
Geometry and convergence analysis of

algorithms for registration of 3D shapes

Helmut Pottmann

Geometric Modeling and Industrial Geometry Group

Vienna University of Technology, Austria

pottmann@geometrie.tuwien.ac.at

Qi-Xing Huang, Yong-Liang Yang and Shi-Min Hu

Department of Computer Science and Technology

Tsinghua University, China

shimin@tsinghua.edu.cn

Abstract

The computation of a rigid body transformation which optimally aligns a set of
measurement points with a surface and related registration problems are studied
from the viewpoint of geometry and optimization. We provide a convergence analysis
for known registration algorithms such as ICP and introduce new algorithms with
an improved local and global convergence behavior. Most of our work deals with
the fundamental problem of registering two views (scans, surfaces) with unknown
correspondences. It is then shown how to extend the concepts to the simultaneous
registration of an arbitrary number of views.

Key words: registration, rigid registration, kinematics, optimization, ICP
algorithm, distance function, convergence analysis

1 Introduction

Registration plays an important role in 3D model acquisition and geometry
processing [1]. Individual overlapping scans of an object, initially available in
different coordinate systems, have to be optimally positioned in a single sys-
tem. This requires the simultaneous registration of a number of point clouds.
Another industrial application of registration is the following: For the goal of
shape inspection it is of interest to find the optimal Euclidean motion (trans-
lation and rotation) that aligns a cloud of measurement points of a workpiece

to the CAD model from which it has been manufactured. This makes it pos-
sible to check the given workpiece for manufacturing errors and to visualize
and classify the deviations. The latter registration problem concerns only two
systems. It is basic to the entire family of rigid registration problems and thus
we will investigate this problem in detail before we address the simultaneous
registration of more than two systems.

Previous work

A well-known standard algorithm to solve the present registration problem is
the iterative closest point (ICP) algorithm of Besl and McKay [2]. Indepen-
dently, Chen and Medioni [4] proposed a similar algorithm. Although these
two algorithms are based on similar ideas, we will see later that the difference
— from the viewpoint of optimization — is not marginal at all. Most of the
literature is based on these algorithms and deals with a variety of possible
improvements. An excellent summary with new results on the acceleration
of the ICP algorithm has been given by Rusinkiewicz and Levoy [29], who
also suggest that iterative corresponding point is a better expansion for the
abbreviation ICP than the original iterative closest point. For an overview
of the recent literature on registration we also refer to [6,8,16,22,28] and the
references therein.

Contributions of the present paper

Despite the large amount of work on registration, it seems that there is no
thorough investigation of registration algorithms from the viewpoint of ge-
ometry and optimization. Filling this gap is the main purpose of the present
contribution. The study of registration as a geometric optimization problem
reveals important information on the behavior of known algorithms and it
leads to new algorithms with improved local or global convergence properties.

This paper is organized as follows. Section 2 summarizes basic facts from
kinematical geometry which are important for the present investigation. Fur-
ther essential background concerns the geometry of the distance function to
a surface, which is reviewed in Sec. 3. Registration is formulated as a con-
strained nonlinear least squares problem. Gradients of the objective function
in various norms and corresponding gradient descent schemes for registra-
tion are studied in Sec. 4. These algorithms are of importance for the global
convergence behavior; the local convergence is just linear. Registration with
the ICP algorithm is discussed in Sec. 5. It is shown that ICP exhibits lin-
ear convergence. The constant, which determines the convergence speed, is

2

closely related to the surface geometry and the direction from which the mini-
mum is approached. To obtain better local convergence, we devise and analyze
in Sec. 6 algorithms with quadratic convergence; such algorithms are of the
Newton type and require second order approximants of the objective function.
Simplified versions, which are frequently used optimization algorithms for cer-
tain types of nonlinear least squares problems, are Gauss–Newton iteration
and the Levenberg–Marquart method. These are addressed in Sec. 7. In fact,
Gauss–Newton iteration turns out to be precisely the algorithm of Chen and
Medioni. Therefore, this algorithm exhibits quadratic convergence for a good
initial position and a zero residual problem (the data point cloud fits precisely
onto the model surface). Finally, in Sec. 8 we show how to use the previous
results for the simultaneous registration of more than two views.

The present investigation provides the theoretical basis for empirical results
which have been reported in earlier papers. It also brings some order into
the variety of registration algorithms and presents new concepts, partially
in continuation of the work based on the geometry of the squared distance
function [25,26].

2 Spatial Kinematics

Since registration requires the computation of an optimal rigid body motion,
it is not surprising that kinematical geometry plays an important role. We
review here some basic facts. Proofs are omitted in most cases; they may be
found in the literature, e.g. [3,27].

2.1 First order properties of one-parameter motions

Consider a rigid body moving in Euclidean three-space R
3. We think of two

copies of R
3: One copy associated with the moving body and called moving

space or moving system Σ0, and one copy called the fixed space or fixed system
Σ. We use Cartesian coordinates and denote points of the moving system Σ0

by x0, y0, . . . , and points of the fixed system by x, y, and so on.

A one-parameter motion Σ0/Σ is a smooth family of Euclidean congruence
transformations depending on a parameter t which can be thought of as time.
A point x0 of Σ0 is, at time t, mapped to the point

x(t) = A(t) · x0 + a0(t) (1)

of Σ, where A(t) ∈ SO3 and a0(t) ∈ R
3. In this way all points of Σ0 have a

3

path curve or trajectory x(t) in Σ. The trajectory of the origin is a0(t). A(t)
describes the rotational part of the motion; we have AT = A−1 and det(A) = 1.

The first derivative ẋ(t) = Ȧ(t) · x0 + ȧ(t) of the path of x0 is its velocity
vector at time t. We write v(x) for the vector field of vectors ẋ(t) attached to
the points x(t). It is well-known that the vector field v(x) is linear and has
the special form

v(x) = c + c × x. (2)

The vector c is called Darboux vector or vector of angular velocity.

Of special interest are the uniform motions, whose velocity vector field is
constant over time. Apart from the trivial uniform motion, where nothing
moves at all and all velocities are zero, there are the following three cases:

(1) Uniform translations have c = o, but c 6= o, i.e., all velocity vectors
equal c.

(2) Uniform rotations with nonzero angular velocity about a fixed axis. We
have c · c = 0, but c 6= o.

(3) Uniform helical motions are the superposition of a uniform rotation and a
uniform translation parallel to the rotation’s axis. They are characterized
by c · c 6= 0. If ω is the angular velocity of the rotation, and v the velocity
of the translation, then p = v/ω is called the pitch of the helical motion.
Formally, p = 0 means a uniform rotation and p = ∞ is a translation.

Up to the first differentiation order, any one-parameter motion agrees locally
with one of these motions.

