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Abstract. We discuss three geometric constructions and their relations,
namely the offset, the conchoid and the pedal construction. The offset
surface Fd of a given surface F is the set of points at fixed normal dis-
tance d of F . The conchoid surface Gd of a given surface G is obtained
by increasing the radius function by d with respect to a given reference
point O. There is a nice relation between offsets and conchoids: The
pedal surfaces of a family of offset surfaces are a family of conchoid sur-
faces. Since this relation is birational, a family of rational offset surfaces
corresponds to a family of rational conchoid surfaces and vice versa.

We present theoretical principles of this mapping and apply it to
ruled surfaces and quadrics. Since these surfaces have rational offsets
and conchoids, their pedal and inverse pedal surfaces are new classes of
rational conchoid surfaces and rational offset surfaces.
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1. Introduction

There is a large variety of contributions dealing with offset constructions
discussing different aspects, see e.g. [2], [4], [5], [10], [11], [16], [21] and ref-
erences on the topic in [19]. Conchoidal constructions, although not so ex-
tensively studied, have been recently addressed by different authors, see for
instance [1], [12], [17], [18]. Both constructions were already used in the past:
Leibnitz studied parallel curves and ancient Greeks used conchoids. Nowa-
days they are also used in practical applications: For offsets see for instance
[4], [5], [10]. For conchoids see for instance [8], [20], [22].

The offset and the conchoid construction relate to each other via the
pedal-point or foot-point construction. Pedal curves were already treated in
classical books. For instance [9] describes the algebraic and geometric rela-
tionships between a curve and its pedal. Moreover, results connecting offset
curves and conchoid curves via pedals are found in the classical literature
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(for instance [7], p. 179). We revisit these classical ideas, provide theoretical
principles and extend these results to surfaces.

The foot-point map is a quadratic birational transformation and maps
a family of offset surfaces to a family of conchoid surfaces. The inverse map
operates analogously. The construction is illustrated at hand of the offset and
conchoid surfaces of ruled surfaces and quadrics. Since rational ruled surfaces
and quadrics have rational offsets and rational conchoid surfaces, the foot-
point map and its inverse generate new families of surfaces having rational
conchoids and offsets, respectively. The foot-point map gives further insight
to geometric properties of the resulting surfaces, for example that the pedal
surfaces of quadrics are Darboux cyclides. Rational universal parameteriza-
tions of rational offset and conchoid surfaces are provided.
Notation. Points in Euclidean space R3 are identified with vectors x ∈ R3,
and x · y denotes the scalar product of two vectors x, y ∈ R3. Vectors are
considered as column vectors, in particular for matrix-vector products (e.g. A·
x, for A ∈ R3×3 and x ∈ R3). For easier notation and if there is no ambiguity,
we denote vectors coordinate-wise as row-vectors and omit the symbol T

for transposition. We use the notation x2 = ‖x‖2 and analogously for even
powers of the norm. The set of points and planes of R3 are denoted by P and
E , respectively.

The projective extension of the Euclidean space R3 is denoted as P3.
Points X ∈ P3 are identified with their homogeneous coordinate vectors
X = (x0, x1, x2, x3)R = (x0 : x1 : x2 : x3). A plane U in P3 is the zero-set
of a linear equation U : u0x0 + . . . + u3x3 = 0. The coefficients (u0, . . . , u3)
are the homogeneous coordinates of U . To distinguish points from planes, we
use (x0, . . . , x3)R for points and R(u0, . . . , u3) for planes. A plane U ⊂ P3 is
identified with a point in the dual space P3? of P3. Let ω = P3 \ R3 be the
ideal plane in P3, that is ω : x0 = 0. Ideal points are represented by (0, x)R,
with x ∈ R3. For points X 6∈ ω, the relation between Cartesian coordinates
x = (x, y, z) and homogeneous coordinates is given by

x =
x1
x0
, y =

x2
x0
, z =

x3
x0
.

2. Geometric Constructions

Offset Surfaces. Consider a smooth surface F ⊂ R3 with parametrization
f(u, v) and associated oriented unit normal vector n(u, v). The one-sided offset
surface Fd of F at the oriented distance d ∈ R admits the parametrization

fd(u, v) = f(u, v) + dn(u, v), with ‖n‖ = 1. (1)

The tangent planes of F and Fd at corresponding points f(u, v) and fd(u, v)
are parallel. As derived in [13], we consider F and Fd as the envelope surfaces
of their tangent planes

E(u, v) : n(u, v) · x = e(u, v), with e = f · n, and

Ed(u, v) : n(u, v) · x = e(u, v) + d. (2)
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Let F ⊂ P3 be the projective surface corresponding to F . The tangent planes

E of F determine the surface F
? ⊂ P3?, called the dual surface of F . Since

F is uniquely defined by F , we do not distinguish between them and denote
both F . If we want to emphasize that F is considered as family of tangent
planes, we denote it by F ?.

If F ? is of degree n, it can be expressed as the zero set of the polynomial

F ?(u0,u) = un0f0 + . . .+ un−j0 fj(u) + . . .+ fn(u), (3)

where fj(u) are homogeneous polynomials of degree j in u = (u1, u2, u3). The
ideal plane ω : x0 = 0 is tangent to F , which means that ω ∈ F ?, if f0 = 0.
Furthermore, ω is an r-fold plane of F ?, exactly if f0 = · · · = fr−1 = 0, but
fr 6= 0.

