing the

surface by a union of panels. This section treats paneling in the
narrow sense, where the panels are curved, and are to approxi-
mate the reference shape smoothly, up to tolerances. Paneling
can be seen as two tasks, which are not independent:

1. Segmentation of the reference shape into smaller pieces,
which are called segments.

2. Approximation of each segment by a panel which rep-
resents a manufacturable shape, such that tolerances are
obeyed.

One objective of segmentation is to enable a good solution of
the approximation task, and on the other hand, approximation
provides some information in how to better segment the surface.
Maximising approximation quality by iteratively coupling seg-
mentation and approximation was proposed in various variants
under the name “Variational Shape Approximation”, see e.g.
[23, 113, 114].

In the architectural application, however, the geometric ap-
proximation quality is not the only, and not necessarily the most
important objective. Since often the seams between panels are
highly visible, the segmentation problem is related to the aes-
thetical pattern layout problem (see e.g. polygonal mesh lay-
out, remeshing, and patch decomposition [73] or the work by
Bommes et al. [18]). Visibility of seams implies that in prac-
tice, segmentation often is an architect’s design decision and
only the approximation part is treated algorithmically.

Eigensatz et al. [30, 31] propose a solution to this problem,
consisting of the following loop:

(i) Assignment of a panel type (planar, cylindrical, custom)
to each segment;

(ii) Approximation of each reference segment by a panel such
that tolerances (kink angles, gaps) do not exceed previ-
ously specified thresholds;

(iii) Modification of the assignment and solving (ii) again,
with the intention that cost is minimized. Here we have to
take into account that manufacturing curved panels may
require molds, and that re-using molds can significantly
reduce costs.

Figure 27: Panel optimization w.r.t. different targets: At left, the reference ge-
ometry of the Eiffel tower pavilions, cf. Fig. 33, is approximated by cylindrical
panels. At right, the same approximation was performed with a bigger kink an-
gle tolerance across strips, and a smaller angle tolerance to the upper and lower
neighbours of panels (images: Evolute).

Subproblem (ii) is of a standard kind in numerical optimiza-
tion, but is still challenging because if all degrees of freedom
are exploited, it is global, nonlinear, and has many variables.
Fig. 27 illustrated how this task was solved for the cylindrical
panels of the Eiffel tower pavilions [89, 4].
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Figure 28: Cost-effective paneling: If curved pan-
els (red) have to be made, they should at least be
manufacturable from the same mold in order to save
costs. This principle can apply to custom double-
curved panels as well as to cylindrical panels.

Subproblem (iii) contains a version of set cover; it is there-
fore provably hard, and finding the optimum is out of reach for
today’s computing power. The method of [30] has been applied
to the paneling of the Arena Corinthians in Sao Paolo, cf. [87].

Figure 29: Combined combinatorial and numerical optimization of panelings.
The facade of the Arena Corinthians in Sao Paolo (2014, architect: Anı́bal
Coutinho) is approximated by as few panel types as possible to keep manufac-
turing cost small. The prescribed tolerances (6mm of panel divergence and 5cm
deviation from the reference surface) were achieved by 855 panels made with
61 different molds. The right hand figure shows the types of panels used (green:
planar panels; blue: cylindrical panels: other: double-curved panels). E.g. a set
of 296 cylindrical panels could be made from the same mold, cf. [87].

The segmentation task also has structural implications. For
example, the substructure is often aligned with the panel seams,
directly assigning a structural role to the segmentation geome-
try. Besides some work on quad mesh layout (§9), we are not
aware of any work in architecture that scientifically addresses
this link between segmentation and structural properties.

5.2. Real projects

Research on the architectural paneling problem is still rather
young, and there are only few instances of freeform surfaces
rationalised with curved panels. Cylindrical panels have been
used for the Louis Vuitton Foundation (Figures 1 and 11) and
the Eiffel Tower Pavilions (Figures 33 and 27) Similarly, the
Manta Glasshouse at the Laverstoke Mill in Hampshire by T.
Heatherwick (under construction) rationalises a double curved
freeform surface with cylindrical glass panels that even serve a
structural purpose.

Cost-optimized paneling, including mold reuse, was em-
ployed for the facade of the Arena Corinthians in Sao Paolo
(see Fig. 29 and [87]), the metal paneling of the 2012 Atoll
shopping centre by Formtexx, and the Middle East Centre at St.
Antony’s college in Oxford (under construction, by Zaha Hadid
architects).

5.3. Open problems and research directions

• Given a freeform design, simultaneously optimize the lay-
out of panel seams (maybe considering aspects of an aligned

substructure) and the panels to achieve control over the solu-
tion which provides the best tradeoff in terms of meeting the
design intent and the desired surface quality and staying within
budget.
• Even the simpler problem of decomposing a surface into

panels so that they fulfill important architectural constraints is
a hard task. Research in this direction is probably also related
to shape understanding on a larger scale and to shape segmen-
tation. Using the knowledge which is indirectly present in a
database of realized designs or directly generated models could
be a possible approach (inspired by the segmentation method of
Kalogerakis et al. [55]).
• For most non-flat panels (e.g., right circular cylinders) it

is not known how to best arrange them in order to achieve as
smooth as possible and aesthetically pleasing skins.

6. Geometric support structures

The term support structure can denote different things. In Sec-
tions 6.1 and 6.2 it denotes a technical term in geometry which
is more properly called torsion-free support structure. We re-
turn to the general meaning of the word in §6.3.