If (c, c) represents the velocity vector field of the motion, then the Plücker
coordinates (g, g) of the axis, the angular velocity ω and the pitch p of the
instantaneous helical motion (including special cases) are reconstructed by

p = (c · c)/c2, ω = ‖c‖, (g, g) = (c, c − pc). (3)

Recall that the Plücker coordinates of a line G consist of a direction vector g

and the moment vector g = p × g, where p represents an arbitrary point on
G.

4

2.2 Second order Taylor approximant of uniform motions

So far we have seen that a first order approximation of a motion at a given
position, say at time t = 0, is given by

x1(t) = x(0) + tẋ(0) = x0 + t(c̄ + c × x0). (4)

Here, x0 is the position of x0 ∈ Σ0 at t = 0 in Σ. We are now going to derive a
second order approximant. For our purposes, it is sufficient to consider uniform
motions, since we are only interested in a local parameterization of the motion
group which is precise up to second order. Hence, we have to compute ẍ(0), the
acceleration vector of x0 at time t = 0. By the subgroup property of uniform
motions, the velocity vector field is time independent. Considering the motion
of a point, its velocity vector is just transformed by the linear (rotational)
part of the motion. Hence, its derivative equals v̇ = c× v. Therefore, we have
ẍ(0) = c×(c̄+ c×x0), and a second order Taylor approximation of a uniform
motion is given by

x2(t) = x0 + t(c̄ + c × x0) +
t2

2
c × (c̄ + c × x0). (5)

This formula follows also immediately from the representation of uniform mo-
tions via the exponential mapping [3].

We will later use equation (5) as a local parameterization of the Euclidean
motion group, which is precise up to second order. There, it is sufficient to
identify (tc, tc̄) with (c, c̄) and use the following parameterization with six
scalar parameters (c, c̄),

x(c, c̄) = x0 + c̄ + c × x0 +
1

2
c × (c̄ + c × x0)

= x0 + c̄ + c × x0 +
1

2
[c × c̄ + (c · x0)c − c2x0]. (6)

2.3 Relative Motions

We consider three copies Σi, Σj, Σk of Euclidean space. Σi performs a one-
parameter motion with respect to Σj and Σj does the same with respect to Σk.
This results in a composite motion of Σi with respect to Σk. Then, the relative
velocities of these three motions, vij, vjk, vik, at some point, say xk ∈ Σk,

5

satisfy the relation

vik(x
k) = vij(x

k) + vjk(x
k). (7)

For simpler notation, we view Σk as fixed system Σ and write just single
indices. The velocity fields vik = vi and vjk = vj shall be described according
to (2) by vector pairs (ci, ci) and (cj, cj), respectively. Then, the velocity field
vij of the relative motion Σi/Σj is represented by (ci − cj, ci − cj).

If both Σi/Σ and Σj/Σ are uniform motions with a Taylor expansion of the
form (6), then the motion Σi/Σj is no longer uniform. Composition of these
Taylor approximants and skipping the cubic and quartic terms results in the
following second order approximant,

xij = x + ci − cj + (ci − cj) × x +
1

2
[(ci − cj) × ci + cj × (cj − ci)

+ci × (ci × x) + cj × (cj × x) − 2cj × (ci × x)]. (8)

2.4 Computing a displacement from a Taylor approximant

The first or second order approximations of uniform motions discussed above
are in general not rigid body transformations. Later, it will be necessary to
actually perform the rigid body transformation, whose first or second order
approximant is known. In other words, we also have to add the higher order
terms in the Taylor expansion. Fortunately, this turns out as a very simple
task.

In the unlikely case that there is no rotational part, i.e., c = 0, we are done,
since then we have a translation with the vector c, which of course is a rigid
body motion. Otherwise we note that the velocity field of the instantaneous
motion is uniquely associated with a uniform helical motion. Its axis A and
pitch p can be computed with formula (3). The rotational angle is given by
φ = ‖c‖. Altogether, the desired motion is the superposition of a rotation
about the axis A through an angle of φ = ‖c‖ and a translation parallel to
A by the distance of p · φ. For the explicit formulae we refer to the literature
[3,27].

2.5 The group of Euclidean motions embedded in the affine group

If we do not impose orthogonality on the matrix A in equation (1), we get,
for each t, an affine map. Viewing rigid body transformations as special affine

6

maps will be very useful for the planned analysis of registration algorithms.
Hence, we now describe a few simple facts that have been successfully used
in various places, for example in a method for the transfer of curve design
algorithms to the design of smooth rigid body motions [12].

In the following, we use a kinematic mapping that views affine maps as points
in 12-dimensional affine space. For that, consider the affine map x = α(x0) =
a0 + A · x0. Let us denote the three column vectors of A as a1, a2, a3. They
describe the images of the basis vectors of Σ0 in Σ. Of course, we have x =
a0 + x0

1a1 + x0
2a2 + x0

3a3. Now we associate with the affine map α a point in
12-dimensional affine space R

12, represented by the vector A = (a0, . . . , a3).

The images of Euclidean congruence transformations (rigid body motions)
α ∈ SE(3) form a 6-dimensional manifold M6 ⊂ R

12. Its six equations are
given by the orthogonality conditions of A, i.e., ai · aj = δij, i, j = 1, 2, 3.

It will be necessary to introduce a meaningful metric in R
12. Following [12],

this is done with help of a collection X of points x0
1, x

0
2, . . . , x

0
N in the moving

system (body), which shall be called feature points henceforth. The squared
distance between two affine maps α and β is now defined as sum of squared
distances of feature point positions after application of α and β, respectively,

‖α − β‖2 = ‖A − B‖2 :=
∑

i

[α(x0
i) − β(x0

i)]
2. (9)

With A = (a0, . . . , a3), B = (b0, . . . , b3), C := A − B = (c0, . . . , c3), and
x0

i = (x0
i,1, x

0
i,2, x

0
i,3) the distance becomes

‖A − B‖2 = ‖C‖2 =
∑

i

[c0 + x0
i,1c1 + x0

i,2c2 + x0
i,3c3]

2 =: C
T · M · C. (10)

This expression with help of a positive definite symmetric matrix M imme-
diately reveals the following facts [12]: The metric (9) in the space of affine
maps is Euclidean. It only depends on the barycenter sx = (1/N)

∑

i x
0
i and

on the inertia tensor J :=
∑

i x
0
i · x

0
i

T
of the set of feature points x0

i in the
moving system.