While a parameterization of F in homogeneous point coordinates is
(1, f)R, parameterizations of F ? and its offset surfaces F ?d read E = R(−e, n),
and Ed = R(−e− d,n). Let S2 : ‖x‖2 = 1 be the unit sphere in R3. To make
the relations between the offsets and conchoids obvious, we define the map

ϕ : S2 × R → E
(n, e) 7→ E : n · x = e, with n ∈ S2, e ∈ R. (4)

The offset map o? : E → E with respect to the offset distance d is defined by

o?(E) = o?(ϕ(n, e)) = ϕ(n, e+ d) = Ed. (5)

Focusing on rational surfaces we formulate

Definition 1. A rational surface F ⊂ R3 is called rational offset surface if
F admits a rational parametrization f(u, v) with rational unit normal vector
n(u, v).

Any rational parametrization n(u, v) of S2 and any rational radius func-
tion e(u, v) define a rational offset surface F in that sense. Rational offset
surfaces are also called surfaces with Pythagorean normal vectors, abbrevi-
ated by PN surfaces. This expresses the fact that there exist polynomials
a(u, v), b(u, v), c(u, v) and d(u, v) forming a Pythagorean quadruple, mean-
ing that a2 + b2 + c2 = d2. Consequently, (a, b, c)/d is a rational unit normal
vector parametrizing S2.

An offset surface of F can also be defined as the envelope of a family of
spheres of radius d, which are centered at F . We denote this offset by Od(F ),
since this definition obviously differs from (1). The geometric properties and
relations between Od(F ) and Fd are studied in [16], and in any case for
reducible or irreducible offsets Od(F ) = Fd ∪ F−d holds.

Remark 1. The notation rational offset surface expresses that Fd and Od(F )
admit rational parameterizations, but does not imply that Fd or Od(F ) is
rational in the sense of algebraic geometry. For instance, the offset surfaces
of regular quadrics ⊂ R3 admit real rational parametrizations, but only the
offsets of spheres and paraboloids are rational surfaces and offsets of ellipsoids
and hyperboloids are unirational in that sense.
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Conchoid Surfaces. Consider a smooth surfaceG ⊂ R3, d ∈ R, and a fixed ref-
erence point O, always assumed to be the origin of a Cartesian coordinate sys-
tem. Let G be represented by a polar representation g(u, v) = r(u, v)s(u, v),
with ‖s(u, v)‖ = 1. We call s(u, v) the spherical part of g(u, v) and r(u, v)
its radius function. The one-sided conchoid surface Gd of G is obtained by
increasing the radius function r(u, v) by d and thus Gd admits the polar
representation

gd(u, v) = (r(u, v) + d)s(u, v). (6)

In a similar manner to (4), we define the map

γ : S2 × R → P
(s, r) 7→ g = rs, with s ∈ S2, r ∈ R. (7)

The conchoidal map c : P → P, specifying the relation between a surface G
and its conchoid surface Gd, is defined as

c(γ(s, r)) = γ(s, r + d). (8)

Similarly to the offsets Fd and Od(F ), a conchoid surface of G can be defined
as the set of points Q in the line OP at distance d of a moving point P ∈ G.
We denote this surface by Cd(G), and obviously this differs from Gd, but in
any case we have Cd(G) = Gd∪G−d. For more details on these constructions
see [1], [17] and [18]. Focusing on rational surfaces we define

Definition 2. A surface G is called rational conchoid surface with respect to the
reference point O if G admits a rational polar representation r(u, v)s(u, v),
with a rational radius function r(u, v) and a rational parametrization s(u, v)
of the unit sphere S2.

If G is a rational conchoid surface, Gd admits the rational representa-
tion (6). A similar statement to Remark 1 is also valid for conchoid surfaces.

Pedal Surfaces. The foot-point map α : E → P with respect to the reference
point O transforms planes E to points P , see Figure 1(a). It is rational and
bijective except for planes E passing through O. The inverse map, denoted
by α? : P \ {O} → E , transforms points P 6= O to planes E 3 P which have
OP as normal. These maps read

α : E : x · n = e 7→ α(E) : P = e
‖n‖2 n,

α? : P = p 7→ α?(P ) = E : x · p = p · p. (9)

The quadratic maps α and α? are the basic ingredients to construct rational
conchoid surfaces from rational offset surfaces and vice versa.

Definition 3. Consider a surface F , its dual surface F ? and a fixed reference
point O. The surface G = α(F ?) is called the pedal surface of F , and consists
of the foot-points of the tangent planes of F with respect to O. Conversely,
the surface F ? = α?(G) is called the negative or inverse pedal surface of G
with respect to O.
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(a) Foot-point map
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(b) α = σ ◦ π

Figure 1. Geometric properties of the foot-point map α

To get more insight to the correspondence between offsets and conchoids
we write α and α? in terms of homogeneous coordinates. The map α : E → P
uniquely determines the map α : P3? → P3, and thus both maps are denoted
by α; analogously for α?. Using the abbreviations x = (x1, x2, x3) and u =
(u1, u2, u3), both maps read

α : U = R(u0,u) 7→ X = (x0, x)R = (−u2, u0u)R,
α? : X = (x0, x)R 7→ U = R(u0,u) = R(−x2, x0x).