Figure 30: A geometric support structure (left, image by Evolute) is the ba-
sis of the outer skin built around the Yas island hotel, Abu Dhabi, designed
by Asymptote Architecture (construction and photo at right by Waagner-Biro
Stahlbau). The abstract support structure consists of an arrangement of quadri-
laterals along the edges of a mesh. The actual beams follow those quads and
intersect at nodes in a torsion-free way. The left hand image in particular shows
the node axes and, highlighted in color, a developable strip of planar quads
contained in the support structure.

6.1. Torsion-free support structures
Figure 30 illustrates this concept: We consider an arrangement
of quads along the edges of a mesh, such that all the quads in-
cident with a vertex do intersect in a common node axis. If we
let the beams of an actual steel structure follow these quads,
then they will not intersect in the unorganized manner of Fig-
ure 3. Rather they create an orderly “torsion-free” intersection
as shown by Figure 31, where the symmetry planes of beams
all pass through the common node axis. The list below shows a
few instances of torsion-free support structures.

• Torsion-free support structures derived from offset meshes.
We have already mentioned that two meshes might be at con-
stant distance from each other. The vertex-offsets and face-
offsets mentioned in §2.4 are special cases of a pair M,M′ of
meshes which have the same combinatorics, and which are po-
sitioned such that corresponding edges e, e′ of M,M′ are paral-
lel to each other. In this case, each pair e, e′ of edges spans a
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Figure 31: Detail of support structure as-
sociated with a mesh M. The support
structure consists of the node axes “a(v)”
through every vertex v and blue quads
through every edge e. Aligning beams
with the support structures yields torsion-
free nodes.

quad of a torsion-free support structure, and each pair v, v′ of
vertices spans a node axis. For more details of this construction
we refer to [80]. Figure 32 shows an example where M,M′ are
not only parallel, but even at constant face-face distance. This
is possible because M is a conical mesh (cf. §2.4); the node
axes of the support structure in this case coincide with the axes
of the cones associated with the conical mesh.

Figure 32: A pair of quad meshes with planar faces which are at constant face-
face distance of each other. Both meshes M,M′ are conical. In this rendering,
the support structure which connects M,M′ is materialized as quadrilateral ele-
ments which support planar glass panels. This image, created by B. Schneider,
appeared on the front cover of the 2006 SIGGRAPH conference proceedings
[64], and marks the establishment of “architectural geometry” as a separate
discipline of geometry processing.

• Torsion-free Support structures derived from parallel poly-
hedral meshes. For any pair M,M′ of offset meshes at distance
d we may define a Gauss image mesh S = 1

d (M′−M) by vertex-
wise linear combination, which is again parallel to M,M′. If
the distance is measured between faces (resp., vertices) then
S is tangentially circumscribed to (resp. inscribed in) the unit
sphere. Conversely, if M, S are given, M′ is reconstructed as
M′ = M + dS . This construction establishes a link to discrete
differential geometry. S is a polyhedral surface playing much
the same role as the continuous Gauss image, i.e., the unit nor-
mal vector field, in continuous differential geometry [80, 15]. It
applies not only to the two special kinds of offsets mentioned
here, but to all cases where meshes M,M′ are parallel and at
approximately constant distance from each other. The vertices
of S represent a collection of normal vectors associated with
the corresponding vertices of M.
• Semidiscrete torsion-free support structures. Quad-mesh

based support structures contain two families of developable
strips, each constituting of a sequence of quadrilaterals (one of
them is highlighted in color in Figure 30, left). One can imagine
a limit process where the support structure becomes finer and

finer, with ever smaller and denser quads, similar to Fig. 10.
In the limit, the developable strips will become smooth devel-
opables. Selected developables from such a semidiscrete sup-
port structure can be found in the curved structural members of
the Eiffel tower pavilions, see Fig. 33. The geometric consider-
ations which lie at the bottom of this construction are detailed in
[89, 4]. In short, since each flank of each beam is to be made by
bending, it has to be developable. Since the side flanks should
be orthogonal to the reference surface, known facts from differ-
ential geometry imply that the beam should follow a principal
curvature line. In summary there is hardly design freedom left,
after the reference surface is chosen.

Figure 33: The Eiffel
Tower Pavilions feature
beams with rectangu-
lar cross-section whose
side flanks are man-
ufactured by bending.
This makes them de-
velopable, and makes
the entire beam arrange-
ment a semidiscrete ver-
sion of the support struc-
ture of Fig. 30, left (im-
age: Evolute).

• Application: Shading systems. For certain applications,
not the boundary meshes of a support structure are the main
object of interest, but the collection of node axes (see Fig. 30,
left). This has been demonstrated by Wang et al. [111] who use
geometric support structures as shading systems. We refer to
§10 and Figure 50.
• Support structures of hexagonal combinatorics. Triangle

meshes with the “incircle-packing” property have a natural ge-
ometric support structure associated with them (see [88] and
Figure 34): The vertices of the mesh are centers of balls which
touch each other, and the common tangent planes carry the
faces of the support structure. The aspect of packing led to a
more general view of “cell packing structures” which are sys-
tematically discussed in a survey paper by Pottmann et al. [79].

Figure 34: Hexagonal support structure. Here a triangle mesh (not shown)
has the property that we can find spheres (shown only by their circular cross-
sections) centered in the vertices which touch each other. The common tangent
planes of these spheres are the faces of a support structure (visible at boundary
in front). This is part of a design created by H. Schmiedhofer for [88].

6.2. Real projects involving torsion-free support structures.

Large-scale freeform steel gridshells suffer from the problem of
torsion in the nodes, where several steel beams meet. For tri-
angular structures, this is basically unavoidable (cf. Figure 3).
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Quadrilateral structures have more degrees of freedom to re-
move or at least minimise node torsion. This fact was used for
the enveloping quadrilateral structure of the Yas Marina Ho-
tel in Abu Dhabi, which follows a geometric support structure
in the sense defined here, see Figure 30. An even more lit-
eral realization of that kind of support structure is furnished by
the roof of the Kogod courtyard, Smithsonian National Portrait
Gallery, Washington DC, see Figure 51. A similar arrangement,
but not based on quad mesh connectivity, is exhibited by the
2012 Kreod pavilions London, see Fig. 35.