By a well-known result from mechanics, we can replace the points x0
1, . . . , x

0
N

by the six vertices of the inertia ellipsoid without changing the barycenter
and inertia tensor of X. To do so, we choose the barycenter as origin and
the eigenvectors of J as coordinate axes in the moving system. Then, the six
points have coordinates (±f1, 0, 0), (0,±f2, 0), (0, 0,±f3), where 2f 2

i are the
eigenvalues of J . Now, the norm in R

12 becomes

‖C‖2 = 6c2
0 + 2

3
∑

i=1

f 2
i c2

i . (11)

7

3 The squared distance function of a surface

Here we will summarize a few basic facts on the squared distance function.
For more details and the derivation of these results, we refer to [25].

Given a surface Φ ⊂ R
3, we are interested in the squared distance function d2,

which assigns to each point x ∈ R
3 the square of its shortest distance to Φ. The

importance of this function for an analysis of registration algorithms lies in the
fact that we want to compute an optimal position of a data shape (usually a
point cloud), which minimizes the sum of squared distances to a model shape
that represents a surface Φ. Several important optimization concepts require
second order approximants of the objective function. Thus, we have to study
these approximants for the squared distance function d2.

Consider a surface Φ with a unit normal vector field n(s) = n3(s), attached
to its points s. At each point s ∈ Φ, we have a local right-handed Cartesian
system whose first two vectors n1, n2 determine the principal curvature direc-
tions. The latter are not uniquely determined at an umbilical point. There,
we can take any two orthogonal tangent vectors n1, n2. We will refer to the
thereby defined frame as principal frame Π(s). Let κi be the (signed) principal
curvature to the principal curvature direction ni, i = 1, 2, and let ρi = 1/κi.
Then, the two principal curvature centers at the considered surface point s

are expressed in Π as ki = (0, 0, ρi). The second order Taylor approximant Fd

to the squared distance function d2 at the point p = (0, 0, d) is the following
[25].

Proposition 1 The second order Taylor approximant of the squared distance
function of a surface Φ at a point p ∈ R

3 is expressed in the principal frame
at its normal foot point s ∈ Φ via

Fd(x1, x2, x3) =
d

d − ρ1

x2
1 +

d

d − ρ2

x2
2 + x2

3. (12)

Let us look at two important special cases.

• For d = 0 we obtain

Fd(x1, x2, x3) = x2
3.

This means that the second order approximant to d2 at a surface point p

is the same for the surface Φ and for its tangent plane at p. Thus, if we are
close to the surface, the squared distance function to the tangent plane at
the closest point to the surface is a very good approximant.

• For d = ∞ we obtain

F∞(x1, x2, x3) = x2
1 + x2

2 + x2
3.

8

This is the squared distance to the foot point on the surface.

We see that distances to normal foot points are just good if we are in the
’far field’ of the surface Φ. In the near field it is much better to use other
local quadratic approximants. The simplest one is the squared distance to the
tangent plane at the normal foot point.

For an implementation which employs the discussed approximants, it is better
to express them in the same coordinate system as the surface itself. This is
done by viewing Fd as a weighted sum of x2

1 and x2
2, the squared distances

to the principal planes, and x2
3, the squared distance to the tangent plane

at the foot point s. Thus, with ni · x + di = 0, i = 1, 2, 3, as Hesse normal
forms of principal planes and tangent plane at s, respectively, the quadratic
approximant reads

Fd(x) =
d

d − ρ1

(n1 · x + d1)
2 +

d

d − ρ2

(n2 · x + d2)
2 + (n3 · x + d3)

2.(13)

We may have an indefinite Taylor approximant, which might be undesirable for
optimization. Then, we derive nonnegative quadratic approximants either by
replacing a negative term d/(d−ρj) by zero or by |d|/(|d|+ |ρj|); a motivation
for the latter choice is given in [25]. In any case, a second order approximant
Fd is with appropriate coefficients α1, α2 and α3 = 1 given by

Fd(x) =
3

∑

j=1

αj(nj · x + dj)
2. (14)

Note that so far we tacitly assumed that p does not lie on the cut locus of Φ.
There the distance function d and also its square are not differentiable, and it
makes no sense to talk about a second order Taylor approximant.

For later use we finally note that the gradient ∇d2 of the squared distance
function at a given point p is given in the principal frame of the foot point as
∇d2 = (0, 0, 2d). This follows e.g. from (12). In a global system the gradient is,
up to the factor 2, the vector from the foot point f to p. Hence, the gradient
of the function g = d2/2 is

∇g = p − f = dn. (15)

Remark 2 For the sake of brevity, we are discussing in this paper only the
case of smooth surfaces. However, the change to the more practical case of
piecewise smooth surfaces is straightforward. Such a surface exhibits sharp
edges and vertices (intersection points of edges, singular points such as the
vertex of a cone); its squared distance field is composed of squared distance
fields of smooth surfaces, of curves (edges and eventual boundary curves) and

9

of points (vertices). The squared distance field of a point is quadratic anyway.
Quadratic approximants to squared distance fields of space curves have been
studied in [25]. Intuitively, the simplicity of the extension to piecewise smooth
objects is explained as follows: we attach small smooth blending surfaces along
edges and corners, with blending radius ε, and consider the limit for ε → 0.

3.1 A data structure for fast distance information retrieval

In Computer Vision and 3D Photography, surface patches obtained from a
3D scanning device are usually defined by point cloud data (PCD) which do
not contain any topology information. For the purpose of registration of PCD,
one can still compute second order quadratic approximants in each iteration.
A numerically stable algorithm in this case benefits from a globally smooth
fitting surface and then computes foot points together with the curvature
information at these points. This is not easy and time consuming. Therefore,
we briefly address here a modified d2tree method [20] for computing quadratic
approximants to the squared distance function. It involves least squares fitting
of quadratic patches. The pre-computed quadratic patches are stored in a
special data structure called d2tree. Figure 1(a) shows a d2tree for simple two
dimensional ellipse-like PCD.

(a) cells in a d2tree for two dimen-
sional PCD

(b) Sketch to the construction of a
modified d2tree in 2D; cells in red

Fig. 1. Modified d2tree structure

Simply put, the d2tree is a quadtree like data structure each cell of which stores
a quadratic function that approximates the squared distance locally. Previous
structures of d2tree compute these quadratic functions by least squares fitting
to the squared distance function with the same error threshold. However, as
different cells correspond to different approximants, these constructions can
not preserve the continuity of quadratic approximants along the boundary of
each cell. The modified d2tree structure solves this problem by borrowing the

10

idea of ’partition of unity’ [24], which is typically used to integrate locally
defined approximants into a global approximation which preserves important
properties, such as the maximum error and convergence order. In our ap-
proach, the quadratic patch in each cell Ci is associated with a C2 compactly
supported function wi(·),

wi(x) = W (
‖x − oi‖

2

1.7 ∗ d2
i

). (16)

Here, oi and di are respectively the center and the length of the diagonal of
cell Ci, and W (·) is a C2 function with support interval [0, 1]. In this article,
we choose W to be a cubic B-spline basis function.

