
EQUIFORM KINEMATICS

AND THE GEOMETRY OF LINE ELEMENTS

BORIS ODEHNAL, HELMUT POTTMANN, AND JOHANNES WALLNER

Abstract. The present paper studies Plücker coordinates for line elements
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1. Introduction and motivation

The geometry of lines is a classical topic (see e.g. [24]) which is of interest not only for
its own sake. Given the nature of its object of study – the lines of Euclidean or projective
three-space – it is natural that frequently problems on the borderlines between mathematics,
computer science, and engineering are solved with line-geometric methods. Especially we
would like to mention recent work in Computer Vision [12, 22, 27], on reverse engineering and
reconstruction of kinematic surfaces [10, 11, 17, 19, 21], on approximation and interpolation
in line space, [1, 5, 13, 16, 18], and in general, on geometric computing with lines [8, 15].
Examples of applications of line geometry are also collected in the monograph [20]. The
number of applications where lines and points on them (i.e., line elements) appear together
raises interest in the geometry of line elements. This paper generalizes the concept of Plüc-
ker coordinates to the case of line elements and establishes some basic facts. We emphasize
the relation with equiform kinematics, thus generalizing the well known relations between
Euclidean kinematics [6] and classical line geometry [20].

Our interest in the geometry of line elements has its origin in our investigation of problems
related to the recognition, classification and segmentation of surfaces given by point cloud
data, typically obtained by laser scanning. For such data, surface normals can be estimated
numerically, or are even delivered by software used for modern 3D photography. The methods
used in the Computer Vision community for recognition and reconstruction of special surface
types often employ the Hough transform [7], augmented by geometric tools like the Gaussian
image, Laguerre geometry [14], and line geometry [2, 20, 17].

These methods have recently been extended to the geometry of line elements [4], which
the present paper provides mathematical basis for. The paper [4] contains many examples of
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(a) (b) (c)

Figure 1. (a) Spiral surfaces possess a smooth family (A(t), a(t), α(t)) of
automorphic equiform motions. The velocity vector field v(y) illustrated in this
figure is almost tangent to the shell of a specimen of saxidomus nutalli, showing
that this shell is almost an exact spiral surface. (b) Surface recognition and
classification by means of point cloud data obtained from the marine snail bulla
ampulla. The spiral axis has been found by numerically estimating surface
normals and finding an equiform motion which fits these the surface normal
elements. (see [4]). (c) Surface reconstruction. A spiral surface approximating
the given point cloud data has been computed (see [4]).

the use of line element geometry for surface recognition, reconstruction, and segmentation.
One example is given by Fig. 1.

2. The group of equiform transformations

This section describes equiform transformations, which means affine transformations whose
linear part is composed from an orthogonal transformation and a homothetical transforma-
tion. Such an equiform transformation maps points x ∈ R

3 according to

(1) x 7→ αAx + a, A ∈ SO3, a ∈ R
3, α ∈ R

+.

A smooth one-parameter equiform motion moves a point x via y(t) = α(t)A(t)x+ a(t). The
velocity ẏ(t), if expressed in terms of y(t), has the form

(2) v(y) = ȦAT y +
α̇

α
y − ȦAT a −

α̇

α
a + ȧ.
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Figure 2. Uniform equiform motions with paths x(t), x′(t) and invariant sur-
faces ∆, ∆′. Left: Helical motion with axis A. Right: Spiral motion with center
o and axis O.

Such a velocity vector field is also illustrated in Fig. 1. Since A is orthogonal, the matrix
ȦAT := C× is skew-symmetric and the product C×x can be written in the form c × x:

(3) v(y) = c × y + γy + c (γ =
α̇

α
, c = ȦAT a −

α̇

α
a + ȧ).

This expression for the velocity vector field is similar to the well known Euclidean case (see
e.g. [20], §3.4.1). It follows from the general theory of Lie transformation groups [3] that any
triple (c, c, γ) ∈ R

7 defines a unique uniform equiform motion (a one-parameter subgroup
of the equiform group) (A(t), a(t), α(t)) which has the property that the velocities in (3) do
not depend on t, and A(0) = E3, a(0) = 0, α(0) = 1

2.1. Uniform equiform motions. In the following we give a complete list of normal forms
of uniform equiform motions, where ‘normal form’ refers to equiform equivalence. The classi-
fication is similar to the well known Euclidean case. An equiform coordinate transformation
y = τTz + t transforms the velocity vector field (3) into

(4) ṽ(z) = d × z + d + δ with d = T−1c, d = T−1(c × t + c + γt), δ = γ.