6.3. Support structures in the general sense
The entire topic of structures which have a supporting function
is, of course, a huge area in engineering which is not easily sys-
tematized. The following brief paragraphs on this topic focus
on “interesting geometry” and are extremely selective.

We mention Vladimir Shukhov as a pioneer of modern struc-
tural engineering. His works engineered for the 1896 Nishny
Novgorod fair (the hyperpoloid tower, his steel tensile struc-
tures, and the gridshell exhibition pavilion) were the first of
their kind.

Figure 35: The hexago-
nal pattern exhibited by the
Kreod pavilions is derived
from the dual of a triangle
mesh with the ball-pack-
ing property, leading to nice
nodes and an even distri-
bution of hexagons (image:
Kreod).

As one example of a surprising development we mention
tensegrity structures (consisting of elements of various kinds,
e.g. cables allowing only tension, or struts only allowing com-
pression), the term coined by Buckminster Fuller in 1960. A
recent example is the 2009 Kurilpa Bridge, the world’s largest
tensegrity bridge. This topic is very rich also from the mathe-
matical viewpoint, see e.g. [101] and [24].

A current trend is the use of free forms. This is seen e.g. in
projects at a grand scale currently awaiting realization. We pick
a random example, namely the Taiwan Tower by S. Fujimori
(architect) and Bollinger and Grohmann (engineers, see [90]),
with its “organic fiber” design. It is also seen in algorithmic
tools such as the algorithmic approach to tree-like compression
support structures for slabs by Lachauer and Block [61]. A sig-
nificant number of physically realized freeform support struc-
ture are made from wood, where CNC machining can be eas-
ily employed. Examples are provided by the work of Shigeru
Ban, such as the 2008 Centre Pompidou in Metz (France), cf.
Fig. 36, or the 2008 Haesley Nine Bridges Golf Club. Intrigu-
ing wooden freeform structures can also be produced by layers
of thin wooden plates, e.g. in the 2010 Rive Gauche Hermes
Store in Paris, by Rena Dumas Architecture Interieure.

6.4. Research directions
• It would be very interesting to know what other structures

besides the torsion-free support structures (in the narrow sense

Figure 36: Wooden support structure, Centre Pom-
pidou in Metz (France) by architect Shigeru Ban,
and engineered by Arup in 2008. Production of the
curved members was by CNC machining, with an
estimated 50% of the raw material being chipped
away during the process (photo: Annie Dalbéra).

of the word) have such a rich relation to geometry. Especially
we would like to ask this question for fully 3D structures.
• In structures where nodes have valence 3, congruent nodes

is a topic of current research, see also §7.
• We see inspiration from nature in many aspects, but biomi-

metic architecture is surely not yet fully explored, if the many
successes of biomimetics in technology are any guide.
• It is possible to perfectly align prismatic beams (having the

same cross-section) if they follow a mesh which has a parallel
mesh at constant edge-edge distance [80]. It is known that these
meshes constitute a discrete version of the Laguerre-isothermic
surfaces, but it is an open problem to understand the variety of
possible shapes of these meshes.

7. Repetitive elements

When paneling freeform surfaces, tolerances are often large
enough to allow for repeating panel shapes (see §5). For struc-
tural elements like nodes, beams, and frames, however, the tol-
erances are often tighter and the geometry of these structures
is often more complex than that of the outer skin. Therefore
optimising freeform structures for repetitive elements is highly
challenging and sometimes impossible. This complicates lo-
gistics and increases production cost, and is a typical feature
of freeform shapes in architecture. The following paragraphs
discusss some research on structures whose constituent parts
exhibit repetition.

7.1. Structures aiming at smoothness

The aim of having as few differently shaped basic elements in
a design motivated Singh and Schaefer [96] to optimize trian-
gle meshes so that there is only a relatively small set of differ-
ent faces up to some chosen tolerance. A similar approach to
reduce the number of essentially different faces in (non-poly-
hedral) quad meshes has been taken by Fu et al. [36]. A com-
mon observation of these papers is that the goal of congruent
faces works against mesh fairness. A similar behaviour is ex-
pected for the goal of having congruent node configurations in
meshes with straight edges. However, giving up the straight-
ness of edges and using circular arcs instead, one can achieve
congruent and even regular nodes for triangular, quad and hex
combinatorics (see [14] and Figure 37); covering a surface with
families of congruent circular arcs is also possible [6].
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Figure 37: For a proof of concept, the design sur-
face of the Eindhoven Blob by M. Fuksas has been
covered by circular arcs such that in each node 6
arcs meet at an angle of exactly 60 degrees be-
tween them. Moreover, each node is equipped with
a virtual tangent plane tangent to all arcs emanating
from that node.

7.2. Non-smooth structures
Element repetition for meshes is probably best achieved if one
thinks of non-smoothness as a design element and intentionally
plays with the rough surface, or with no surface at all. A strong
indicator for the success of this line of thinking is work by Zim-
mer et al. [117] on triangle-based point folding structures. They
represent freeform shapes by a non-smooth assembly of pyra-
midal panels of which only a few different kinds are used. Of a
similar spirit is the work on representing freeform shapes with
the plastic zometool construction set, offering only 9 different
edges connecting nodes which allow to connect edges only in a
finite number of angles [120, 119].