The squared distance approximant at a point x is defined by blending of the
squared distance approximants of its adjacent cells,

F+(x) =

∑

i wi(x)(xT · Ai · x + 2bi · x + ci)
∑

i wi(x)
. (17)

The summation in equation (17) is taken over all cells. However, as all wi(·) are
compactly supported, for a fixed point x0, only a few terms in (17) contribute
to its squared distance approximation so that it can be fast computed. Figure
1(b) shows a sketch in 2D, where the squared distance approximation of p is
a weighted combination of the squared distance approximations in cells with
centers oi, 1 ≤ i ≤ 4.

The construction of the modified d2tree is done in a top-down style based
on fitting quadratic functions F (·) to samples of the squared distance field
of the PCD. The details of the construction is similar to the method used in
[24,20] and will not be described here. For our construction, the number of
levels of the tree and the error threshold for the quadratic approximants are
the required parameters.

Our application requires a squared distance approximant near a given point p.
Unlike the d2tree defined before, we use the second order Taylor approximant
of F+(x) at p,

F2(x) = F+(p) + ∇F+(p)T · (x − p) +
1

2
(x − p)T · ∇2F+(p) · (x − p).(18)

As W (·) has a analytic expression, both ∇F+(·) and ∇2F+(·) can be computed
analytically.

Remark 3 Compared with the previous d2tree [20], the modified d2tree struc-
ture takes more time to supply the squared distance approximant at a given

11

point, as it needs the computation of gradient and Hessian of F+(·). To cut
down the computation time in the present application, one can just apply the
modified strategy when the cell is near the surface. However, the time needed
for computing gradient and Hessian remains small compared to the time which
would be necessary for computing foot points in each iteration of the following
registration algorithms.

4 Problem formulation and gradient descent

4.1 Formulation of registration as a constrained optimization problem

A set of points X0 = (x0
1, x

0
2, . . .) is given in some coordinate system Σ0. It

shall be rigidly moved (registered, positioned) to be in best alignment with a
given surface Φ, represented in system Σ. We view Σ0 and Σ as moving and
fixed system, respectively. A position of X0 in Σ is denoted by X = (x1, . . .).
It is the image of X0 under some rigid body motion α. Since we identify
positions with motions, the motions have to act on the same initial position.
Thus, we always write X = α(X0).

The point set X0 may be a cloud of measurement points on the surface of a
3D object. The surface Φ may be the corresponding CAD model, another scan
of the same object, a scan of a similar object, a mean shape in some class of
shapes, etc. For our description, we will simply speak of a data point cloud
and a surface Φ (‘model shape’), but have in mind that Φ may also be given
just as a point cloud. For details on working with point cloud data, we refer
to [23]. Additional issues which come up when only a part of the data shape
agrees with a part of the model shape are handled in Sec. 8.

The registration problem shall be formulated in a least squares sense as follows.
Compute the rigid body transformation α∗, which minimizes

F (α) =
∑

i

d2(α(x0
i), Φ). (19)

Here, d2(α(x0
i), Φ) denotes the squared distance of α(x0

i) to Φ. If we view α
as a special affine map, we have to compute its 12 parameters (a, A) under
the constraint that A is an orthogonal matrix. Hence, the present problem is
a constrained nonlinear least squares problem [11,10,18].

The following notation will be used throughout this paper. The current po-
sition of the data point cloud in some iterative procedure is called X =
(x1, x2, . . .) = α(X0); if necessary, we write more precisely Xc = (x1c, . . .) =

12

αc(X
0). The next position in an iteration is indicated by X+ = (x1+, . . .) =

α+(X0). The minimizer of F is X∗ = α∗(X0).

For practical reasons, in particular for dealing with outliers in the data set
X, one may use a weighted sum. This is not a major difference and shall be
neglected in the following.

4.2 Gradient descent

In the following, we compute the gradient of the objective function F in (19).
In view of (15), we multiply F by the factor 1/2, but call the function again
F . A tangential direction in the Euclidean motion group is determined by an
instantaneous velocity vector field. With two vectors (c, c) it is written as
v(x) = c+ c× x. Let yi be the foot points of the current data point positions
xi on Φ, and set fi := xi−yi. Then, by equation (15), the directional derivative
of F in direction C = (c, c) reads

∂F

∂C
=

∑

i

(xi − yi) · v(xi) =
∑

i

fi · (c + c × xi) =
∑

i

(fi · c + fi · c).

Here fi = xi × fi is the moment vector of the surface normal through xi. It
is appropriate to view the vectors fi as forces acting along the corresponding
surface normals. We call these forces the repelling forces. Then, fi are the mo-
ments of these forces. Altogether, we have a repelling force system, represented
in terms of screw theory ([27], pp. 192) by the screw

F = (f, f) = (
∑

i

fi,
∑

i

fi). (20)

We will call F the repelling screw and −F the attracting screw. Hence, the
directional derivative appears as virtual work done by the repelling force system
on the instantaneously moving data shape,

∂F

∂C
= f · c + f · c. (21)

With known results from line geometry and screw theory [27] we conclude: An
instantaneous motion with directional derivative zero corresponds to a screw
which is reciprocal to the screw F. In particular, the axes of instantaneous
rotations, which yield vanishing directional derivative of F , lie in a linear line
complex.

A minimizer is characterized by vanishing derivative in all directions. This is
only possible if the screw F vanishes. In terms of statics, the condition may

13

be expressed as follows:

Proposition 4 At a position, which is a local minimizer of the objective func-
tion F of the registration problem, the repelling force system (or equivalently
the attracting force system) is in equilibrium.

Remark 5 In the case of known correspondences, we have an analogous equi-
librium property of the force system F = (f, f) defined by the vectors xi − yi

to pairs of corresponding points. In particular, this requires f = 0, which ex-
presses exactly the well-known correspondence of the barycenters of the two
point sets X and Y (see [9,14]).

To compute the gradient, we need a metric, since the direction C needs to be
normalized. The simplest normalization via c2 + c2 = 1 yields as gradient

∇F = (f, f) =: F
∗. (22)

It is more natural, however, to use the Euclidean metric (9) for normalization
of the tangent vector to M6, represented by C. This requires that we normalize
according to

∑

i

(c + c × xi)
2 = 1. (23)

On the left hand side we have a positive definite quadratic form, so that the
normalization can be written as

C
T · Me · C = 1. (24)

Writing the directional derivative in the form ∂F/∂C = F
∗T · M−1

e · Me · C,
the gradient ∇eF of F for the normalization (23) induced by the Euclidean
metric (9) is deduced as

∇eF = M−1
e · ∇F = M−1

e · F
∗. (25)

Both −∇F and −∇eF are in a certain metric directions of steepest descent
and can be employed in a gradient descent algorithm. One computes X+ from
Xc by application of a ‘small’ displacement, which is in first order given by
the velocity field in direction of the steepest descent. One considers the helical
motion defined by this velocity field (c, c̄). Then, one applies to the current
position Xc the helical motion according to subsection 2.4, with an appropriate
rotational angle φ. One can start with φ = ‖c‖ and then check the validity
of the corresponding step. If the decrease of the objective function is not
sufficient, the rotational angle is reduced according to the Armijo rule [18] or
a more sophisticated step size prediction scheme of optimization [10,18].

