
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. XX, MONTH 200X 1

Fair Polyline Networks for Constrained Smoothing
of Digital Terrain Elevation Data
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Abstract— We present a framework for smoothing grid-like
digital terrain elevation data, which achieves fair shape by
means of minimizing an energy functional. The minimization
is performed under the side-condition of hard constraints which
come from available horizontal and vertical accuracy bounds in
the standard elevation specification. We introduce the framework
and demonstrate the suitability of this method for the tasks of
accuracy-constrained smoothing, feature-preserving smoothing,
and filling of data voids.

Index Terms— Digital terrain elevation data (DTED), surface
smoothing, fair polyline networks, guaranteed error bounds, to-
pography preserving, terrain visualization, terrain compression.

I. INTRODUCTION

SMOOTHING digital terrain elevation data (DTED) with
guaranteed error bounds and feature preservation is of

great importance in practical geoscience tasks, both for visu-
alization purposes and for post-processing (e.g., compression).

A typical data set we are working with is depicted in Fig. 1.
We see that the iso-height contours are often jagged, and false
contours appear (small “islands”). This is due in part to the
high level of detail present in the data and in part to data
acquisition and generation limitations. The noisy aspect of the
DTED can also be seen by means of a shaded relief (Fig. 2).
After constrained-smoothing with the technique here proposed,
iso-height contour lines look like those in Fig. 3.

The data we use have been provided by the U.S. National
Geospatial-Intelligence Agency (NGA). The data have been
obtained by the Shuttle Radar Topography Mission (SRTM)
in February 2000, one of the most significant space surveys
of earth ever undertaken, see e.g., http://www2.jpl.nasa.gov/
srtm/ and [1]. SRTM is a joint project between NASA, NGA,
the German Aerospace Center (DLR), and the Italian Space
Agency (ASI). The data complies to the DTED-2 specification,
i.e., is given as a uniform gridded matrix of terrain elevation
values with a spacing of 1 arc second. The specification also
includes information about absolute errors (or accuracy), both
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Fig. 1. Iso-height contour plot of original elevation data.

Fig. 2. Shaded relief of original data.

Fig. 3. Iso-height contour plot of smoothed elevation data.

in horizontal as well as in vertical directions.1 This means
that the data includes specific information about the possible
errors in the posts positions (circular horizontal error) and
the reported height (vertical error). This standard additional
accuracy information, which translates into l∞ norms, is

1For details on the specification, see for example http://www. fas.org/
irp/program/core/dted.htm. See also http://mountains.ece.umn.edu/∼guille/
dtedspecification.pdf for a copy of the official DTED specification.
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exploited by our proposed smoothing framework.
It is of great importance that smoothing digital elevation

data respects the given error bounds. In other words, the
smoothed data must be in between the absolute accuracy
bounds provided by the specification. This is needed in order
to guarantee that the processed data is in the allowed (by the
data specification) height and position range. In this paper
we present an algorithm which does just that, and is also
capable of filling holes as well as preserving features in
a consistent manner. The hard error (or accuracy) bounds
are represented as tolerance cylinders, where the surface is
permitted to move. The smoothing is accomplished by means
of an energy minimization technique (fair polyline network),
constrained to keep the surface inside the tolerance bounds.
Relaxing or limiting the size of the cylinders, void filling and
feature preservation are naturally obtained within the same
framework. The proposed technique can be applied both to
smooth the whole data or single iso-height lines.

The remainder of the paper is organized as follows. In
Section II we briefly describe related prior art. Our contri-
butions are put forward in Section III. In Section IV, we first
define fair polyline networks and then discuss the error bounds
and the smoothing procedure. For validation of the algorithm,
we introduce a deviation measure based on a gauge body.
Furthermore, we show that besides smoothing, our algorithm
is also capable of preserving features and filling voids. In
Section V we present experimental results, and in Section VI
we conclude the paper.

II. PREVIOUS WORK

The present paper is motivated by our work on variational
interpolation of subsets [2], on energy-minimizing splines in
manifolds [3], and on fair curve and polyline networks in
nonlinear geometries [4]. In the following we review literature
related to surface smoothing, guaranteed error bounds, and
hole filling, with a focus mainly on the geometry processing
rather than on the geosciences community.