(10)

The exceptional planes of α are ω : x0 = 0 and the tangent planes of the
isotropic cone ∆ : u0 = 0,u2 = 0 with vertex O. The exceptional points of α?

are O and the points of the absolute conic j : x0 = 0, x2 = 0. Considering the
cone ∆ as point set, we have j = ∆∩ω. Let σ : P3 → P3 be the inversion at S2,
and let π : P3? → P3 be the polarity with respect to S2, and π? : P3 → P3?

its dual map. These maps satisfy σ = σ−1 and π ◦ π? = id, and read

σ : X = (x0, . . . , x3)R 7→ σ(X) = (x21 + x22 + x23, x0x1, x0x2, x0x3)R,
π : U = R(u0, . . . , u3) 7→ π(U) = X = (−u0, u1, u2, u3)R, (11)

π? : X = (x0, . . . , x3)R 7→ π?(X) = U = R(−x0, x1, x2, x3).

It is easily verified (see Figure 1(b)) that α and α? satisfy the relations

α = σ ◦ π, and α? = π? ◦ σ. (12)

3. The relation between offsets and conchoids

There is a nice relation between the offsets and the conchoids via the pedal
construction, see e.g. [7], pg. 179. We use the parameterizations ϕ and γ
from equations (4) and (7) and the maps o? and c from (5) and (8). The
representations (10) of α and α? prove the commutativity of the following
diagrams.
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F ?
α //

o?

��

G

c

��

F ?d α
// Gd

F ?

o?

��

G

c

��

α?
oo

F ?d Gd
α?
oo

(13)

Proposition 4. Let F ?d be offset surfaces of a dual surface F ? at distance d.
Then the pedal surfaces Gd = α(F ?d ) are conchoid surfaces of G = α(F ?) at
distance d. Let Gd be conchoid surfaces of a surface G at distance d. Then
F ?d = α?(Gd) are the offset surfaces of F ? = α?(G) at distance d.

Injectivity. The maps ϕ and γ are considered as local parametrizations of the
tangent planes or the points of surfaces in R3. Since ϕ(n, e) and ϕ(−n,−e)
map to the same non-oriented plane in E , and γ(s, r) and γ(−s,−r) define
the same point in P, these maps are not injective globally. If injectivity is an
issue, one can identify antipodal points in S2×R or may define an orientation
of a plane with help of n. However, an orientation of a point sounds weird.

The definition of the one-sided offset Fd in (1) uses an oriented normal
vector field. But the offset surface Od(F ) of an algebraic surface F contains
both, the inner and outer offset. The same holds for the conchoid surface
Cd(G). In order to parametrize the offsets or conchoids of algebraic surfaces,
the base surface is traced twice. Since the foot-point construction ignores
orientations, we consider planes in R3 as non-oriented.
Universal parametrizations. Combining universal rational parametrizations
of S2 with the respective maps ϕ and γ results in respective universal pa-
rameterizations of offset and conchoid surfaces. Following [3] one chooses
four arbitrary polynomials a(u, v), b(u, v), c(u, v) and d(u, v) without com-
mon factor. Let A = 2(ac+ bd), B = 2(bc− ad), C = a2 + b2 − c2 − d2, and
D = a2 + b2 + c2 + d2, then

q(u, v) =
1

D
(A,B,C)

is a rational parametrization of S2. Any rational parameterization of S2 is
obtained by specifying the functions a(u, v), . . . , d(u, v).

Proposition 5. A universal rational parametrization of a rational offset sur-
face or a rational conchoid surface is of the form ϕ(q, ρ) or γ(q, ρ), respec-
tively, with a rational function ρ(u, v).

The maps α and α? transfer rational parametrizations of offset surfaces
to conchoid surfaces and vice-versa. The implicit representations of α and
α? show the relations between the degrees of F ? and G = α(F ?). Let F ? be
given by (3). Inserting (10) into F ? yields

G̃(x0, x) = (−x2)nf0 + . . .+ (−x2)n−kxk0fk(x) + . . .+ xn0fn(x). (14)

The polynomial G̃ might have factors xr0 or x2k, which are split off. The pedal
surface G = α(F ?) is thus defined by the remaining irreducible component

of G̃. If f0 = . . . fr−1 = 0, but fr 6= 0, then G̃ contains the factor xr0. If
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fn has the factor u2, it also appears in G̃. More generally, assume that the
polynomials fn, . . . , fn−k have a factor of the form

fn−j(u) = (u2)k−jhn−2k+j(u), for j = 0, . . . , k,

with gcd(hn−2k+j ,u
2) = 1. Then the polynomial (14) has the factor x2k, and

the irreducible component G is of degree 2n − 2k. We have the following
result.

Proposition 6. Let F ? be of degree n, then the degree of G is 2n−r−2k, with
r as the multiplicity of ω and k as the multiplicity of the cone u0 = 0,u2 = 0.