14

Remark 6 The gradient according to (25) possesses the following interpreta-
tion. We are looking for a velocity vector field v(x), determined by C = (c, c̄),
such that the first order approximants of the displaced data points, namely the
points xi +v(xi) = xi + c̄+ c×xi, are as close as possible to the closest points
yi ∈ Φ of xi, in a least squares sense. This requires the minimization of

F1 =
∑

(xi + v(xi) − yi)
2 =

∑

i

(fi + c̄ + c × xi)
2. (26)

With the expression of (23) in the form (24), and with help of (22) and (20),
function F1 reads in matrix notation

F1 = C
T · Me · C + 2(F∗)T · C +

∑

i

f2i . (27)

Therefore, the minimizer Cm is given by the negative gradient from equation
(25),

Cm = −M−1
e · F

∗ = −∇eF. (28)

Thus, a gradient descent based on ∇eF tries in each iteration to bring the new
data points xi+ as close as possible to the foot points yi of the current data
points xic. This is similar to the ICP algorithm, which is discussed in more
detail in Sec. 5. There, we show that ICP is linearly convergent. The same
holds for a gradient descent, if one uses an appropriate step size [18].

Although gradient descent is not a good method for the fine positioning, it may
be very useful to reach the convergence area of an algorithm with quadratic
convergence, described in Sec. 6.

5 The ICP algorithm revisited

The most widely used algorithm for the solution of the registration problem
is the iterative closest point (ICP) algorithm of P. Besl and N.D. McKay [2].
We will briefly describe this algorithm and then take another point of view
which immediately reveals its convergence properties.

The ICP algorithm performs in each iteration the following two steps.

(1) For each point xi = α(x0
i) in the current position of the data shape, the

closest point yi in the model shape is computed. This is the most time
consuming part of the algorithm and can be implemented efficiently, e.g.
by using an octree data structure. As result of this first step one obtains

15

a point sequence Y = (y1, y2, . . .) of closest model shape points to the
data point sequence X = (x1, x2, . . .). Each point xi corresponds to the
point yi with the same index.

(2) The rigid motion α+ is computed such that the moved data points xi+ =
α+(x0

i) are closest to their corresponding points yi, where the objective
function to be minimized is

F1 =
∑

i

‖xi+ − yi‖
2. (29)

This least squares problem can be solved explicitly. The translational
part of α+ brings the barycenter s0

x of X0 to the barycenter sy of Y
(cf. Remark 5). The rotational part of α+ can be obtained as the unit
eigenvector that corresponds to the maximum eigenvalue of a certain
symmetric 4 × 4 matrix [9,14]. The solution eigenvector is nothing but
the unit quaternion description of the rotational part of α+.

Now step 1 and step 2 are repeated, always using the updated data points,
until the change in the mean-square error falls below a preset threshold. The
ICP algorithm always converges monotonically to a local minimum, since the
value of the objective function is decreasing in each iteration.

5.1 ICP exhibits linear convergence

The ICP algorithm can be understood nicely if we embed the set of rigid body
motions into the space D of continuous deformations. A distance measure in
D can be introduced similarly as in R

12, say with help of the measurement
points in X. Clearly, this distance cannot distinguish between deformations
that act identically on X. We could also restrict to special deformations that
are uniquely determined by an image set Y of X and reproduce Euclidean
congruences where possible.

The set of Euclidean congruences is some 6-dimensional manifold C6 in D.
The set of deformations α which map X onto points of Φ, i.e. F (α) = 0, is
some manifold D0 ⊂ D. In case that there are no measurement errors and X
fits exactly to Φ, a solution α∗ of the registration problem is an intersection
point of D0 and C6.

The two steps of ICP are interpreted in D as follows.

(1) To the point αc ∈ C6 (representing the motion between initial and current
position Xc of the data point cloud X), compute the closest point αf ∈ D0

(the deformation towards the cloud of closest points on Φ).
(2) To αf ∈ D0, compute the closest point α+ ∈ C6.

16

Hence, each iteration consists of two orthogonal projections with respect to
the chosen metric in D. At first, one projects from a point on C6 orthogonally
onto D0, and then orthogonally back to C6. We will show that this kind of
double projection converges linearly. In case of a precise fit between data
and model shape, we have convergence to an intersection point of D0 and
C6. If there exists a deviation between data shape X and model shape, we
have convergence towards a common normal of D0 and C6. In both cases, the
algorithm converges to a minimizer of the objective function F . Depending on
the initial position, this may just be a local minimizer, but not the global one.

Linear convergence means that the distance of the iterates to the solution α∗

decreases according to

‖α+ − α∗‖ ≤ C‖αc − α∗‖, (30)

for some constant C ∈ (0, 1).

Let us now proceed with a proof of the error formula (30). In particular,
we would like to compute the constant C, which determines the speed of
convergence.

For our purposes it is sufficient to make the following simplification. We con-
sider the sequence of iterates (. . . , αc, α+, . . .) in C6 as points of some curve
c ⊂ C6. The intermediate foot points αf lie in some curve f ⊂ D0. Each
tangent of the curve c lies in the corresponding tangent space of C6; hence a
normal onto C6 is also a normal onto c. The same holds for the curve f. The
desired common normal of D0 and C6 is also a common normal of these two
curves; the normal foot points shall be c∗ (= α∗) and f∗. Of course, in case
of an intersection point we have c∗ = f∗. Therefore, we consider the double
projection algorithm for the computation of the common normal of two curves
c and f. It is sufficient to assume finite dimension d of the embedding space
D = R

d; since only the second order Taylor expansions of c and f around
c∗ and f∗ enter the discussion, dimension d = 5 is actually sufficient. More-
over, is suffices to express orthogonality in R

d with help of the canonical inner
product.

We consider arc length parameterizations c(u) and f(v) for the two curves,
with c(0) = c∗, f(0) = f∗. Assuming bounded derivatives up to third order,
the Taylor expansions read

c(u) = c∗ + uc′0 +
u2

2
c′′0 + O(u3), f(v) = f∗ + vf′0 +

v2

2
f′′0 + O(v3).