The previous examples concern the representation of arbi-
trary shapes with restricted means. We next discuss even more
restricted geometric structures which no longer are capable of
assuming all shapes. The so-called Lobel frames were intro-
duced by the French architect Alain Lobel, who presented a
large number of designs made from congruent equilateral trian-
gles only. Lobel frames which are meshes, cf. Figure 38, appear
to be non-smooth approximations of piecewise developable sur-
faces. This is in accordance with the fact that the “Lobel” mesh
itself is developable as long as all vertices have degrees 6 and a
total angle sum of 360◦.

Figure 38: In a “Lobel” mesh consisting of equilateral triangles, the total angle
sum at a valence 6 vertex is 360 degrees. This makes such meshes developable.
This rendering, visualizing developability by tangential lighting, shows a Lobel
mesh which approximates the design surface of the Cour Visconti courtyard in
the Louvre. This approximation is far from accurate, which is consistent with
the shape restrictions of developable surfaces, cf. [50, 47].

As to structures which contain repetition but which are not
surfaces at all, we refer to the study of properties and optimiza-
tion of honeycombs by [52], which are dual to “Lobel” meshes
and which represent torsion-free support structures in the nar-
row sense discussed by §6, but with the additional property

that all nodes are congruent. One can easily represent arbi-
trary shapes by honeycombs, but one cannot enforce the honey-
comb’s walls to be orthogonal to the reference surface unless it
is developable. See Fig. 39 for an example.

Figure 39: Honeycomb structures are defined as torsion-free support structures
where all walls meet at 120◦. These two examples have hex mesh combinatorics
(left) and “reciprocal structure” combinatorics (right), cf. [52].

Discarding smoothness and replacing it by a different kind
of regularity, Huard et al. [47] use a voxel-based method to rep-
resent shapes by planar panels guided by a small set of genera-
tors, see Figure 40. This does not only restrict panel shapes in
the way one could say that “Lobel” meshes are generated by an
equilateral triangle, but also restricts the positions of panels in
space.

Figure 40: Planar panels
which are repetitive in size,
shape and position. Here the
same reference surface has
been represented by two dif-
ferent sets of generators, cf.
[47].

7.3. Real projects involving repetition
In practice the problem of introducing repetition is circumvented
rather than solved by not using true freeform structures at all.
For example, complex shapes can be derived from basic geome-
tries which admit symmetries, like tori for the Strasbourg train
station (Fig. 16), or spheres in case of the Sydney Opera house.
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Figure 41: A tea strainer’s domed shape can be flattended to produce a regu-
lar planar parallelogram lattice of wires. It represents a PQ mesh of constant
edgelength, generated by parallel translating one polyline along another. Such
shapes can approximate paraboloids of revolution, since paraboloids are also
generated by parallel translating a parabola along another one.

Repetition in smaller elements includes meshes where all
edges have the same length. This is a property claimed e.g. for
the roof of the 1990 “Aquatoll Neckarsulm” swimming pool
by engineers Schlaich Bergermann and Partners, and can be
achieved by meshes which are generated by parallel translat-
ing one constant-edgelength polyline against another one, see
Fig. 41. Another example of this principle is the 1974 “Mann-
heim Multihalle” where formfinding was based on a hanging

14



chain model, see [40]. It is difficult to find examples where rep-
etition has been enabled by optimization. Beaublanc Stadium in
Limoges (in construction) was to be one: By a clustering algo-
rithm it was tried to introduce repetition in the backing frames
of the stadiums’ triangular panels, itself consisting of a smaller
triangle on the back of the panel. It turned out that tight toler-
ances prevented a useful level of repetition.

7.4. Directions of further research
• The digital design of “Lobel” frames deserves further study.

Initial results have been achieved e.g. by [50].
• It is not yet clear how much repetition we can achieve if we

give up the smoothness constraint, but still want to approximate
arbitrary shapes.
• A related problem is the development of minimal sets of

construction elements (like zometool) which offer sufficient flex-
ibility for applications in architecture.

8. Patterns

Geometric patterns have fascinated mankind since ancient times.
Artists had an excellent understanding of this subject and stud-
ied patterns and tilings thoroughly. This is especially true for
the islamic world. In the context of freeform architecture, pat-
terns can arise in many ways, including the arrangement of pan-
els, the subconstruction, in additional functional layers such as
shading systems or simply as textures. We here point to the few
research contributions which look at these patterns not just as
textures (which in computer graphics is a vast area in itself),
but take an additional viewpoint, which then is mainly related
to function and manufacturing.

Figure 42: Different kinds of polyhedral patterns which exhibit triangular and
flat quadrangular surfaces. In each case, the number of quadrangles is low
enough not to hinder design freedom.

8.1. Patterns from straight beams and flat panels
Faces and edges of a polyhedral mesh may form a much more
interesting geometric pattern than the simple ones coming from
quad or triangle meshes of largely regular connectivity. The
patterns can be a design element, but can also contribute to
functional and manufacturing requirements. The hybrid mesh
in the Cour Viscounti of the Louvre (covering the islamic art
museum, see Figure 5) is a simple example. Some of the many
further possible designs of hybrid polyhedral meshes covering
the same design surface are illustrated in Fig. 42.

A very recent project exhibiting an ornamental polyhedral
pattern is the Yas Mall gridshell in Abu Dhabi by Affan Inno-
vative Structures (see Fig. 43). As this design exhibits mostly
triangles, planarity of the few other faces is easy to achieve.

Figure 43: Yas Mall, Abu Dhabi: Gridshell with ornamental polyhedral pat-
tern. Image at left: Stutzki Engineering Newsletter. Image at right, showing
construction: Aldar.

Various remarkable patterns arise in connection with so-
called circle packing meshes [88]: these are triangle meshes
with the property that in-circles of adjacent faces touch each
other on the common edge. The derived patterns appear in form
of polyhedral meshes (see e.g. Fig. 44) or torsion free support
structures.