Analogously one computes the polynomial of a surface F ? = α?(G).
One exchanges F ? by G, dual coordinates ui by xi, the ideal plane ω by O
and the isotropic cone ∆ 3 O by the conic j ⊂ ω. We continue with two
elementary examples. The first discusses conchoid surfaces of a plane and
their inverse pedal surfaces. The second example considers offsets of a sphere
and their pedal surfaces.
Conchoid surfaces of a plane. Consider the plane G : z = 1 and the reference
point O = (0, 0, 0). Figure 2(a) illustrates the 2d-case. Using homogeneous
coordinates, the plane G and its conchoid surfaces Gd are represented by

G(X) = x3 − x0, Gd(X) = d2x20x
2
3 − (x21 + x22 + x23)G(X)2.

Since the highest power of x0 is two, O is a double point of Gd, and α?(Gd)
has the factor u20. Dividing by (u21+u22+u23) gives the polynomials determining
the paraboloid F ? = α(G) and its offsets F ?d = α(Gd),

F ?(U) = u21 + u22 + u23 + u0u3, F
?
d (U) = d2u23(u21 + u22 + u23)− F ?(U)2.

Offsets of a sphere. Consider the sphere F : (x − m)2 + y2 + z2 − R2 = 0
and its offset spheres Fd. Figure 2(b) shows the 2d-case. We represent them
as dual surfaces by

F ?d (U) = ((R+ d)2 −m2)u21 + (R+ d)2(u22 + u23)− 2mu0u1 − u20.

The map α transforms F ?d to a family of conchoid surfaces

Gd(X) = x20(x21((R+ d)2 −m2) + (R+ d)2(x22 + x23)) + 2mx0x1x2 − x4,

where x = (x1, x2, x3) and x4 = (x2)2. Since the highest power of x0 is
two, O is a double point of Gd. When letting R = 0 and d = 0, we have
F ?(U) = (u0 + mu1)2, a two-fold bundle of planes through M = (m, 0, 0).
F ?(U) = u0+mu1 and F ?d are mapped by α to the sphereG(X) = x2−mx0x1,
with diameter OM , and its conchoid surfaces Gd.

4. Rational ruled surfaces and regular quadrics

We derive geometric properties of pedal and inverse pedal surfaces of ruled
surfaces and quadrics. These surfaces are rational offset surfaces and ratio-
nal conchoid surfaces, see [11] and [12]. The maps α and α? preserve these
properties and generate new families of these surfaces classes.
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Fd

F

Gd

G
O

(a) Conchoid Gd of a line G and offset Fd of a
parabola F

F

Fd

O

G

E

Ed

Gd

(b) Offset Fd of the circle F and

conchoid Gd of the limason G

Figure 2. Relation between offsets and conchoids

4.1. Pedal surfaces of rational ruled surfaces

Consider a rational ruled surface F ? as dual surface. Any ruling l ⊂ F ? is
a pencil of planes. Let D be the foot-point of O on l. According to Thales’
theorem, the pedal curve α(l) is a circle with diameter OD, in a plane per-
pendicular to l, see Figure 3(a). Thus, the pedal surface G = α(F ?) contains
a one-parameter family of circles in planes perpendicular to the lines l.

D

l

O

α(l)

(a) Pedal of a pencil l

O

l X

p

(b) Inverse pedal of a line l

Figure 3. Pedal and inverse pedal curve of a line

A rational polar representation of G = α(F ?) is derived from a rational
offset representation of F ?. Consider an affine parameterization f(u, v) =
c(u) + ve(u) of F , and their partial derivatives fu = ċ + vė and fv = e. The
normal vector n of f reads n(u, v) = n1(u) + vn2(u), with n1 = ċ× e, and n2

= ė× e. In case that n1(u) and n2(u) are linearly dependent for all u, F is a
developable ruled surface. Since F is the envelope of a one-parameter family
of planes, G degenerates to a curve.

Let n1,n2 be linearly independent. We intend to construct a rational
unit normal vector field of F , and we require ‖n‖2 = w2, with some ratio-
nal function w(u, v) to be determined. To simplify the computation, c(u) is
replaced by the striction curve s(u) = c(u) + vs(u)e(u). The normal vector
ns at s satisfies ns · n2 = 0. This relation determines the parameter vs(u) =
−[(ċ × e) · (ė × e)]/(ė × e)2. We represent F by f(u, v) = s(u) + ve(u). The
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condition ‖n‖2 = w2 turns into n2
s + v2n2

2 − w2 = 0, with affine coordinates
v and w. Substituting v = y2/y1 and w = y0/y1, yields a real rational family
of conics in P2,

a(u) : a1(u)y21 + a2(u)y22 − y20 = 0, with a1(u) = ns(u)2, a2(u) = n2(u)2. (15)

There exist rational parameterizations y(u, t) = (y0, y1, y2)(u, t) (see for in-
stance [15]), in a way that y(u0, t) is a parameterization of the conic a(u0),
for any fixed u0 ∈ R. This yields a rational offset parameterization

f(u, t) = s(u) +
y2(u, t)

y1(u, t)
e(u), and

n(u, t) = ns(u) +
y2(u, t)

y1(u, t)
n2(u) with ‖n(u, t)‖ =

y0(u, t)

y1(u, t)
. (16)

The homogeneous coordinates of the tangent planes of F ’s offset surfaces
Fd are Ed = R(−f·n−d‖n‖,n). Applying α yields α(Ed) = (n2, (f·n+d‖n‖)n)R.
The corresponding rational polar representation of Gd = α(F ?d ) reads

gd(u, t) =

(
f · n
‖n‖

+ d

)
n

‖n‖
.