The common normal property of c∗, f∗ is expressed as

(c∗ − f∗) · c′0 = 0, (c∗ − f∗) · f′0 = 0. (31)

17

Given a current position c(uc)f(uc) for the common normal, which is orthog-
onal to f at f(uc), the next position c(u+), f(uc) is orthogonal to c. This is
formulated in the equations

(c(uc) − f(vc)) · f
′(vc) = 0, (c(u+) − f(vc)) · c

′(u+) = 0. (32)

Now we insert the Taylor expansions into these two equations. The absolute
terms cancel because of (31). Vanishing of the first order terms yields two
linear equations in uc, u+, vc, from which we eliminate vc and finally get

u+ = Cuc, with C =
(c′0 · f

′

0)
2

[c′0
2 + (c∗ − f∗) · c′′0][f

′

0
2
+ (f∗ − c∗) · f′′0]

.

C is the constant we are looking for, since u = 0 corresponds to the foot point
c∗. To express C in geometric quantities, we use the properties of arc length
parameterizations, c′0

2 = f′0
2

= 1, and denote the angle between the tangents
at the normal foot points by φ,

cos φ = c′0 · f
′

0.

With d ≥ 0 as distance between the foot points c∗ and f∗, we have f∗ − c∗ =
dn, ‖n‖ = 1. So far, this gives

C =
cos2 φ

(1 − dn · c′′0)(1 + dn · f′′0)
.

By the Frenet equations,

c′′0 = κcnc, f′′0 = κf nf ,

with κc, κf as curvatures and nc, nf as unit principal normal vectors of the
curves c and f, respectively. Of course, these entities are taken at the normal
foot points. nc · n equals the cosine of the angle γc between the common
normal and the osculating plane of c at c∗. The quantity κc cos γc can be
seen as normal curvature of the curve c with respect to the normal vector n.
Analogously we define the normal curvature κn

f , but to have symmetry, we use
the normal −n there (so that it points from f∗ to c∗). This finally yields

C =
cos2 φ

(1 − dκn
c)(1 − dκn

f)
. (33)

Remark 7 The normal curvature κn
c of c at c∗, with respect to the normal

n, can be visualized as follows: Connecting the point f∗ with the curve c yields
a cone. By developing this cone into the plane, c is transformed into a planar
curve c̃, whose ordinary curvature at c̃∗ (with the normal orientation given by
ñ) is precisely κn

c [5,30]. The interpretation of κn
f is analogous.

18

If the curves intersect, i.e. d = 0, the convergence only depends on their
intersection angle. The property C = cos2 φ is immediately clear for two in-
tersecting straight lines. It is not surprising that it appears in first order also
if c and f are not lines. For curves c and f, which are tangent at some point
c∗ = f∗, we have d = 0 and φ = 0, and thus C = 1. This gives a convergence
which is below a linear rate!

It is much more subtle to analyze the case d 6= 0. Obviously, even curvature
information enters the discussion. The situation can be easily understood if
one takes two circles c and f in the plane. Clearly, we have φ = 0. The speed
of convergence is determined by the radii of the circles; it is an elementary
exercise to verify the validity of (30) with the constant from (33).

5.2 Conclusions on the performance of ICP

We will only discuss the case of a small residual problem (d small); there,
the data point cloud X fits very well onto Φ. By equation (33), the speed of
convergence is given by C ≈ cos2 φ and thus we have to find the angle φ, under
which the minimizer is approached.

By equation (9) squared distances between two positions, say the current
position X and the minimizer X∗, are computed as sum of squared distances
of corresponding data point locations,

‖X − X∗‖2 = ‖α − α∗‖2 =
∑

i

(xi − x∗

i)
2. (34)

As approximants to the tangent vectors at the minimizer (vectors c′0 and f′0
of the previous subsection), we may use the normalized secant vectors (X −
X∗)/‖X − X∗‖ and (Y − Y ∗)/‖Y − Y ∗‖, and thus we have

cos φ ≈

∑

i(xi − x∗

i) · (yi − y∗

i)
√

∑

i(xi − x∗

i)
2
√

∑

i(yi − y∗

i)
2
. (35)

During the computation, X∗ is not yet known. An alternative is the estimation
of φ from two successive iterates,

cos φ ≈

∑

i(xic − xi+) · (yic − yi+)
√

∑

i(xic − xi+)2
√

∑

i(yic − yi+)2
. (36)

This confirms an intuitively obvious and experimentally verified phenomenon:
ICP is very slow, if tangential moves along the surface are needed. Then the

19

Table 1: Error reduction in the standard ICP algorithm
Iterative Closest Point (ICP)

j E(j)
E(j)

E(j−1)
cos2φ j E(j)

E(j)
E(j−1)

cos2φ

0 8.607e-2 110 1.302e-7 0.8637 0.8633

10 5.291e-2 0.9696 0.5302 120 3.014e-8 0.8639 0.8635

20 3.453e-2 0.9510 0.6529 130 6.987e-9 0.8640 0.8636

30 1.631e-2 0.8968 0.3871 140 1.621e-9 0.8640 0.8637

40 3.670e-3 0.8573 0.8314 150 3.764e-10 0.8641 0.8638

50 8.478e-4 0.8754 0.8467 160 8.745e-11 0.8641 0.8639

60 1.957e-4 0.8685 0.8511 170 2.032e-11 0.8642 0.8639

70 4.720e-5 0.8616 0.8601 180 4.725e-12 0.8643 0.8639

80 1.071e-5 0.8625 0.8617 190 1.101e-12 0.8640 0.8639

90 2.451e-6 0.8631 0.8624 200 2.588e-13 0.8659 0.8638

100 5.640e-7 0.8635 0.8629

angle φ is small and the constant C is close to 1. Tangential moves belong to
a velocity vector field of a rigid body motion which is nearly tangential to Φ.

We present here an example to empirically test the accuracy of the estimate
(36) of the constant in the linear convergence behavior of ICP. The chosen
surface Φ is a bi-cubic B-spline surface with 36 control points and uniform
knots. The size of the object is approximately 0.352× 0.340× 0.354. The data
set X results from random sampling of k = 500 points on Φ and successive
displacement of the point cloud as a rigid body system; thus we have a zero
residual problem. Figure 2 shows the initial and the final position after 200
iterative steps of standard ICP. Table 1 presents for each given iteration the

error E(j) =
√

[
∑

i(xi − x∗

i)
2]/k according to (34), the estimate cos2 φ of the

constant C using formula (36) and the quotient E(j)/E(j − 1), which repre-
sents the exact error reduction in each iteration. The last two quantities are
graphed in Figure 2, bottom. It reveals that the theoretical convergence result
describes the exact behavior very well, except for a few initial iterations when
the data point cloud is far from the fixed object. This is expected, since we
have performed a local convergence analysis which does not capture the initial
phase.