We are going to choose τ, T, t such that d, d have simple coordinates. The corresponding
subgroup will be denoted by (B(t), b(t), β(t)).

Case 1: γ = 0, c 6= 0. This is the Euclidean case. We choose t such that d ‖ d and T such
that d = (0, 0, ω)T , d = (0, 0, v)T . Then

(5) B(t) =




cos ωt − sin ωt 0
sin ωt cosωt 0

0 0 1


, b(t) =




0
0
vt


, β(t) = 1 (ω 6= 0).

For v 6= 0 this is a helical motion (see Fig. 2, left), otherwise a rotation.
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Case 2: γ = 0, c = 0, c 6= 0. We have d = (0, 0, 0)T , δ = 0, and it is easy to find T such
that d = (0, 0, v)T . Then B(t) = E3, β(t) = 1, and b(t) = (0, 0, vt)T . This is the case of a
uniform translation.

Case 3: γ 6= 0, c 6= 0. The equation c × t + c + γt = 0 has the unique solution t =
−(C× +γE3)

−1c, as det(C× +γE3) = γ(γ2 + 〈c, c〉) 6= 0. Thus we can achieve d = 0, and we
choose T such that d = (0, 0, ω)T . It follows that B(t) is the same as in (5), b(t) = 0, and
β(t) = exp(γt). This is the generic case of a uniform spiral motion, as illustrated in Fig. 2,
right.

The orbits of curves under such one-parameter subgroups are spiral surfaces [26], which
nature approximates in shells whose growth is governed by scale-invariant processes. This
is one of the rare physical manifestations of equiform geometry (see Fig. 1).

Case 4: γ 6= 0, c = 0. It is easy to find t such that d = 0. Then B(t) = E3, β(t) = exp(γt),
and b(t) = 0. This is a subgroup of central similarities.

3. Plücker coordinates of line elements

Let L be a line in Euclidean three-space passing through a point x. In order to assign
coordinates to the line element (L, x), we extend the familiar definition of Plücker coordinates
[20, 24]:

Definition 1. The triple (l, l, λ) ∈ R
7 is called the Plücker coordinates of the line element

(L, x) in R
3, if l 6= 0 is parallel to L, l = x × l, and λ = 〈x, l〉.

Obviously these coordinates are homogeneous. It is elementary to verify that

(6) x = p(l, l) +
λ

〈l, l〉
l, with p(l, l) =

1

〈l, l〉
l × l.

The point p(l, l) is the pedal point of the origin on the line L. It is well known that Plücker
coordinates satisfy 〈l, l〉 = 0, and that all (l, l) with 〈l, l〉 = 0 and l 6= 0 occur as coordinates
of lines in R

3. Thus, (l, l, λ) is the Plücker coordinate vector of a line element, if and only if

(7) 〈l, l〉 = 0, l 6= 0.

Equ. (7) describes part of a quadratic cone in projective space P
6 whose base is the Klein

quadric. Note that in this paper we do not consider line elements whose constitutents are
“at infinity”. In fact it is not so easy to extend Plücker coordinates of lines to Plücker
coordinates of line elements – some aspects of this problem are discussed in Section 5 below.
We therefore do not follow an approach similar to [25], where Euclidean line geometry is
treated from the viewpoint of projective extension.

A line element becomes oriented, if the corresponding line has an orientation. In coordi-
nates, this is realized by identifying (l, l, λ) and µ(l, l, λ) if and only if µ > 0, or alternatively
by the restriction ‖l‖ = 1.
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The equiform transformation (1) transforms the line element (l, l, λ) into (l′, l′, λ′) with
x′ = αAx + a, l′ = Al, l′ = x′ × l′, λ′ = 〈x′, l′〉. In block matrix form, this transformation
reads

(8)




l′

l′

λ′


 =




A 0 0
A×A αA 0
aT A 0T α







l
l
λ


 (A×x = a × x).

Equ. (8) obviously applies to oriented line elements as well, for both ways of coordinatizing
them. When considering orientation-reversing equiform mappings as well, one allows that
A ∈ O3. Still, (8) is valid.