If one considers a polyhedral mesh as an approximation of a
smooth surface and therefore requires fairness properties of ap-
propriate mesh polylines and of the Gaussian image, one is sub-
ject to restrictions imposed by differential geometry of surfaces.
Examples for this are the relation between PQ meshes and con-
jugate parameterizations discussed in §2.3.1, or the non-con-
vexity of planar faces in negatively curved regions shown in
Figure 8. However, if one sacrifices fairness or interprets fair-
ness in nonstandard ways, one may be able to overcome such
restrictions. An example is seen in the tri-hex structure of Fig.
44, left, whose hexagons in negatively curved areas are convex,
which is made possible by lack of fairness of the Gauss image
mesh, cf. [88]. Another example is furnished by the quad mesh
of Fig. 44, right, whose edges do not imitate a smooth network
of curves, cf. [52].

Figure 44: Polyhderal patterns whose smoothness is not expressible by small-
ness of differences of adjacent edges, and which have occurred as by-products
of geometric investigations. Left: Tri-hex patterns derived from a circle-
packing mesh such as shown by Figure 34. Right: Quad pattern derived from a
“honeycomb” torsion-free support structure.

Song et al [98] recently developed an interactive design sys-
tem for patterns from beams arranged in so-called reciprocal
structures, exploiting the close relation of such structures to pla-
nar tilings from regular polygons.

8.2. Patterns emerging from curved and long range elements

Manufacturing constraints on architectural meshes may be im-
posed not only on faces or nodes, but also on long range ele-
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ments. For example, in a triangle mesh, one may impose spe-
cial conditions on some or all of the dominating mesh polylines.
Triangle meshes in which selected polylines are planar, circular
or geodesic (i.e., shortest paths) have been investigated by Deng
et al. [27]. This subject is related to the geometry of webs [8]:
a triangle mesh of regular combinatorics is a discrete version of
a hexagonal web.

In architecture, patterns of geodesics may arise naturally:
timber support elements are preferrably aligned with geodesics
[74] and cladding a surface with wooden panels which do not
bend sideways implies that they have to follow geodesics (see
[54, 78] and Fig. 13). The computational design of geodesic
patterns benefits from the use of results from differential geom-
etry, such as Jacobi fields and geodesic vector fields [78].

The two above-mentioned papers [78, 27] lay out a compu-
tational framework for the design of geodesic patterns of wooden
elements which are manufacturable by bending (Fig. 45), as op-
posed to CNC milling (Fig. 36).

Figure 45: A 3-web of
curves which are geodesic
within tolerance, is the ba-
sis of this weaving design
manufacturable by bend-
ing wooden panels. The
geodesic property, if rigidly
enforced, is a global prop-
erty of a curve — see also
Fig. 13.

8.3. Brick patterns
Architects Gramazio and Kohler use industrial robots to fabri-
cate fascinating 3D structures, in some of which the emergence
of patterns is a design element. We just mention here their sem-
inal work on the robotic assembly of bricks to curved, non-
standardized walls [19, 7], which is an example of the fabrica-
tion-aware digital design mentioned in §1. The robot approach
has been pushed even further, to assembly by flying drones, see
Figure 46 and [39].

Figure 46: Robot-assembled and flight-assembled architecture. Left: Pike Loop
project by Gramazio & Kohler. A roboter is assembling a wiggled brick bond,
cf. [7]. Right: Robot helicopters were programmed to stack bricks into a six
metre-high tower at the FRAC Centre in Orléans, France, see [39].

8.4. Real projects
Today there exists a large variety of patterns on freeform struc-
tures, and an exhaustive treatment would exceed the scope of

this paper. Patterns often define the visual impression of a
building, and they may be formed by different means (seams
of a paneling, a supporting structure, . . . ). Already the projects
discussed in the rest of this paper exhibit a large range of pat-
terns, in many cases patterns from planar faces (triangular, quad-
rilateral, . . . ). There are examples where a pattern exhibits mesh
connectivity even if this is not apparent from visible vertices,
edges and faces (Figure 47, left). Polygonal patterns contain-
ing random elements evolve if a surface is segmented by a set of
cutting planes or curves (cf. the 2008 Beijing National Stadium,
or the work by Toyo Ito shown in Figure 47, right).

Figure 47: Patterns. Left: A pattern of circles covers Selfridges in Birmingham
(2003, design by Future Systems). This pattern has regular triangular mesh con-
nectivity, without vertices or edges being shown. Right: From the mathematical
viewpoint, the 2002 temporary pavilion by Toyo Ito at the Serpentine Galleries
(Hyde Park, London) has the combinatorics of a so-called arrangement of lines.

8.5. Further research directions

• It may be rewarding to systematically study patterns of flat
panels in polyhedral surfaces which are capable of representing
freeform shapes. For initial work in this see [52, 50].
• Maybe certain patterns, especially those which do not con-

tain long dominating mesh polylines, have the potential to blend
well with element repetition?
• There are many open but hard problems in the geometry of

webs, which admittedly deserve interest mostly from a mathe-
matical perspective, but may eventually form the basis of re-
markable architectural designs. For example, a complete clas-
sification of all hexagonal webs from circles (in the plane or on
the sphere) is still missing. It is easier to classify these circular
webs if they are not in the plane or on the sphere, since then
one can show that they must lie on so-called Darboux cyclides,
whose circular webs have been recently classified [82].