A. Surface smoothing

For elevation data, the filtering of noise and smoothing of
the geometry has been of great interest. Constraints imposed
on the smoothing process include the preservation of linear
and non-linear surface features such as sharp edges, corners, or
non-planar curves. This can be achieved for example using the
so-called anisotropic smoothing methods (cf. [5]–[7]). There
are only few publications where hard error bounds, as dictated
by the standard DTED file specification, are incorporated into
these geometric regularization methods. Recently, geometric
active contours have been used as the base of a constrained
regularization framework for digital elevation data [8].

B. Error bounds and the tolerance aspect

While there are many contributions concerning error propa-
gation in digital elevation models (see for example [9] and the
references therein), it is apparently difficult to locate previous
work on smoothing of terrain data with guaranteed error

bounds (being the only paper to the best of our knowledge,
our work in [8]). Thus, it is perhaps no coincidence that the
present contribution to this topic has its origin in geometry
processing and geometric modeling. We would also like to
mention that the topic is related to tolerance analysis: It is
common to locate imprecisely defined entities in computations
by tolerance zones. The most prominent example of this is to
compute with intervals instead of with real numbers (see e.g.
[10]). Geometric operations with tolerance zones have been
studied later [11]. In that paper, energy-minimizing curves
which interpolate imprecisely defined points (i.e., tolerance
zones) are considered, which is also the topic of [2], and which
is closely related to the problem solved in the present paper.

In the approximation theory literature, the problem of reg-
ularization with constraints has been addressed by Kimeldorf
and Wahba [12]. They showed how to compute one-dimen-
sional splines with hard vertical-error constraints. While this
elegant approach can easily be extended to higher dimensions,
it does not include the horizontal freedom given by the
horizontal absolute error. It is also not developed for the
additional geometric constraints that are natural to add in
our framework. The theory of total least squares [13] also
addresses the “freedom of motion” of the given data, both
in the vertical and horizontal position. In its original form,
although computationally very efficient, the framework does
not provide hard constraints (that is, the error is not guaranteed
to be below the allowed bounds), neither does it include
any kind of explicit regularization or geometric terms. In
order to add these important constraints, the problem has to
be transformed into a variational formulation, much of the
flavor here introduced. The recent work in [14] presents the
problem of level-set estimation as a tree optimization one, with
guaranteed optimality but no guaranteed error bounds.

C. Void filling
It is possible that in some areas no elevation values are

available – we refer to these void areas as ‘holes.’ There are
various reasons for holes in the data. They can be caused, e.g.,
by occlusion or poor signal returns. While our approach fills
holes in an intrinsic way via the smoothing process, we still
have to provide an initial guess for the missing data. Here any
of the known methods for filling voids can be used.

The literature on hole filling algorithms for geometric mod-
els roughly fits in three categories: surface based, volumetric,
and example based methods. The article [15] surveys the
literature on the first two approaches up to the year 2002. Ideas
from image inpainting are used in the volumetric approach by
[16]. Filling holes in point set surfaces is also discussed in
[17]. Recently, example based methods have emerged [18]–
[20]. It is interesting to note that the example based approach
is most closely related to a common practice of filling voids
in elevation data: One uses data from alternate sources and
blends them with the data surrounding the void (the ‘fill &
feather method,’ cf. [21], [22]).

Extensive literature exists on the interpolation of data from
level-lines, e.g., [23], [24]. This is a slightly different prob-
lem, as holes are often significantly larger than the common
distance between level-lines.
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Fig. 4. An initial surface interpolating the given data points pij . The surface
can be smoothed such that it stays within all tolerance cylinders Zij of radius
rij and height 2hij . Both radius and height are specified with the DTED
information. A different size of the error cylinders can be used to preserve
surface features (e.g., ridges) during the smoothing.

III. CONTRIBUTIONS OF THE PRESENT PAPER

Elevation data of the DTED-2 specification are given as a
height field over a uniform grid in the xy-plane, such that
every data point has horizontal and vertical error (accuracy)
bounds. This error translates into a hard, l∞, bound. Fig. 4
shows data points pij together with their error bounds in the
form of cylinders of revolution Zij , and an initial surface that
interpolates the given points pij . The objective is to compute
a smooth surface that stays within the given error margins
dictated by the cylinders.

The framework we propose views the height field over
the xy-plane as a network consisting of x-parallel and y-
parallel polylines, as shown by Fig. 5. We perform smoothing
by minimizing a discrete bending energy of these polylines,
always respecting the error bounds. Our framework is very
flexible and allows e.g., to use individual error bounds for
every data point, fill voids in the data, or smooth only a subset
of the data for feature preservation. We later illustrate this at
hand of several examples.