3.1. The geometric meaning of l, l, and λ. By construction, the set of line elements
(L, x) = (l, l, λ) with l, λ fixed is described by L ‖ l and x contained in the plane with
equation 〈x, l〉 = λ. We recognize (−λ, l) as homogeneous coordinates for that plane. If
(l, l, λ) is considered oriented, so is the plane.

Now suppose that l 6= 0 and λ are given, and we are looking for the set of line elements
(L, x) = (l, l, λ) with given l and λ. The lines whose Plücker coordinates (l, l) have the given
l̄, are those contained in the plane l⊥. The footpoint p = p(l, l) and the point x of (6) satisfy
the relations

‖l‖ =
‖p‖

‖l‖
, ‖x − p‖ =

λ‖l‖

‖p‖
.

We see that the mapping p 7→ l is an equiform transformation within l⊥, but the mapping
p 7→ x is not. It is obvious that the set of line elements (L, x) = (l, l, λ) with fixed l 6= 0
and λ is invariant under rotations about the axis L and so is a union of Kasner’s turbines
[9, 23]. This notion means the set of line elements generated by rotating one line element
(L, x) about an axis orthogonal to L. The case l = 0 leads to all line elements (L, x) with
0 ∈ L. If we think of oriented line elements, the results are similar: we get the set of oriented
lines contained in the plane l⊥ which are oriented such that det(p(l, l), l, l) ≥ 0.

3.2. Generalized bundles. It is interesting to study certain linear subspaces of the (qua-
dratic) coordinate space of line elements. The term ‘bundle of lines’ employed in the defini-
tion below means either the set of lines which pass through a point of R

3, or the set of lines
parallel to a given line.

Definition 2. A set of line elements (L, x) is called a generalized bundle, if its lines con-
stitute a bundle and its coordinates are contained in a three-dimensional linear subspace of
R

7.

In view of homogeneity of line element coordinates, a bundle of line elements has dimension
two. In case the bundle of Def. 2 has a proper vertex q, we may choose lines parallel to
the canonical basis vectors e1,e2,e3 and see that the corresponding coordinate subspace is
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spanned by the columns of a matrix of the form



e1 e2 e3

m1 m2 m3

pT


 =




E3

C

pT


 ∈ R

7×3, mi = q × ei.(9)

If all lines of the bundle are parallel to v ∈ R
3, there is an analogous matrix of the form




v 0 0
0 m2 m3

α 0 0


 ∈ R

7×3,(10)

where m2,m3 ∈ R
3 span v⊥.

For a given generalized bundle of line elements (L, x) it is interesting to observe the
location of all points x:

Lemma 3.1. A generalized bundle of line elements (L, x) either consists of the lines incident
with a point q ∈ R

3 such that x is contained in a sphere with center (p + q)/2 and radius
‖p − q‖/2, with p, q from (9); or of the lines parallel to a vector v ∈ R

3 such that x is
contained in the plane with equation 〈x, v〉 = α, with v, α from (10).

Proof. We first consider the case (9). With p = (p1, p2, p3)
T , the general line element (L, x)

in the bundle has coordinates (l, q × l,
∑

lipi). By construction,
∑

lixi =
∑

lipi, which
implies that x − p ⊥ l. It follows that x is contained in a Thales sphere with diameter pq.
In the case (10), the general line element (L, x) has coordinates (l, l, λ) with l = γv, λ = γα.
Obviously, 〈x, v〉 = 1

γ
〈x, l〉 = 1

γ
λ = α. �

The result of Lemma 3.1 is illustrated in Fig. 4, left.

3.3. Linear mappings of Plücker coordinates. A linear automorphism of R
7 which

transforms the set

(11) {(l, l, λ) ∈ R
7 | 〈l, l〉 = 0}

into itself, is called a linear mapping of line elements. Similar to the phenomenon that
restricting an automorphism of a projective space P to an affine space A ⊂ P does not
map A into A, also a linear mapping of line elements will in general map some coordinate
vectors of line elements to coordinate vectors of the type (0, l, λ) which no longer represent
line elements. Note that a linear mapping of line elements is not not, in general, induced by
a point-to-point mapping of affine of projective three-space.