Surfaces, which possess a velocity vector field v(x), such that v(x) is exactly
tangential to Φ for all x ∈ Φ, are invariant under a uniform motion. Such a
surface must be a plane, sphere, cylinder, rotational or helical surface. Clearly,
for such a surface, F has an infinite number of minimizers. An instability can
also exist infinitesimally or approximately. A linear algorithm for the detection
of such cases can be based on line geometry [27]; strategies for handling them
in an ICP algorithm have been described by Gelfand et al. [8,16].

Let us summarize the results on the convergence of ICP.

20

iteration10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

error

1e-10
1e-9
1e-8
1e-7
1e-6
1e-5
1e-4
1e-3
1e-2
1e-1 true coefficient

estimation

Fig. 2. Local convergence behavior of the standard ICP algorithm: (upper left)
initial position, (upper right) final position, (bottom) illustration of the constant C

for the linear error reduction, and its estimate cos2 φ according to (36)

Proposition 8 The ICP algorithm exhibits in general linear convergence with
a decay constant C given by equation (33). For a zero residual problem, where
the minimizer is approached tangentially, we have the worst case C = 1; a tan-
gential approach occurs in an exact way only for surfaces which are invariant
under a uniform motion.

Without further discussion, we mention that the quadratically convergent al-
gorithms in the next section exhibit a better convergence for small angles
φ than ICP does. However, they are no longer quadratically convergent for
φ = 0.

6 Quadratically convergent registration algorithms

There are various possibilities to achieve quadratic convergence in registration
algorithms. Recall that quadratic convergence means an error reduction of the

21

form

‖α+ − α∗‖ ≤ C‖αc − α∗‖2, (37)

with some positive constant C. We will describe several quadratically conver-
gent algorithms, all of them based on a Newton type iteration:

(1) The most universally usable algorithm carefully computes second order
approximants to the squared distance function of Φ and to the constraint
set, given by the rigidity of the moving system.

(2) A simplified version of the former algorithm just uses a linearization of the
motion. This is justified by the fact that the minimizer we are looking
for may also be a minimizer within the affine group. Especially if the
deviations between data point set and model shape are very small, this
is true. In such cases, the algorithm still converges quadratically.

(3) If the model shape does not allow affine transformations in itself and
the deviation is close to zero, the desired minimizer is also an isolated
minimizer within the affine group. This means that we can remove the
rigidity constraint and just work with a Newton algorithm in the affine
group.

We start the discussion with the simplest version, namely (3), in subsection
6.1. Method (2) in studied in subsection 6.2, and finally the most general,
but computationally also most intensive algorithm (1) is described in subsec-
tion 6.3. All our algorithms follow the same basic scheme and are quite easy
to implement because of the careful study of the squared distance function
and kinematical geometry; they can take advantage from preprocessing of the
squared distance field (see [23]). This geometric insight is lacking in a paper
by Tucker and Kurfess [31], which applies the Newton method to registration
in a straightforward way and thus leads to quite involved expressions and little
possibilities for acceleration.

Before we enter the discussion of registration, let us recall the most basic facts
on Newton iteration [18]. A Newton method for the minimization of a function
F (x) solves ∇F = 0 iteratively via linearization. Equivalently, it computes a
second order Taylor approximant at the current position xc and minimizes this
quadratic function to obtain the next iterate x+. Therefore, with the gradient
∇F (xc) and the Hessian ∇2F (xc), one has

x+ = xc − (∇2F (xc))
−1 · ∇F (xc).

Under appropriate assumptions on F and on the initial iterate, a Newton
iteration converges quadratically to a local minimizer. In order to obtain a
globally convergent algorithm, i.e. an algorithm which converges from each
initial position to a local minimizer, one has to make some improvements [18].

22

If the Hessian is not positive definite, the Newton direction may fail to be a
descent direction; then one has to employ an approximate Hessian, which in
our case will come from nonnegative quadratic approximants of the squared
distance function. Moreover, one should use a step size control and compute
a step λ such that

x+ = xc − λ(∇2F (xc))
−1 · ∇F (xc),

has sufficient descent [18]. In the following, we will not explicitly point to this
stabilization, but we are assuming it is done.

6.1 Registration with a Newton algorithm in the affine group

The algorithm we are dealing with assumes that F possesses an isolated min-
imizer α∗ within the affine group which is contained in (or very close to) M6.
A minimizer lies in M6 if the deviations between data set and model shape are
zero (up to Gaussian noise). This minimizer is isolated if there are no affine
self-motions of the model shape. This is not always the case: for example,
in case of an ellipsoid as model shape we have even a 3-parameter group of
affine automorphisms. However, in many practical situations, such affine self-
transformations will not be possible and for such cases we propose to proceed
as follows.

Starting from an appropriate initial position α0, we perform a Newton iter-
ation in R

12 for the minimization of F . A Newton method requires a second
order approximation of the objective function F . Since F is the sum of squared
distances of the data points xi to the model shape Φ, a second order approx-
imant is

F2 =
∑

i

Fd,i, (38)

where Fd,i is the second order approximant of the squared distance function to
the model shape at xi. These approximants have been investigated in section
3. Let ni,j ·x+di,j = 0, j = 1, 2, 3, be the Hesse normal forms of the coordinate
planes of the principal frame at the foot point yi. Then, by equation (14), a
second order Taylor approximant of the squared distance function at xi is
written as

Fd,i(x) =
3

∑

j=1

αi,j(ni,j · x + di,j)
2. (39)

The same form holds for a nonnegative modification. Nonnegative approxi-
mants should be applied at least in initial steps of the iteration to ensure

23

positive definiteness of the Hessian of the objective function.

We now insert an affine displacement of the data points,

x′

i = xi + c0 + xi,1c1 + xi,2c2 + xi,3c3, (40)

into F2 and arrive at the local quadratic model of the objective function

F2 =
∑

i

3
∑

j=1

αi,j[ni,j · (xi + c0 + xi,1c1 + xi,2c2 + xi,3c3) + di,j]
2. (41)

Since ni,j · xi + di,j is the distance of xi to the j-th coordinate plane of the
principal frame, this value equals 0 for j = 1, 2; it equals the oriented distance
di of xi to Φ for j = 3. Therefore we may rewrite F2 as

F2 =
∑

i

2
∑

j=1

αi,j[ni,j · (c0 + xi,1c1 + xi,2c2 + xi,3c3)]
2 + F̃2. (42)

Here, F̃2 denotes the part arising from the squared distances to the tangent
planes at the foot points,

F̃2 =
∑

i

[ni · (c0 + xi,1c1 + xi,2c2 + xi,3c3) + di]
2. (43)

The minimization of the quadratic function F2 in the parameters (c0, . . . , c3) of
the affine displacement requires the solution of a linear system. Applying this
affine displacement to the data set, we obtain a new position. This procedure is
iterated. We stop with an appropriate criterion, e.g. if the error or its decrease
fall below a given threshold or a maximum number of iterations has been
reached. To go sure that the final position of the data set is a Euclidean copy
of the original one, we may register the original position to the final one, which
is a well-known eigenvalue problem (the second step in each iteration of ICP).