IV. FAIR POLYLINE NETWORKS FOR TERRAIN SMOOTHING
WITH GUARANTEED ERROR BOUNDS

We first define fair polyline networks and then we show how
to use them for smoothing of digital terrain elevation data with
guaranteed error bounds.

A. Fair polyline networks

Our smoothing procedure is based on minimizing the energy
of a polyline network. We first define the energy of a single
polyline, and then the energy of the polyline network as
the sum of energies of all the polylines that contribute to
the polyline network. For a smooth curve c(t), defined in
some parameter interval [a, b], the linearized bending energy
(cubic spline energy) is defined by E(c) = ∫ b

a ‖c̈(t)‖2dt.
Here c̈ denotes the second derivative vector of the curve c(t)
with respect to the curve parameter t. Its minimizers under
interpolation conditions are the cubic B-spline curves [25]. A
polyline p = (q1,q2, . . . ,qL), as a discrete curve, possesses
a discrete linearized bending energy:

E =
∑L−1

i=2
‖∆2qi‖2, ∆2qi = qi−1 − 2qi + qi+1. (1)

p11
pM1

p1N

pMNpMNpMNpMNpMNpMNpMNpMNpMNpMNpMNpMNpMNpMNpMNpMNpMN

pijpijpijpijpijpijpijpijpijpijpijpijpijpijpijpijpij

Fig. 5. A polyline network with vertices pij and two families of polylines
(solid and dotted) representing a height field.

Curve networks and polyline networks, which are the topic
of [4], have energies which are defined as the sum of the
energies of the curves or polylines which they are made of. The
given elevation data constitute a rectangular array of points:
pij = (xij , yij , zij), (i = 1, . . . ,M , j = 1, . . . , N ). We define
the energy of the data collection to be the sum of energies of
the N different polylines defined by j = const. and the M
different polylines defined by i = const.:

E =
∑N

j=1

∑M−1

i=2
‖pi−1,j − 2pi,j + pi+1,j‖2

+
∑M

i=1

∑N−1

j=2
‖pi,j−1 − 2pi,j + pi,j+1‖2. (2)

A fair polyline network is one which has minimal energy
among all networks which fulfill a fixed set of constraints.

B. Error bounds

The data sets we use consist of points pij which are
equally spaced in x and y direction. We might, without loss
of generality, assume that xij = gx · i and yij = gy · j,
where gx, gy specify the grid element size (1 arc second for
DTED-2). The data points contain errors, both in horizontal
and vertical direction. If the horizontal error of a data point
pij is bounded by rij , and the vertical error by hij , then the
true location of that data point is within a cylinder Zij of
diameter 2rij and height 2hij , which is centered in the given
point pij = (xij , yij , zij).2 Thus each point pij is equipped
with its own tolerance cylinder Zij (Fig. 6, left). We also
refer to these tolerance cylinders as error cylinders. They are
hard constraints, which means that the terrain surface we are
seeking has to pass through all Zij’s.

Fig. 6, top right, shows the initial state of the network, only
one polyline is shown as a representative of the surface defined
by the data. Our goal ultimately is to move the points pij

such that the energy (2) becomes smaller, but the surface still
passes through the cylinders Zij . We can achieve this, e.g.,
by requiring that the points pij themselves do not leave Zij ,
as illustrated by Fig. 6, at right, center. This condition, which
is referred to as Option 1, however, is stricter than actually
necessary. It is certainly sufficient that for each vertex pij ,
one of the two polylines meeting there meets Zij (Fig. 6,
bottom right). This slightly more relaxed condition is referred
to as Option 2.

2Other error/accuracy models will just define different tolerance shapes,
without altering the framework here presented. Cylinders are the appropriate
shape to represent the absolute errors specified with DTED.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. XX, MONTH 200X 4

pijpijpijpijpijpijpijpijpijpijpijpijpijpijpijpijpij

Zij

initial state

Option 1

Option 2

Zij

pij

Fig. 6. Smoothing height fields via fair polyline networks. (Left) Polyline
network with the tolerance cylinders Zij associated with the vertices pij .
(Right) At top, initial state before optimization. At center, Option 1 of
optimization (all vertices stay inside the tolerance cylinders). At bottom,
Option 2: The vertices are allowed to leave the cylinders, provided the surface
still passes through them.