An example of a linear mapping of line elements which is induced by a point-to-point
mapping (by an equiform transformation, to be precise) is given by (8). It turns out that a
general affine transformation does not give rise to a linear mapping of line elements in the
same way:

Lemma 3.2. An affine mapping x 7→ Ax + a with A ∈ R
3×3 induces a linear mapping of

line elements if and only if it is a similarity transformation.
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Proof. Assume that line element coordinates are mapped according to (l, l, λ) 7→ (k, k, κ).
Then k = Al, k = K ′l + K ′′l, but by (6),

κ = 〈A
l × l + λl

〈l, l〉
+ a,Al〉 =

1

〈l, l〉
(det(l, l, AT Al) + λ〈l, AT Al〉) + aT Al.

This dependence is linear if and only if AT Al is a multiple of l, for all l, i.e., if and only if
AT A is a multiple of E3. �

Lemma 3.3. A linear automorphism ϕ of R
7 with block matrix representation

(12)




l′

l′

λ′


 =




K L a

P Q b

uT vT ω







l

l

λ


,

is a linear mapping of line elements, if and only if a = b = 0, both KT P and LT Q are
skew-symmetric, and KT Q + P T L = κE3 with κ 6= 0.

Proof. The mapping ϕ is a linear mapping of line elements, if and only if it leaves the relation
〈l, l〉 = 0 invariant. It is straightforward to describe the group of linear automorphisms of a
quadratic surface. For the convenience of the reader, we describe the argument here:

With the canonical projection π : R
7 → R

6, ϕ̃ : (l, l) 7→π◦ϕ(l, l, 0) is a linear automorphism
of the Klein quadric, whence the conditions on K, L, P , and Q. Especially the upper left

2 × 2 block
[

K L

P Q

]
is regular.

The expression 〈l′, l′〉 expands to κ〈l, l〉 + λ[aT bT ] ·
[

P Q

K L

]
·
[

l

l

]
+ λ2〈a, b〉. Now 〈l′, l′〉 =

0 ⇐⇒ 〈l, l〉 = 0 for all l, l, λ, if and only if a = b = 0. �

Corollary 1. A linear mapping ϕ of line elements with the block matrix representation (12)
determines a unique automorphism ϕ̃ of the Grassmann manifold of lines in projective space
P

3, which in Plücker coordinates reads
[

l

l

]
7→

[
K L

P Q

][
l

l

]
.

The mapping ϕ̃ in turn is induced by either a projective automorphism κ of P
3 or a corre-

lation κ
? of P

3 onto its dual. Conversely, for all such ϕ̃, there is a six-dimensional affine
space of ϕ’s.

Proof. This is obvious from the coordinate representation given in the previous lemma and
from the well known coordinate representations of automorphisms of line space: the con-
ditions on the matrices K,L, P,Q are the same in both cases. For given ϕ̃ we may choose
u, v ∈ R

3, ω 6= 0 arbitrarily. �

Lemma 3.4. The linear mapping ϕ of Lemma 3.3 maps generalized bundles with proper
vertices to generalized bundles with proper vertices, if and only if the matrices K, L, P , Q
coincide with those of a similarity transformation, as given by (8).



8 BORIS ODEHNAL, HELMUT POTTMANN, AND JOHANNES WALLNER

Proof. First it is obvious that such mappings have the required properties. In order to show
the reverse implication, we consider the mapping ϕ̃ of Cor. 1. It is induced by an affine
mapping, as ϕ maps bundles with proper vertices to bundles with proper vertices. It follows
that in the block matrix (12), L = 0 and K is regular. The image of a subspace of type (9)
is given by 


K

P + QC

?


 ∼




E3

K−1(P + QC)
?


,

where the symbol ‘∼’ means that the linear span of the columns of the matrix does not
change. This is a subspace of type (9), if and only if the second block is skew-symmetric.
This means that K(P + QC)T = −(P + QC)KT for all choices of skew-symmetric matrices
C, i.e., KP T + KCT QT + PKT + QCKT = 0. As KP T is skew-symmetric anyway, this
condition reduces to the skew symmetry of QCKT for all skew-symmetric C. By Lemma
3.3, KT Q = κE3, and consequently we have KT = Q−1/κ. The above condition now
reads: QCQ−1 skew-symmetric, i.e., C(QT Q) = (QT Q)C. It is easy to verify that a matrix
which commutes with all skew-symmetric ones, is a multiple of E3. Thus we have shown
QT Q = µE3, and the result follows. �

4. Linear complexes of line elements

The set of lines whose Plücker coordinates (l, l) satisfy a homogeneous linear equation
〈l, c〉 + 〈l, c〉 = 0 is called the linear line complex with coordinates (c, c) [20, 24]. We
generalize this and define:

Definition 3. The set of line elements (l, l, λ) which satisfy

(13) 〈c, l〉 + 〈c, l〉 + γλ = 0

is called the linear complex of line elements with coordinates (c, c, γ).