9. Statics-aware design

9.1. Self-supporting masonry

Naturally, stability is of paramount importance in all architec-
tural designs. However it is only recently that it can be taken
into account during the design process in an automatic way. The
complex nature of the question of stability and the involvement
of many factors besides geometry makes statics-aware design
feasible only in such situations where specifying the geome-
try already allows for statics analysis, and the designer is not
held up by having to additionally specify structural elements
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in detail. Such a situation is present with shells and in par-
ticular with masonry. Here the work of Maxwell in the 19th
century on reciprocal force diagrams [68] and Heyman’s 1966
“safe theorem” model [44, 45, 46] is the basis of recent work on
finding discrete compressive force networks contained within
the boundary of masonry structures, cf. [71, 2, 35]. Using such
thrust networks for design is the work of P. Block and coauthors
[10, 13, 9, 12, 105, 106]. See Fig. 48 for an example.

Figure 48: The Martin Luther King Jr. Park Stone Vault in Austin, Texas,
represents freeform masonry which is stable once sliding of building blocks
against each other is prevented. Left: model. Right: thrust network of com-
pressive forces, and reciprocal force diagram (source: Block research group.
ETH Zürich).

A different kind of approach is to represented structures by
networks of rigid blocks [66], whose conditions on the struc-
tural feasibility were incorporated into procedural modeling of
buildings [112]. Yet another method is to model structures as
damped particle-spring systems (“dynamic relaxation” meth-
ods, cf. [57, 5]), mirroring the rich tradition in architecture
of designing self-supporting surfaces using hanging chain or
membrane models, for instance by Frei Otto and Antoni Gaudi.
A new contribution is optimizing the topology of elastic grid
shells by variational methods [42].

Returning to the thrust network method, its introduction by
[9] was the motivation for further developments. One such de-
veloplment is to identify an auxiliary discrete surface generated
from reciprocal force diagrams with a finite element discretiza-
tion of the Airy potential which occurs in the continuous shell
equations [35]. Vouga et al. [109] introduced the topic to graph-
ics and geometric modeling, and interpreted thrust networks in
the context of discrete differential geometry. This contribution
invited follow-up work in geometric computing: [72] studies
the tesselation of self-supporting surfaces into blocks, while
[38, 63] deal with efficient design.

Figure 49: Optimizing surfaces for the self-supporting property. Left: Cut-
ting holes in a self-supporting surface will destroy the self-supporting property.
Right: Vouga et al. [109] show how to find the closest self-supporting surface.
The image also shows the ficticious thrust network of forces which by Hey-
man’s “safe theorem” guarantees stability.

Also the combination of statics-aware design with the topic
of polyhedral surfaces (cf. §2) has been investigated: [86] dis-

cuss statics-sensitive quad meshing with planar faces. Equi-
librium forces, and the compressive nature of such forces, can
however also be incorporated as additional side conditions in
the modeling of polyhedral meshes (which is done by [100],
see §11)).

9.2. Real projects
Methods of statics-aware design have mostly been applied to
masonry. Freeform masonry has been in existence for many
centuries. Impressive width/span ratios have been achieved by
gothic vaults, e.g. by the chapel of King’s College in Cam-
bridge. As to real projects which are actually based on the
methods discussed in this chaper, we have already mentioned
the stone vault to be built in the Martin Luther King Jr. Park in
Austin, Texas (Figure 48). The structural vaults of a new mu-
seum at Mapungubwe, South Africa, are conceptually similar,
and so was a smaller temporary installation of a freeform Cata-
lan vault on the campus of ETH Zürich (the term Catalan vault
refers to the technique of laying bricks over a wooden form).

9.3. Open problems and research directions
The area of statics-aware design has been explored only to a
very small degree, which can be seen already from the very spe-
cific and narrow nature of the topics discussed in this section.
Open problems include:

• Implement a system for form-findig which combines stat-
ics, manufacturing and further aspects like shading and lighting.
• Intuitively, some shapes are more stable than others. Inves-

tigate which of the possible ways of exactifying this property is
algorithmically accessible, especially for finding “most stable”
shapes.
• Motivated by the Catalan vault technique, we are inter-

ested in the the question of minimal scaffolding for structures
which are eventually self-supporting once they are complete,
but do not have this property during assembly. [28] has recent
results in this direction.

9 a.m.

noon 3 p.m.
Figure 50: Geometric support struc-
tures can be employed as shading sys-
tems, for freeform skins as well as for
conventional flat facades. When opti-
mizing for optimal blocking of light,
the connecivtity of the shading system
is part of the solution, see [111].

Figure 51: The roof of the Ko-
god courtyard in the Smithsonian
Portrait Gallery by Foster and part-
ners physically realizes a torsion-
free support structure. It is op-
timized also for shading (image:
Foster and partners).
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10. Shading, lighting and other functional aspects

10.1. Shading and lighting systems

The distribution of light within a building is of great impor-
tance, but so far has received little attention from the Architec-
tural Geometry community. Several of the geometric structures
discussed in this paper are relevant for shading, e.g. torsion-
free support structures (see Figure 51), which can be optimized
for shading effect. A more general treatment of this topic has
been based on interpreting them as discrete line congruences
and using basic insights from line geometry for the correspond-
ing optimization [111, 51], see Fig. 50. Extensions to structures
which are not only quad-based have been briefly addressed by
[79], but there is a lot of room for improvement and alternative
realizations involving freeform geometry.

10.2. Kinematic flexibility in structures

Dynamic elements are very attractive in architecture. For some
purposes, in particular shading and lighting, the transformation
of one geometric shape to another is even necessary for func-
tion — static structures are limited in their potential to accu-
rately control daylight’s access to a building. Research in this
area includes [41], where existing software tools are combined
to achieve light control by origami lightweight structures. Ki-
netic shading systems have actually been realized, e.g. for the
2010 “Aldar Central Market” in Abu Dhabi, using a system de-
veloped by a C. Hoberman and Buro Happold joint venture.