Theorem 7. The pedal surface G of a non-developable rational ruled surface
F is generated by a rational family of circles in planes through O and per-
pendicular to F ’s lines l. The pedal surfaces Gd of F ’s offset surfaces Fd are
rational conchoid surfaces. The conchoid surfaces Gd of G are generated by
the planar conchoid curves of the circles lying on G.

4.2. Inverse pedal surfaces of rational ruled surfaces

Consider a rational ruled surface G as set of points, and the reference point O.
Since G is a rational conchoid surface (see [12]), its inverse pedal surface F ? =
α?(G) is a rational offset surface. There are no restrictions on G concerning
developability, but G might be a tangent surface of a curve, a cylinder, a cone
or a plane. The latter case makes sense only if O /∈ G.

Consider a line l ⊂ G and points X ∈ l. The one-parameter family of
planes α?(X) envelope a parabolic cylinder P , with O as focal point of the
cross section parabola p in the plane connecting O and l, see Figure 3(b). The
vertex of the parabola p is the foot-point of O on l. Thus, the inverse pedal
surface F of a ruled surface G is the envelope of that family of parabolic
cylinders P .

We represent G by a rational polar representation g(u, v) whose norm
‖g(u, v)‖ = w(u, v), is a rational function w(u, v), see [12]. Applying α? maps
g to a family of tangent planes E : (x − g) · g = 0 whose normal vector g
has rational length w. Consequently, f(u, t) = E ∩Eu ∩Ev is a rational offset
parameterization of F , with rational unit normal vector n = g/‖g‖.

Theorem 8. The inverse pedal surface F = α?(G) of a rational ruled surface
G is a rational conchoid surface. F is the envelope of a one-parameter family
of parabolic cylinders P (u) with cross section parabolas p(u) with common
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focal point O. The offset surfaces Fd are the envelopes of the offset cylinders
Pd(u), whose cross sections are the planar offsets of the parabolas p(u).

F

O

(a) Plücker’s conoid F (b) Pedal surface of F (c) Inverse pedal surface of F

Figure 4. Pedal and inverse pedal surface of Plücker’s
conoid Φ with respect to O

Pedal surfaces of Plücker’s conoid. We consider Plücker’s conoid F , which is
a ruled surface of degree three, projectively equivalent to Whitney’s umbrella.
A possible parametrization of F reads f(r, ϕ) = (r cosϕ, r sinϕ, sin 2ϕ), with
directrix curve c(ϕ) = (0, 0, sin 2ϕ), direction vector e(ϕ) = (cosϕ, sinϕ, 0)
and normal vector n = (−2 sinϕ cos 2ϕ, 2 cosϕ cos 2ϕ,−r). The point set of
F is the zero-set of the polynomial F (X) = x3(x21 + x22)− 2x0x1x2. For com-
puting the pedal surfaces, we represent F and its offsets Fd as dual surfaces

F ?(U) = u0(u21 + u22)− 2u1u2u3, with U = (u0, . . . , u3),

F ?d (U) = d2(u21 + u22)2(u21 + u22 + u23)− F ?(U)2.

The pedal surfaces G and Gd of F and Fd are rational conchoid surfaces,
represented by the respective polynomials

G(X) = 2x0x1x2x3 + (x21 + x22)(x21 + x22 + x23), and

Gd(X) = d2x20(x21 + x22)2(x21 + x22 + x23)−G(X)2.

In order to represent Gd by a rational polar representation, we start with a
rational offset representation of F . Thus we have ‖n‖2 = 4 cos2 2ϕ+r2 = w2,
whose right hand side is a family of conics in R2 with coordinates r and w.
It can be parameterized directly by

r(ϕ, t) =
2 cos 2ϕ cos t

sin t
, and w(ϕ, t) = ‖n‖ =

2 cos 2ϕ

sin t
.

Plücker’s conchoid F admits the rational offset parameterization f(r(ϕ, t), ϕ),
with unit normal vector n(ϕ, t) = (− sinϕ sin t, cosϕ sin t, cos t). The tangent
planes of F and Fd are represented by

Ed(ϕ, t) = R(− cos t sin 2ϕ− d,− sinϕ sin t, cosϕ sin t, cos t).

Applying α gives the rational polar representation of Gd,

gd = α(Ed) = (cos t sin 2ϕ+ d) (− sinϕ sin t, cosϕ sin t, cos t) .
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The line x1 = x2 = 0 is a double line of F . For the computation of the
equations and the parameterizations we choose O as symmetry point on the
z-axis, since the equations for offsets, pedal surfaces and inverse pedal surfaces
are more compact. The illustrations in Figure 4 have been generated for a
different reference point on the z-axis.
Inverse pedal surfaces of Plücker’s conoid. In contrast to the last paragraph,
Plücker’s conoid F is considered as point set. Let F and its conchoid surfaces
Fd be the zero-sets of the respective polynomials

A(X) = x3(x21 + x22)− 2x0x1x2, and

Ad(X) = d2(x21 + x22)2x20x
2
3 − (x21 + x22 + x23)A(X)2.

The inverse foot-point map α? transforms F and Fd to B? and a family of
rational offset surfaces B?d , defined by the respective polynomials

B?(U) = u0u3(u21 + u22) + 2u1u2(u21 + u22 + u23),

B?d(U) = d2(u23)(u21 + u22)2(u21 + u22 + u23)−B?(U)2.