If a complex C with equation (13) is given, and γ 6= 0, then for every line L = (l, l) in
Euclidean space there is a point x ∈ L such that (L, x) ∈ C. In case γ 6= 0, the condition
that (L, x) ∈ C refers to the line L alone, and (L, x) ∈ C if and only if L is contained in the
complex of lines whose equation is (13). Thus the set of lines associated to the line elements
of a complex in the sense of Def. 3 can have dimensions 3 or 4, depending on γ.

In Euclidean kinematics, the path normals of a smooth motion at a fixed instant comprise
a linear line complex. This connection between Euclidean motions and line complexes gen-
eralizes to equiform motions and line elements: We call (L, y) a path normal element at y,
if L is orthogonal the velocity vector v(y) (cf. (3)).

Theorem 1. At any regular instant of a smooth one-parameter equiform motion with velocity
vector field v(y) from (3), the set of path normal elements of points equals the linear complex
of line elements with coordinates (c, c, γ).

Proof. The condition that the line element (l, l, λ) is orthogonal to v(y), reads 0 = 〈v(y), l〉 =
〈c × y + c + γy, l〉 = det(c, y, l) + 〈c, l〉 + γ〈y, l〉 = 〈c, l〉 + 〈c, l〉 + γλ. �
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Obviously, all linear complexes of line elements occur in this way. The group of equiform
transformations x 7→ τTx+ t acts on the set of linear complexes of line elements in a natural
way. In view of Th. 1, this action is given by Equ. (4), and the classification of complexes is
reduced to that of velocity vector fields:

Theorem 2. Up to equiform equivalence, there are the following homogeneous coordinates
of linear complexes of line elements:

(c, c, γ) = (0, 0, 1; 0, 0, p; 0) (p ∈ R),(14)

(c, c, γ) = (0, 0, 0; 0, 0, 1; 0),(15)

(c, c, γ) = (0, 0, 1; 0, 0, 0; p) (p 6= 0),(16)

(c, c, γ) = (0, 0, 0; 0, 0, 0; 1).(17)

Proof. The list of normal forms of velocity vector fields given earlier in this paper corresponds
to the four cases above. Two different cases cannot be equivalent, because neither the action
of the equiform group nor multiplication with a factor changes the vanishing of ‖c‖ or γ.
Likewise p is an invariant in both (14) and (16). �

A linear complex (c, c, γ) of line elements corresponds to a spiral motion if c 6= 0 and γ 6= 0,
as demonstrated in Sec. 2.1: The spiral center, which after the coordinate transformation
to normal form has coordinates (0, 0, 0)T , obviously is given by o = −(C× + γE3)

−1c. It is
elementary to verify that this expression is the same as

(18) o =
1

γµ
(γc × c − γ2c − 〈c, c〉c), with µ = γ2 + 〈c, c〉.

The spiral axis is parallel to c, and so we get the following line element coordinates for the
axis element consisting of axis and center:

(19) (c, o × c, 〈o, c〉) =
(
c,

1

µ
(〈c, c〉c − 〈c, c〉c + γ c × c),−

1

γ
〈c, c〉

)
.

In the case γ = 0, (19) is replaced by the well known expression (c, 1

µ
(〈c, c〉c − 〈c, c〉c)) =

(c, c − 〈c,c〉
〈c,c〉

c) for the Plücker coordinates of the axis of a helical motion (see Fig. 2).

4.1. Concurrent and co-planar line elements in a complex. The intersection of a
linear complex of lines with a planar field of lines is a pencil, i.e., the set of path normals of
a Euclidean motion within that plane. It turns out that the latter formulation generalizes
to line elements:

Theorem 3. The line elements of a linear complex contained in a plane are the path normal
elements of a planar spiral motion.

Proof. Without loss of generality we consider only the plane x3 = 0. The Plücker coordinates
of line elements (L, x) in that plane have the form (l1, l2, 0; 0, 0, l3; λ) with l3 = x1l2 − x2l1.
The line elements belonging to a linear complex satisfy

(20) c1l1 + c2l2 + c3l3 + γλ = 0.
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x1 x2

x3

π

s

Figure 3. Path normal elements of a planar spiral motion. Left: planar
section of a linear complex of line elements. Right: point paths.