A very interesting direction of research is on designs which
are able to change their size (such as C. Hoberman’s spheres,
see below) or their shape. There are, however, not many contri-
butions to this question. T. Tachi [99] studies foldable structures
inspired by origami. In §4.4 we have already mentioned Barton
et al. [6] who presented tranformable designs from circular arcs
joined smoothly, cf. Figure 26.

Figure 52: The Al-Bahar office
towers in Abu Dhabi by Aedas ar-
chitects feature an automated dy-
namic external shading system in-
spired by traditional islamic motifs.

10.3. Real projects

Shading structures have of course been built for a long time, and
effective techniques evolved by way of practice and experiment.
We only mention that various references on the use of geometry
and light in art and architecture can be found in [59], and for a
recent example we point to the large Dome covering the new
Louvre Abu Dhabi, which consists of several layers of metal
cladding optimised for both shading and casting visible rays of
light onto the “micro-city” covered by the dome [60].

For real projects involving dynamic elements, we refer to
the Al-Bahar Office towers in Abu Dhabi, see Figure 52, and
solutions by Hoberman Associates. C. Hoberman is widely

Figure 53: A kinetic facade based on bionic principles by Knippers Helbig,
Stuttgart, is part of the 2012 One Ocean thematic pavilion by Soma Architec-
ture, which has been built in Yeosu, South Korea.

known especially for his concept of transformable design. These
are animated structures which change over time. The most
famous is the well-known Hoberman sphere, where a sphere
changes its size due to a complicated folding mechanism. Also
hyperbolic surfaces like a transformable helicoid have been re-
alized in this way.

Biomimetics research by J. Knippers and S. Schleicher at
the Institute of Building Structures and Structural Design, Uni-
versity of Stuttgart takes inspiration from plant movement to
develop novel bending and folding structures for various ap-
plications, including adaptive shading systems. Their product
Flectofin is inspired by the pollination mechanism of strelitzia
reginae — see Figure 53.

Striking designs do not need to employ novel mechanisms:
the eye-shaped L’Hemisfèric building by S. Calatrava employs
a series of folding-door mechanisms to open gigantic lids.

10.4. Further research directions

The areas discussed in this section represent a broad field of
research possibilities.

• Shading and lighting based on flexible structures is widely
open for future research, and the same is true for shape chang-
ing transformable design.
• In general, kinetic / transformable / flexible structures in

architecture constitute a promising but difficult research direc-
tion. Challenges include the necessity of dynamics analysis, in
addition to statics.
• Inspiration from nature has a great protential, not only for

kinetic designs.

11. Interactive design systems and design exploration

Technical papers about the geometric problems related with
freeform architecture sometimes create the impression that those
problems are solved by an optimization process which has a
unique solution. Such a situation of course would be at odds
with the creative processes instrumental to both design and ar-
chitecture. Obeying constraints is of course nothing new to de-
signers, and architects are well accustomed to statics and prop-
erties of materials. However, within the context of architectural
geometry there are side-conditions which are of a complex geo-
metric nature and which are not easily understood without com-
putational assistance. As we have seen above, such constraints
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may come from fabrication, statics, space requirements, light-
ing and other sources.

As to the manifold and varying nature of design exploration,
the reader is referred to [56]. This section does not aim for that
kind of generality and discusses design exploration only in so
far as the above-mentioned constraints are concerned: In order
for an artist to make full use of all degrees of freedom (subject
to constraints), it is necessary to find efficient algorithms for
exploring the design space, and to investigate design variations.
In this way a designer can finally select that design which best
matches the original intent.

Design variations can be actively generated by using vari-
ous types of editing tools, which are most frequently handle-
based. For advanced tasks it is crucial that the editing tool goes
beyond standard mesh editing and produces results which fulfill
the constraints. Unfortunately, commercially available software
does not provide such tools at the time of writing. Contribu-
tions to this problem are provided by [25] (achieving speed by
exploiting the GPU, but disregarding statics) and [100] (achiev-
ing speed by a clever choice of variables and by not attempting
optimization).

Another way of exploring the design space is to let the sys-
tem suggest some variations or expose the user in an appropriate
way to the space of admissible designs. One solution for this
problem has been proposed by Yang et al. [115, 26]. They con-
sider meshes and view the collection of the N vertices which are
allowed to change as a point in 3N-dimensional space. In that
space, the constraints define a certain set to be explored. An
appropriate collection of quality functions defines those part of
the constraint variety which are useful (e.g. aesthetically pleas-
ing) designs. The method of Yang et al. works by approxima-
tion and does not allow for a change in combinatorics. For the
special case of polyhedral meshes, Poranne et al. [75] devised
a method for exploring the linear subspaces in the constraint
variety.

Another approach to exploring the design space is to pa-
rametrize it with variables other than the vertices, so that their
manipulation preserves the necessary properties by design. In
order to preserve planarity of faces in a deformation, [107] used
per-face affine maps, and [108] extended them to projective
maps. Using these maps as variables, it is possible to perform
some deformation, interpolation and other editing operations,
obeying planarity constraints.

Research directions
• We need a better understanding of shape spaces (constraint

varieties). They depend on the used variables (coordinates).
Exploration based on simple submanifolds (in extension of the
linear subspaces in the space of polyhedral surfaces) could be
interesting, especially from a geometric perspective.
• So far design space exploration has been largely based on

local approximations of the constraint variety. More global ex-
ploration strategies would be highly welcome.
• Freeform skins have to be studied in connection with re-

quirements on the interior of a building.
• There seems to be a lot of room for research on compu-

tational design systems dealing with standard architecture and

considering additional aspects such as energy efficiency (e.g.
via the optimized control of sun light entering the building).
• In order to respect aspects of function and fabrication, one

has to combine geometric design with simulations. The latter
have to be simplified so as to capture the essential effects and
allow for interactive design. Such design tools are not limited to
architecture and are expected to become popular in many other
application areas. An example of such a system for the case of
furniture design has been presented by Umetani et al. [104].