C. The smoothing procedure

Minimizing the quadratic function (2) of the variables
xij , yij , zij , subject to the constraints mentioned above, is a
quadratic programming problem with non-convex side condi-
tions. It contains too many variables for just submitting it to
a generic optimization procedure as, e.g., provided by math-
ematical software. The following properties however allow a
more direct approach:

(a) If computed with x and y coordinates of the initial
data alone, the energy would be zero, owing to the regular
alignment of initial data. We therefore do not expect the points
pij to move very much in x or y direction during optimization.
Indeed this is confirmed by numerical experiments.

(b) At each location, the smooth, energy-minimizing terrain
appears to be defined by nearby input data. Thus there is no
need for globally minimizing the energy over large data sets.

(c) The condition that pij remains inside Zij (Option 1)
leads to a convex optimization problem which has a unique
solution. As illustrated by Fig. 6 (right), the difference between
Option 1 and Option 2 is not very big. This means that the
optimization problem we have to solve when using Option
2 is ‘convex enough’ so that we do not expect a direct
minimization procedure getting stuck in a local minimum.

In view of property (a), we only use the z coordinates of
the data points as variables for minimization:

E =
∑N

j=1

∑M−1

i=2
(zi−1,j − 2zi,j + zi+1,j)2

+
∑M

i=1

∑N−1

j=2
(zi,j−1 − 2zi,j + zi,j+1)2. (3)

Because of (c), we employ a gradient descent method, with
the original elevation data as initial condition. It is elementary
that the gradient of the energy is given by

(∇E)ij = (zi−2,j + zi+2,j + zi,j−2 + zi,j+2)
− 4(zi−1,j + zi+1,j + zi,j−1 + zi,j+1) + 12zi,j , (4)

provided i, j > 2 and i < M − 1, j < N − 1 (that is,
we superimpose the masks [1,−4, 6,−4, 1] in both x and y
direction). As we approach the boundary, the standard mask
becomes [−2, 5,−4, 1] and finally [1,−2, 1].

Optimization is basically implemented as follows: First, we
find a direction of descent, e.g., by letting gij := −(∇E)ij .
We consider the 1-parameter variation Et of the energy (3)
defined by the z coordinates zij(t) = zij + t · gij . The
dependence of E on t is quadratic, so it is easy to find a
parameter t = t0 where Et has a minimum. We replace
zij by zij + t0 · gij , but vertices which have moved too far
(violating the constraints) are pulled back. This procedure
is iterated. Actually the procedure described here is rather
unsophisticated. Improvements are the following: (i) If pij is
already in a position where it must not move higher because of
the boundary conditions, but gij > 0, we let gij = 0. (ii) the
same with ‘lower’ instead of higher. (iii) As is well known in
multivariate optimization, the direct gradient descent method is
usually not very efficient. We use a conjugate gradient method
for updating the direction of descent in each step. (iv) In view
of the large number of variables, we use a multigrid method
for minimization.

As has already been mentioned, Option 1 leads to a convex
optimization problem, whereas Option 2 leads to a non-convex
one. Numerical experiments however show that no problems
with local minima occur, so the amount of non-convexity
present seems to be low. For numerical optimization in general,
see e.g., [26]. Further note that when minimizing (3) with
Option 1, the horizontal position error does not play a role at
all.

D. Measuring the deviation

In order to measure the deviation of the smoothed surface,
defined by vertices qij , from the original data pij , we use the
tolerance cylinders Zij as gauge bodies. When scaling Zij

with center pij , there is a smallest factor λij such that the
scaled cylinder touches the surface defined by the smoothed
data (which means that the scaled cylinder touches either the
x-parallel or the y-parallel polylines defined by the smoothed
data). This factor λij equals zero, if the vertex pij has not
moved at all, i.e., if qij = pij . If λij ≤ 1, then the surface
passes through Zij .

E. Void filling

Missing data may be treated in different ways. There might
be a procedure for filling voids which is appropriate for a
certain application and which is applied before fair polylines
are used for smoothing. It is however worth noting that fair
polylines are also capable of filling voids. If zij is unknown,
we first attempt a crude guess at it (any method for filling voids
is sufficient for that), and endow the vertex pij with a large
tolerance cylinder Zij , so that the vertex can move (more)
freely during optimization. Hole filling then is an intrinsic
component of the algorithm.

V. EXPERIMENTAL RESULTS

All data sets described below are conforming to the DTED-
2 standard, with a post spacing of 1 arc second. The horizontal
and vertical error margins are 13 and 5 meters, resp., for all
vertices. This means that after smoothing the surface must pass
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through vertically oriented tolerance cylinders of base diameter
26 m and height 10 m centered in the individual data points.
The size of those cylinders is the same for all points, except
for those where no height data are available (they can move
freely) or whose movement is restricted on purpose (Examples
3 and 4).