The velocity vector v(x) of a point x under a general planar spiral motion reads

(21) v(x) = (c1, c2, 0)
T + c3(−x2, x1, 0)

T + γ(x1, x2, 0)
T .

The condition that the line element (L, x) above is orthogonal to v(x) is expressed by

(22) 〈v(x), l〉 = c1l1 + c2l2 + c3(x1l2 − l1x2) + γ〈l, x〉 = 0,

which is the same as (21). �

Lemma 4.1. If C = (c, c, γ) is a linear complex of line elements with γ 6= 0, then for all
lines L there is a unique point x such that (L, x) ∈ C.

If γ = 0, we consider the linear complex C ′ = (c, c) of lines. If L ∈ C ′, for all x ∈ L we
have (L, x) ∈ C, otherwise there is no x with (L, x) ∈ C.

Proof. We have to solve the equation 〈c, l〉+〈l, c〉+γλ = 0. With L ∈ C ⇐⇒ 〈c, l〉+〈l, c〉 =
0 the result follows. �

The point x referred to in Lemma 4.1 is easily computed with (6):

(23) x =
1

〈l, l〉
(l × l −

1

γ
(〈c, l〉 + 〈l, c〉)).

Lemma 4.2. The set of points x such that (L, x) is contained in the complex (c, c, γ) and
L is parallel to a fixed vector l 6= 0, is a plane, except in the case that γ = 0 and l ‖ c.

Proof. For any point x, the line element (L, x) parallel to l has coordinates (l, x× l, 〈x, l〉). It
is contained in the complex if and only if 0 = 〈c, l〉+〈c, x× l〉+γ〈x, l〉 = 〈c, l〉+〈x, l×c+γl〉.
This is a nontrivial linear equation, if γ 6= 0 or l × c 6= 0. �
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q
q c

l

〈c, l〉l

Figure 4. Left: Line elements in a generalized bundle. Right: See proof of
Th. 4.

The condition that a line (l, l) is incident with a point q is linear of rank 2. Thus by
counting linear equations we see that the line elements (L, x) of a given complex with q ∈ L
in general comprise a generalized bundle in the sense of Def. 2. In analogy to Lemma 3.1 we
show:

Theorem 4. Assume that q ∈ R
3 and C = (c, c, γ) (γ 6= 0) is a linear complex of line

elements. Then the set of x such that there is (L, x) ∈ C with q ∈ L is the sphere with
diameter qq′, where q′ = q − 1

γ
v(q) is expressed in terms of the velocity vector field (3).

Proof. Without loss of generality we let q = 0, so v(q) = c. The conditions imposed on the
line element (L, x) = (l, l, λ) are l = 0 and

(24) 〈c, l〉 + γλ = 0.

Then (6) implies

(25) x = −
1

γ

〈c, l〉

〈l, l〉
l.

Obviously, x is the pedal point of the point − 1

γ
c = q − 1

γ
v(q) on the line L. It follows that

the set of points x is the Thales sphere with diameter qq′ (see Fig. 4, right). �

Corollary 2. With the complex C from Th. 4, the set of points x such that there is (L, x) ∈ C
with L contained in a given pencil, is a circle.

Proof. The circle in question is found by intersecting the sphere of Th. 4 with the carrier
plane of the pencil. �

4.2. Intersection of a complex with a line congruence. Recall that a hyperbolic linear
congruence of lines with skew axes A1, A2 consists of the lines which intersect both A1 and
A2 [20, 24].



12 BORIS ODEHNAL, HELMUT POTTMANN, AND JOHANNES WALLNER

x1

x2

x3
A1

A2

dϕ

ϕ

A1

A2

Figure 5. Left: Axes of a hyperbolic linear line congruence and the coordi-
nate system used in the proof of 5. Right: The surface Φ of Th. 5 with two
one-parameter families of circles.

Theorem 5. Let C = (c, c, γ) be a linear complex of line elements withγ 6= 0. Consider the
set Φ of points x ∈ R

3 such that there is (L, x) ∈ C with L contained in a given hyperbolic
line congruence. Φ is a cubic surface which carries two one-parameter families of circles.