Since F is a rational conchoid surface, there exists a parameterization a(ϕ, v)
with rational norm. This and the parameterization of its conchoid surfaces
read

a(ϕ, v) =

(
2 sinϕ cos v2 sin v

cosϕ
,

2 sinϕ cos v sin v2

cosϕ
, 2 cos v sin v

)
,

ad(ϕ, v) = a(ϕ, v) + d
a(ϕ, v)

‖a(ϕ, v)‖
, with ‖a‖ =

2 cos v sin v

cosϕ
. (17)

Rational offset parameterizations of B? and B?d can be derived from (17).

4.3. Pedal surfaces of quadrics

Consider a quadric F ⊂ P3 as family of tangent planes. Quadratic cylinders
and cones are excluded since their pedal ’surfaces’ are curves. The dual surface
F ? ⊂ P3? is also a quadric. With U = (u0, . . . , u3)T , F ? is the zero-set of the
quadratic polynomial

F ?(U) = UT ·A · U, with A ∈ R4×4, and A = AT . (18)

Regular dual quadrics. Consider a regular quadric F , and a reference point
O /∈ F . We distinguish the cases where F is a paraboloid (ω ∈ F ?) or F is
either a hyperboloid or an ellipsoid. We start with the latter case with F ?

expressed by

F ?(U) = a0u
2
0 + a1u

2
1 + a2u

2
2 + a3u

2
3 + u0(b1u1 + b2u2 + b3u3).

Letting x = (x1, x2, x3), its pedal surface G = α(F ?) is the zero set of

G(X) = x20(a1x
2
1 + a2x

2
2 + a3x

2
3)− x0x2(b1x1 + b2x2 + b3x3) + a0x4. (19)

Since π(F ?) is a quadric, G = σ(π(F ?)) is the image of a quadric with respect
to the inversion σ. The reference point O is a double point of G. The pedal
surface G is a special Darboux cyclide, see Remark 2, an algebraic surface
typically of degree four, whose intersection with ω is the absolute conic j,
typically with multiplicity two. We mention that parabolic Darboux cyclides
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are algebraic surfaces of order three, whose intersection with ω contains,
besides j, a real line, compare equation (20). We note that not all Darboux
cyclides are the images of quadrics with respect to an inversion.

Remark 2. Consider S3 : yT · diag(−1, 1, 1, 1, 1) · y = 0 in R4, where y =
(y0, y1, . . . , y4)T are homogeneous coordinates in P4, and a further quadric
Q : yT ·B · y = 0. A surface Φ = Q ∩ S3 is called Darboux-cyclide in S3. By
a stereographic projection S3 → R3 one obtains Darboux-cyclides in R3. This
projection is realized by the equations

x0 = y0 − y4, x1 = y1, x2 = y2, x3 = y3.

Substituting these relations into (19), and taking (y0 − y4)(y0 + y4) = y21 +
y22 + y23 into account, gives a quadratic equation

a0(y0 + y4)2 − (y0 + y4)(b1y1 + b2y2 + b3y3) + a1y
2
1 + a2y

2
2 + a3y

2
3 = 0,

representing Q. Thus, (19) is a Darboux cyclide. For more information on
these particular algebraic surfaces one may contact [14].

We turn to paraboloids F ?. Since ω ∈ F ?, we choose a coordinate system
such that F is parameterized by f(s, t) = (s, t, as2 + bt2 + c), with abc 6= 0.
If a or b are zero, F is a parabolic cylinder, and α(F ) is a curve. If c = 0, F
contains O. Otherwise we have F : ax21 + bx22 + cx20 − x0x3 = 0 and its dual
equation reads

F ? : −4abu0u3 + bu21 + au22 − 4abcu23 = 0.

The polarity π maps F ? to the quadric π(F ?) : 4abx0x3+bx21+ax22−4abcx23 =
0. The property ω ∈ F ? implies O ∈ π(F ?). Dividing by x0, the pedal surface

G(X) = α(F ?(U)) = 4abx3(x21 + x22 + x23) + x0(bx21 + ax22 − 4abcx23) (20)

is a parabolic Darboux cyclide, an algebraic surface of degree three. If a = b,
F is a paraboloid of revolution, and if additionally O coincides with the
focal point of F , thus c = − 1

4a , the pedal surface is reducible and reads

G(X) = (x21 + x22 + x23)(4ax3 + x0). The first factor x21 + x22 + x23 = 0 defines
the isotropic cone ∆ with vertex O, the second factor 4ax3 + x0 = 0 is the
tangent plane at the vertex (1, 0, 0,−1/(4a))R of F .

Theorem 9. The pedal surface G of an ellipsoid or a hyperboloid F is a
Darboux cyclide of degree four, with O as double point. The pedal surface G
of a paraboloid F is a Darboux cyclide of degree three. In case that O coincides
with the focal point of a paraboloid of revolution F , its pedal surface is the
tangent plane at F ’s vertex.

The family of rational offset surfaces Fd of the quadric F is mapped by
α to the family of rational conchoid surfaces Gd of the cyclide G.