A. Example 1

This data set has a size of 800× 600 posts and is shown in
Fig. 7 as a shaded relief. It represents an area of approximately
24×18 km. The original data set has elevation values between
zmin =339 m and zmax = 1103 m, and the smoothed data set
has elevation values between zmin = 337.5 m and zmax =
1098 m. Details of this example have already been used for
illustration in Figures 1, 2, and 3.

In order to analyze the asymptotic behavior of the energy
minimization, we run much more iterations than necessary in
actual applications. The behavior of the network energy using
smoothing Option 2 is:

# iterations 0 10 100 1000
Energy 4817 727 628 623

The computational cost of one round of iteration is roughly
proportional to the amount of input data. Fig. 8 shows a
histogram of vertex movements measured by means of the
tolerance cylinders as gauge bodies (cf. Section IV-D). The
number of points whose movement is a certain percentage of
the maximum possible movement is decreasing from left to
right, as only to be expected. It is interesting to note that a
substantial number of points actually move as far as possible
in order to minimize energy. This is clearly seen by the height
of the bar at the extreme right.

Fig. 9 illustrates the movement of vertices during the
smoothing process. The height difference in meters is coded
as a grey value. The dark lines show valleys, which during
smoothing are lifted, whereas the light areas show ridges,
where the smooth terrain is lower than the original one. In
both cases, the deviation of the smoothed terrain from the
original one is always consistent with the DTED-2 specified
error/accuracy bounds, and can be further controlled by chang-
ing the cylinder sizes, see below.

B. Example 2: Options comparison

Our second example demonstrates the difference between
the two options mentioned in Section IV-B. Option 1 keeps
the data points inside the tolerance cylinders, whereas Option 2
ensures that the surface passes through the tolerance cylinders,
but allows the vertices pij to leave the respective cylinders
Zij . The results of smoothing are visualized in Fig. 11.
Minimal elevation values for the original data set, and the two
smoothed data sets are 431.00 m, 427.28 m, and 426.00 m, re-
spectively. Maximum elevation values are 724.00 m, 723.27 m,
and 723.27 m.

While the general effect of smoothing is clearly visible
in the contour plots for both options (see Fig. 11(a)–(c)), it
is hard to see any difference between options 1 and 2. The
effect that vertices may move outside their tolerance cylinder

Fig. 7. Data set of Example 1 before (top) and after (bottom) smoothing.

#
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0 max
amount of movement in terms of gauge body

Fig. 8. The vertex movement histogram mentioned in Example 1.

Fig. 9. Vertex movement visualization for Example 1.
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Fig. 10. The data set of Example 2. From left: (a) Deviation of smoothed data (Option 1) from original; (b) Deviation of smoothed data (Option 2) from
original; (c) Difference between two options of smoothing; (d) Vertex movement histogram (Top: Option 1, Bottom: Option 2.).

is strongest where the terrain is steep. In flatter areas, the
vertices cannot move away much from the boundary of the
tolerance cylinder. This means that the maximum deviation of
the smoothed terrain from the original occurs in those areas
where the terrain is steep. In this example, this happens only
in small parts of the data set. Figures 10(a) and 10(b) illustrate
this deviation, where the absolute value of deviation is encoded
in grey values: Maximum deviation is black, minimum is
white.

The fact that Option 2 causes deviation peaks in small areas
causes Fig. 10(b) to look lighter than Fig. 10(a), even if the
absolute deviation values are greater in general. Fig. 10(c)
shows the difference between smoothing with Option 1 and
smoothing with Option 2: the absolute value of the height
difference is encoded in grey values (black is maximal devi-
ation). The vertex movement statistics of Fig. 10(d) do not
show absolute height data, but the deviation computed with
the tolerance cylinders as gauge bodies.

C. Example 3: Hole filling and feature preservation

The third example uses a small data set of size 217× 181,
which contains several holes (Fig. 12).

Before smoothing, the missing z coordinates are guessed by
a simple averaging procedure (any of the known procedures
for filling voids could be used). During smoothing, they are
allowed to move freely. This example illustrates the fact that
fair polyline networks are capable of filling voids in one pass
together with constrained smoothing (Fig. 12(b)).