Proof. Without loss of generality we assume that the axes A1 and A2 of the hyperbolic linear
line congruence are parametrized linearly by

A1(u) = (2ku, 2u, d), A2(v) = (2kv,−2v,−d) (k, d 6= 0).(26)

The congruence is in Plücker coordinates parametrized by L(u, v) = (l(u, v), l(u, v)) with
l(u, v) = 1

2
(A2(v) − A1(u)) = (k(u − v), u + v, d), l(u, v) = 1

2
(A2(v) + A1(u))) × l(u, v) =

(d(u − v),−dk(u + v), 4kuv). The point x(u, v) such that the line element (L(u, v), x(u, v))
is contained in C is computed with (23). By Lemma 4.1, it is unique. Implicitization of this
surface yields the equation kγ(x2

1 + x2
2 + x2

3)x3 + . . . , where the dots indicate lower order
terms. Since k, γ 6= 0, Φ is of degree three. For any plane ε ⊃ Ai, the intersection Φ ∩ ε
consists of Ai plus a degree two curve Rε. By Cor. 2, those lines L(u, v) which lie in ε lead to
a circle of points x(u, v), which is now identified with Rε. It follows that the parametrization
x(u, v) covers Φ entirely. �

From the equation of Φ and also from the fact that Φ carries circles it is obvious that the
projective and complex extension of Φ contains the absolute conic.

4.3. Intersection of complexes. In this short paragraph we consider the intersection of
two complexes of line elements. It has already become apparent above that a complex
(c, c, γ) with γ = 0 has special properties, which is also the case here. Assume that Ci =
(ci, ci, γi) (i = 1, 2) are linearly independent coordinate vectors of then different complexes
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with (γ1, γ2) 6= (0, 0). The linear combination C := (c, c, γ) = γ2C1 − γ1C2 describes the
complex with equation

(27) γ2(〈l, c1〉 + 〈l, c1〉) = γ1(〈l, c2〉 + 〈l, c2〉),

and obviously has γ = 0. It is actually the equation of a linear complex D of lines. If L = (l, l̄)
is a line in D, then there is λ such that (l, l, λ) ∈ C1 ∩C2: We have λ = −(〈l, c̄i〉+ 〈l̄, c̄i〉)/γi

whenever γi 6= 0. It follows that the intersection C1 ∩ C2 consists of a set of line elements
whose corresponding set of lines is a linear complex.

5. Projective closure

In line geometry it is well known that the simple definition of Plücker coordinates of lines
in Euclidean space via moment vectors is elegantly extended to lines at infinity. The Plücker
coordinates (l, l) of lines are precisely those pairs (l, l̄) ∈ R

6 with l 6= 0 and 〈l, l〉 = 0. It
turns out that the lines at infinity can be added without difficulty – they get coordinates
with l = 0.

In the case of line elements, this extension is not as simple. All coordinate 7-tuples
(l, l, λ) ∈ R

7 with l 6= 0 and 〈l, l〉 = 0 describe a line element (L, x) with x ∈ R
3 and L

not at infinity. Projective extension adds, among others, the line elements (L, x) with L
proper and x at infinity. The limit x → ∞ along the line L leads to coordinates “(l, l,∞)”,
or, when employing homogeneity, the coordinate vector (0, 0, 1) ∈ R

7, regardless of l and l.
This alone shows that the quadratic surface 〈l, l〉 = 0 in six-dimensional projective space P

6

is not an appropriate model.
The point in P

3 with homogeneous coordinates (x0, . . . , x3) = (x0, x) ∈ R
4 is contained

in the line with Plücker coordinates (l, l̄) if and only if 〈x, l̄〉 = 0 and x × l = x0l̄. These
two equations together with 〈l, l〉 = 0 define a point model of the set of line elements within
P

3 × P
5. We leave the investigation of lower-dimensional point models which perhaps have

a simpler definition as a topic for future research.

Conclusion

We have introduced Plücker coordinates for line elements and considered certain sets of line
elements which are given by linear equations of Plücker coordinates: Linear complexes of line
elements, and generalized bundles. Further, we discussed linear mappings of line elements.
The relation between Euclidean kinematics and complexes of lines has been generalized to
equiform kinematics and complexes of line elements, which also leads to a classification of
the linear complexes with respect to the equiform group. In order to better understand
the geometry of line elements, we studied the intersection of linear complexes with bundles,
fields, and linear congruences, in one case also giving a kinematic interpretation.
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