Regular quadrics F ⊂ R3 are rational offset surfaces, see [11]. The con-
struction is not trivial, and thus we provide an outline. Any regular quadric
F is the envelope of a rational one-parameter family of cones of revolution
C(u), with vertices at a focal conic of F . It is possible to parametrize these
cones C(u) such that the unit normal vectors of the tangent planes of C(u)
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have rational norm. Since F is enveloped by C(u), the rationality of the norm
holds for the unit normal vectors of F . Since the offsets of the cones C are
again cones of revolution Cd, the rationality of the norm holds for the unit
normal vectors of the offsets Fd, too.

The pedal surface Gd = α(F ?d ) of an offset F ?d of a quadric F ?, contains
the pedal curves c = α(C) of the cones C. Consider a cone of revolution C
tangent to F , and let C⊥ be the cone of revolution with vertex O, formed
by lines perpendicular to the tangent planes of C. Let S be the sphere with
diameter OV , where V is C’s vertex. The pedal curve c = α(C) is the in-
tersection S ∩ C⊥. Thus c is a rational spherical curve of degree four, with
double point at O. Finally, Gd contains a rational one-parameter family of
spherical quartic curves c, according to the cones of revolution Cd enveloping
F ?d .

Singular dual quadrics. The pedal construction applies also to singular dual
quadrics and their offsets. Consider a singular dual quadric

F ?(U) = UT ·A · U, with A ∈ R4×4, A = AT and rk A = 3, (21)

which consists of the planes through the tangent lines of a conic c = F ?. The
null-space of A is the carrier plane γ ⊃ c. An offset surface F ?d is a pipe surface
with center curve c and radius d. We make a short note on the degenerate
cases. If rk A = 2, F ? consists of two bundles of planes and if rk A = 1,
F ? consists of a two-fold bundle of planes. Consider a bundle of planes with
vertex V . According to Thales theorem, the pedal surface G = α(F ?) is a
sphere with diameter OV .

Assume that c = F ? is a conic. For studying the pedal surface α(c), we
use the decomposition α = σ ◦ π. The polar image Q = π(c) is a quadratic
cone, with vertex V = π(γ). The lines of Q correspond to the pencils of
planes in c. If O ∈ γ, Q is a cylinder. If O ∈ c, a pencil of planes is mapped
to the points of an ideal line ⊂ ω, and Q is a parabolic cylinder. Worth to be
mentioned is the case where Q = π(c) is a rotational cone or cylinder. This
happens exactly if O is contained in the focal conic g of c. The carrier plane
of g is a symmetry plane of c, and the vertices of g coincide with the focal
points of c, and vice versa.

The inversion σ maps a quadratic cone Q to a cyclide G = σ(Q), typ-
ically of degree four. The tangent planes τ(u) of Q are mapped to spheres
S(u) = σ(τ(u)), such that G is a canal surface. In case that Q is a cylinder
or cone of revolution, it contains also a family of inscribed spheres. Conse-
quently, G = σ(Q) is the envelope of two different families of spheres, thus a
Dupin cyclide.

Theorem 10. The pedal surface G = α(c) of a conic c is a Darboux cyclide,
and also a canal surface. The pedal surfaces of the pipe surfaces with center
curve c are conchoid surfaces Gd of the Darboux cyclide G. In case that the
reference point O of α is located at the focal conic g of c, the pedal surface G
is a Dupin cyclide.
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The pedal surfaces of conics c are typically canal surfaces and cyclides
of degree four. Degree reductions appear at first if c is a parabola. Since
ω touches c, O is contained in π(c), and consequently G = α(c) is a cubic
cyclide.

Quadrics of revolution. Let the tangential cone of the reference point O to
the quadric F ? be a cone of revolution. In that case π(F ?) is a rotational
quadric, the envelope of a one-parameter family of spheres. Since σ maps
spheres to spheres, G is a canal surface as well. As we have already seen, this
happens also if π(F ?) is a quadratic cone or cylinder, since tangent planes
count as spheres. In the particular case where π(F ?) is a rotational cone or
cylinder, G is the envelope of two different families of spheres, thus a Dupin
cyclide.

A further particular case appears when π(F ?) is a sphere. This hap-
pens if the reference point O is the focal point of a rotational quadric F ?.
Consequently, G is a sphere.

4.4. Inverse pedal surfaces of quadrics

While the previous subsection has studied quadrics as dual surfaces, we con-
sider now quadrics G and their conchoid surfaces Gd as point sets. A quadric
G is represented as zero-set of a quadratic polynomial

G(X) = XT ·A ·X, with A ∈ R4×4, and A = AT .

If detA 6= 0, the quadric is regular, if rk A = 3, G is a quadratic cone.
More degenerated cases are a pair of planes (rk A = 2) and a two-fold plane
(rk A = 1). The inverse pedal surface F ? = α?(G) of a plane G is a parabo-
loid of revolution, with focal point O. For the remainder we assume rk A = 3
or 4.

Consider a regular quadric G and assume that G’s axes are parallel to
the coordinate axes. Then G is the zero-set of the quadratic polynomial

G(X) = a0x
2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 + x0(b1x1 + b2x2 + b3x3).

Applying α? yields F ?, which is in fact just the dual object of (19). With the
abbreviation u = (u1, u2, u3), its defining polynomial reads

F ?(U) = u20(a1u
2
1 + a2u

2
2 + a3u

2
3)− u0u2(b1u1 + b2u2 + b3u3) + a0u4.