We are now going to further exploit the great amount of
flexibility which is present in our way of treating constraints.
For instance, features of the terrain which should survive the
smoothing process with greater accuracy than other parts of the
data set can be given smaller tolerance cylinders. An example
of this is given by Fig. 12(c), where smoothing has been
performed with three different cylinder sizes (diameter/height
in meters): 26/10 for most points, 2/1 for the feature marked
in grey, and an infinite size for voids in the data.

The difference between the two different ways of smoothing
is shown by Fig. 13. Here absolute values of z coordinate
differences are encoded as grey values, with white as minimum
and black as maximum. Data voids are also shown in black.
The small movement of vertices in the feature area shows up
as white. A shaded relief of absolute value of the difference
of the two smoothed data sets is shown in Fig. 13(c).

Features which are to preserved can either be marked by
hand or detected automatically, which is a nontrivial task in
itself, although has been extensively studied in the literature
(see e.g. [27]). Actually images like the vertex movement
visualization of Example 1 (Fig. 9) can aid the detection of
features.

D. Example 4: Individual contour smoothing

When working with digital terrain elevation data, one might
want to be able to perform the following two tasks: (a) the
whole data set is smoothed with guaranteed error bounds. On
demand a contour plot of the smoothed terrain is created. (b) a
single smooth contour line at a certain fixed elevation z = H
is extracted from the original terrain data, always respecting
the given error bounds. The first task can be performed by
the algorithm described above and is shown by Examples 1–
3. The second task can be done by the same algorithm which
acts on a subset of the given data defined by the inequality
H1 < z < H2, where [H1,H2] is an interval which contains
the height value H under consideration and is wide enough to
include the tolerance cylinders.

Figures 14 and 15 illustrate this procedure: We use a data
set of size 436 × 263 containing both mountainous and flat
regions between zmin = 1894 m and zmax = 3033 m. We
pick the 2212 m contour for smoothing. The region H1 <
z < H2 with H1 = 2192 m and H2 = 2232 m is shown in
Fig. 14(c). The result of smoothing is shown in Fig. 15(a).
For comparison we have also smoothed the whole data set
and show its corresponding 2212 m contour in Fig. 15(b). In
Fig. 15(c) we show a shaded relief of the deviation from the
original data when smoothing only a neighborhood of a single
contour.

E. Compression results

For the sake of demonstration, we have applied the stan-
dard JPEG-LS lossless “loco16e” compression algorithm [28],
which is available at http://www.hpl.hp.com/loco/locodown.
htm, to the datasets of Examples 1–4, saved in PGM format.
JPEG-LS is the only compression standard compatible with
hard error constraints [29]. Compression rates before and after
smoothing were 3.87:1 / 3.54:1 / 2.69:1 / 3.44:1 and 4.99:1 /
5.20:1 / 3.57:1 / 4.86:1, respectively. This is an improvement
of 29%, 47%, 33%, and 41%, respectively.
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Fig. 11. The data set of Example 2 (detail). From left to right: (a) Original data. (b) Smoothing with Option 1. (c) Smoothing with Option 2.

Fig. 12. The data set of Example 3. From left: (a) Original data. (b) After filling voids and smoothing. (c) After filling voids and smoothing, with features.

Fig. 13. The data set of Example 3. From left: (a) Height differences between original and smoothed data. (b) Height differences between original and
smoothed data, with features preserved. (c) Difference between the two smoothed data sets (with and without features preserved).

Fig. 14. The data set of Example 4. From left: (a) Contour lines. (b) Shaded relief with single contour (in white) at z = 2212 m. (c) A neighborhood of
that contour defined by contour lines at 2192 m and 2232 m.

Fig. 15. The data set of Example 4. From left: (a) Smoothing the 2212 m contour by smoothing a neighborhood. (b) Smoothed whole data set with its
corresponding 2212 m contour. (c) Deviation from original data when smoothing a neighborhood of a single contour (shaded relief).
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VI. CONCLUSION

We have presented a framework which uses fair polyline
networks for smoothing digital terrain elevation data with
guaranteed error bounds and feature preservation. The algo-
rithm is capable of smoothing the terrain data with tolerance
cylinders of different sizes. These flexible tolerances have
two advantages in particular: (i) we can preserve features
present in the data by reducing the size of the tolerance
cylinders in feature areas, (ii) the algorithm can be used to
fill holes present in the original data during the smoothing
process. Single contour lines are smoothed via processing of
a small neighborhood of that contour line. Another important
point we would like to make is that the smoothing approach
here presented easily generalizes from height fields to more
general surfaces, which are becoming increasingly important
in photogrammetry and remote sensing [30].
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