Conclusion

Our aim was to compile an overview of recent research around
freeform architecture in an effort to identify core tasks and re-
sults, illustrate the discussion by real world examples and to
outline some of the many directions for future research. Par-
tially those go well beyond architecture, which probably con-
stitutes the most important message of this survey: Next gen-
eration geometric modeling systems should be much easier to
use and contribute to a shorter product development cycle. One
way of getting closer to this goal is to integrate simple simu-
lations and constraints around key aspects of function, fabrica-
tion and usability into shape modeling systems. As remarked
by a reviewer of this paper, there are particular challenges in
implementation: All these tools should be made available in a
way which supports and broadens the design process rather than
having a restrictive effect by providing ready-made solutions.
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[58] Kilian, M., Flöry, S., Chen, Z., Mitra, N., Sheffer, A., & Pottmann, H.
(2008). Curved folding. ACM Trans. Graph., 27(3), # 75,1–9. Proc.
SIGGRAPH.

[59] Kiser, T., Eigensatz, M., Nguyen, M. M., Bompas, P., & Pauly, M.
(2012). Architectural caustics – controlling light with geometry. In
L. Hesselgren et al. (Eds.), Advances in Architectural Geometry 2012
(pp. 91–106). Springer.

[60] Koren, B. S. (2010). Louvre Abu Dhabi 1/33 — fabrication of a large-
scale physical light-test model. In C. Ceccato et al. (Eds.), Advances in
Architectural Geometry 2010 (pp. 163–74). Springer.

[61] Lachauer, L., & Block, P. (2012). Compression support structures for
slabs. In L. Hesselgren et al. (Eds.), Advances in Architectural Geometry
2012 (pp. 135–46). Springer.

20

http://www.block.arch.ethz.ch/brg/files/IABSE-IASS2011_Block-Lachauer.pdf
http://www.geometrie.tuwien.ac.at/floery/papers/simon_floery_dr.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/33803/70272308.pdf


[62] Li, Y., Zhang, E., Kobayashi, Y., & Wonka, P. (2010). Editing operations
for irregular vertices in triangle meshes. ACM Trans. Graph., 29(6),
#153,1–12. Proc. SIGGRAPH Asia.

[63] Liu, Y., Pan, H., Snyder, J., Wang, W., & Guo, B. (2013). Computing
self-supporting surfaces by regular triangulation. ACM Trans. Graph.,
32(4), #92,1–10. Proc. SIGGRAPH.

[64] Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., & Wang, W. (2006). Ge-
ometric modeling with conical meshes and developable surfaces. ACM
Trans. Graph., 25(3), 681–689. Proc. SIGGRAPH.

[65] Liu, Y., Xu, W., Wang, J., Zhu, L., Guo, B., Chen, F., & Wang, G. (2011).
General planar quadrilateral mesh design using conjugate direction field.
ACM Trans. Graph., 30, #140, 1–10. Proc. SIGGRAPH Asia.

[66] Livesley, R. K. (1992). A computational model for the limit analysis of
three-dimensional masonry structures. Meccanica, 27, 161–172.

[67] Martin, R. R., de Pont, J., & Sharrock, T. J. (1986). Cyclide surfaces
in computer aided design. In J. A. Gregory (Ed.), The mathematics of
surfaces (pp. 253–68). Clarendon Press.

[68] Maxwell, J. (1864). On reciprocal diagrams and diagrams of forces.
Philosophical Magazine, 4(27), 250–261.

[69] Meredith, N., & Kotronis, J. (2012). Self-detailing and self-documenting
systems for wood fabrication: The Burj Khalifa. In L. Hesselgren et al.
(Eds.), Advances in Architectural Geometry 2012 (pp. 185–98). Sprin-
ger.

[70] Milson, R. (2001). An overview of Lie’s line-sphere correspondence.
Contemp. Math., 285, 1–10.

[71] O’Dwyer, D. (1998). Funicular analysis of masonry vaults. Computers
and Structures, 73, 187–197.

[72] Panozzo, D., Block, P., & Sorkine-Hornung, O. (2013). Designing unre-
inforced masonry models. ACM Trans. Graph., 32(4), #91,1–12. Proc.
SIGGRAPH.

[73] Peng, C.-H., Barton, M., Jiang, C., & Wonka, P. (2014). Exploring
quadrangulations. ACM Trans. Graph., 33, #12,1–13.

[74] Pirazzi, C., & Weinand, Y. (2006). Geodesic lines on free-form surfaces:
optimized grids for timber rib shells. In 9th World Conference on Timber
Engineering (pp. 72–9).

[75] Poranne, R., Chen, R., & Gotsman, C. (2013). On linear spaces of poly-
hedral meshes. Preprint arXiv:1303.4110.

[76] Poranne, R., Ovreiu, E., & Gotsman, C. (2013). Interactive planarization
and optimization of 3D meshes. Comput. Graph. Forum, 32(1), 152–
163.

[77] Pottmann, H., Asperl, A., Hofer, M., & Kilian, A. (2007). Architectural
Geometry. Bentley Institute Press.

[78] Pottmann, H., Huang, Q., Deng, B., Schiftner, A., Kilian, M., Guibas,
L., & Wallner, J. (2010). Geodesic patterns. ACM Trans. Graph., 29(4),
#43,1–10. Proc. SIGGRAPH.
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