Dual to the fact that the origin O = (1, 0, 0, 0)R is a double point of G in (19),
the ideal plane ω is a double tangent plane of F ?.

Quadrics G ⊂ R3 are rational conchoid surfaces, see [6], meaning that
their conchoid surfaces Gd allow rational polar representations gd with ratio-
nal norm ‖gd‖. According to Theorem 4, rational offset parameterizations fd
of F ?d are obtained by fd = α?(gd). Using the composition α? = π? ◦ σ, the
surface F ? = π? ◦ σ(G) is the dual or polar object of the cyclide σ(G). An
offset surface F ?d is the dual or polar object of a conchoid surface σ(Gd) of
the cyclide σ(G).
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G

σ(G)

F

(a) Quadratic cylinder

G

σ(G)

F

(b) Rotational cylinder

Figure 5. Inverse pedal surfaces of quadratic cylinders

Quadratic cone and cylinder. Let G be a quadratic cone or cylinder. Since
the tangent planes τ of G count as spheres, the cyclide σ(G) is a canal surface,
enveloped by the spheres S = σ(τ) through O. The spheres S touch σ(G)
along circles k = σ(l), with O ∈ k. These circles correspond to the lines
l ⊂ G. If O ∈ τ , σ(τ) = τ is a plane.

The polar image Q = π?(S) = α?(τ) of a sphere S is a quadric Q.
Since O ∈ S, Q is a paraboloid. Since O ∈ k and k ⊂ S, the paraboloid
Q = α?(τ) touches the parabolic cylinder P = α?(l) = π?(k) along a parabola
d. Consequently, the inverse pedal surface F = α?(G) of a quadratic cone G
is the envelope of a family of paraboloids Q = α?(τ), corresponding to the
tangent planes τ of G.

Quadratic cones and cylinders are also ruled surfaces, and thus the re-
sults from Section 4.2 apply. The paraboloids Q and the parabolic cylinders
P touch the inverse pedal surface α?(G) = F ? along the parabolas d. To un-
derstand the meaning of the parabolas d, we again consider the canal surface
σ(G), enveloped by spheres S. There exists a family of cones of revolution
D, touching σ(G) along the circles k. Since the incidences k ⊂ D and k ⊂ S
are preserved, we have d = π(D) or D = π?(d).
Example. Consider the cylinder G : x21/a

2 + x22/b
2 − x20 = 0. The inverse

image σ(G) is a cyclide, and π? : P3 → P3? maps it to α?(G) = F ?, see
Figure 5(a). One obtains

σ(G) :
x20x

2
1

a2
+
x20x

2
2

b2
= (x21 + x22 + x23)2,

F ? :
u20u

2
1

a2
+
u20u

2
2

b2
= (u21 + u22 + u23)2.

The defining polynomial of F is rather lengthy, and of degree eight. Even the
case a = b is interesting, where σ(G) is a torus, whose meridian circles touch
the z-axis. The inverse pedal surface is a rotational surface with the parabola
(−b2 + v2, 0, 2v) as meridian curve, see Figure 5(b).
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Sphere. Consider the sphere G : (x−m)2 +y2 +z2 = r2 of radius r, centered
at (m, 0, 0). Since σ(G) is a sphere, the inverse pedal surface F ? = π?(σ(G))
with respect to O is a quadric. The defining polynomials of G and F ? are

G(X) = x21 + x22 + x23 − 2x0x1m+ x20(m2 − r2),

F ?(U) = u20 + 2u0u1m+ (u21 + u22 + u23)(m2 − r2).

Transforming the plane coordinates to point coordinates one obtains the
known result that F is a quadric of revolution, with O as focal point,

F :
r2(y2 + z2)

a2
− x2

a
+

2mx

a
= 1, with a = m2 − r2.

The quadric F is an ellipsoid if O is inside of G, and a hyperboloid of two
sheets if O is outside of G. Figure 6 illustrates the 2d-case. If O ∈ G, F
degenerates to a single point, according to Thales theorem. Considering the
dual surface in that particular case, F ? is a bundle of planes, passing through
that single point.

A rational polar representation g(u, v) ofG is mapped by α? to a rational
offset parameterization f(u, v) of F . Therefore the conchoid surfaces of spheres
correspond to the offset surfaces of ellipsoids and hyperboloids of revolution.

MO

X

G

F ?

(a) Ellipse

M
O

XG F ?

(b) Hyperbola

Figure 6. Inverse pedal curves F ? of a circle G

Theorem 11. The conchoid surfaces Gd of a sphere G are in birational corre-
spondence to the offset surfaces Fd of ellipsoids or hyperboloids of revolution
F , depending on whether the reference point O is inside or outside of G.

5. Conclusion

Relations between rational offset surfaces and rational conchoid surfaces are
studied. The birational foot-point map α transforms a family of offset surfaces
to a family of conchoid surfaces. These relations are demonstrated at hand
of pedal and inverse pedal surfaces of ruled surfaces and quadrics.

There is a close relation to bisector surfaces. Considering a surface G ⊂
R3, and a fixed reference point O. The bisector surface B(G,O) of G and O
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is the envelope of symmetry planes S of O and a moving point g ∈ G. Scaling
the inverse pedal surface F ? = α?(G) by the factor 1/2 gives B(G,O).
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