Since the present method is a Newton algorithm, it converges quadratically.

Remark 9 Affine registration in the present formulation has an infinite num-
ber of singular solutions: These occur if the whole moving system shrinks to a
single point of the model shape, which clearly results in a zero residual. Our
experiments confirm that this shrinking effect may appear if the initial position
is too far away from the model shape.

24

6.2 A Newton algorithm based on a first order motion approximant

We are now keeping the rigidity constraint. In other words, our path in R
12

towards the minimum is restricted to M6. Let us first explain our iterative
procedure in R

12. Here, each iteration from αk to αk+1 consists of the following
two steps.

(1) Compute the tangent space T 6 of M6 at αk and minimize a local quadratic
model F2 of the objective function F within T 6. Let α∗

T denote the unique
minimum in T 6.

(2) Project α∗

T onto M6 to obtain αk+1.

Such a procedure needs not even be convergent if the unconstrained minimum
(in R

12) is far away from M6. However, if the minimum lies in M6, the al-
gorithm can be shown to be quadratically convergent. These results follow by
a local quadratic approximation of the objective function at the minimizer
and by the use of corresponding results on the constrained minimization of
quadratic functions (see, e.g. [13]).

The realization of the two steps in the algorithm outlined above is as follows.

Step 1. The tangent space T 6 is defined by Euclidean velocity fields, i.e.
v(x) = c+ c× x. Equivalently, ci of (40) are no longer arbitrary, but define a
skew symmetric matrix. Therefore, minimization of the local quadratic model
inside T 6 requires the minimization of the following quadratic function in
(c, c),

F2 =
∑

i

2
∑

j=1

αi,j[ni,j · (c + c × xi)]
2 + F̃2. (44)

As before, F̃2 arises from squared tangent plane distances,

F̃2 =
∑

i

[ni · (c + c × xi) + di]
2 =

∑

i

[ni · c + ni · c + di]
2, (45)

and can be used instead of F2 when we are already close to the model shape
(see also Sec. 7). Note that (ni, ni)) are the Plücker coordinates of the surface
normal through xi. F2 is a quadratic function in the unknowns (c, c). The
unique solution (c∗, c∗) can be given explicitly by solving a system of linear
equations.

Step 2. The projection back to M6 proceeds according to subsection 2.4. We
apply a helical motion which is determined by the velocity field (c∗, c∗).

25

Let us remark that the presented algorithm can be made convergent in any
situation, even if the minimum within the affine group is not close to M6.
However, then the choice of the rotational angle cannot simply be ‖c‖. Espe-
cially, if a large rotational angle arises, it is better to use arctan ‖c‖ or even
a smaller value than that. A secure way is to employ the Armijo rule or a
similar strategy from optimization [18] for the determination of an appropri-
ate step size, analogous to the procedure in a gradient descent algorithm. It is
well known in optimization [18] that this results in an algorithm with linear
convergence.

6.3 A Newton algorithm based on a second order motion approximant

To achieve quadratic convergence in any case, we can use a second order
approximant for the motion from αk to αk+1 according to (6). This means
that we estimate the displaced data point xi by

x′

i = xi + c + c × xi + Ti,2,

with the second order term

Ti,2 =
1

2
[c × c̄ + (c · xi)c − c2xi].

We insert this into Fd(xi) and sum up,

F2 =
∑

i

2
∑

j=1

αi,j[ni,j · (c + c × xi + Ti,2)]
2 + F̃2. (46)

We observe that the quadratic term Ti,2 in the first part produces just cubic
or quartic contributions to F2. Since we will minimize a local quadratic model
at the current position, i.e. (c, c) = (0, 0), these terms do not matter at all.
However, we have to look into F̃2,

F̃2 =
∑

i

[ni · (c + c × xi + Ti,2) + di]
2, (47)

Skipping again the higher order terms, we get a local quadratic approximant,
denoted by F̃ ′

2,

F̃ ′

2 =
∑

i

[ni · c + ni · c + di]
2 + 2

∑

i

dini · Ti,2. (48)

26

Hence, the only relevant correction term compared to the use of a linearized
motion as in subsection 6.2 is

F2c =
∑

i

di[det(ni, c, c) + (c · xi)(c · ni) − c2(xi · ni)]. (49)

Computationally, the second order motion approximation does not require
much more effort. However, in this refined version we can guarantee quadratic
convergence, if we have an initial position in the region of attraction of the
minimum.

6.4 Examples and comparison

In this subsection, we want to compare the standard ICP algorithm and the
three algorithms presented in subsections 6.1, 6.2 and 6.3 from the perspec-
tive of global stability and local convergence. Two examples are performed,
corresponding to problems with a zero and a large residual, respectively.

In our first example, the object is a fender model, which is represented as
a bi-cubic B-spline surface. The size of the object is approximately 2.023 ×
0.750×0.367. We sampled the model at k = 500 points, without adding noise.

The first test is devoted to analyze the local convergence behavior. Figure 3
shows the initial position and final position with respect to the model.

Fig. 3. Local convergence test: (left) initial position of data set and model shape,
(right) final position.

In Table 2, the errors E(j) of our algorithms and of the standard ICP al-
gorithm are given. Among the four tested algorithms, affine registration is
the fastest. Moreover, our algorithms stop after several iterations with the
error below 1e − 13, whereas ICP still has E(200) = 1.996e − 11 after 200
iterations. Furthermore the columns identified by E(j)/E(j − 1)2 reveal that

27

Table 2: Error reduction for a zero residual problem; local convergence test
Newton, 1st order motion Newton, 2nd order motion

j E(j)
E(j)

E(j−1)
E(j)

E(j−1)2
E(j)

E(j)
E(j−1)

E(j)

E(j−1)2

0 2.942e-2 — — 2.942e-2 — —

1 3.303e-3 1.122e-1 3.816 3.671e-3 0.1249 4.241

2 8.899e-5 2.694e-2 8.158 8.863e-5 8.761e-2 6.577

3 4.935e-8 5.546e-4 6.232 2.258e-8 5.317e-2 2.875

4 1.794e-14 3.635e-7 7.367 1.570e-15 1.680e-3 3.079

5 <1.0e-16 — — <1.0e-16 — —

affine registration standard ICP

j E(j)
E(j)

E(j−1)
E(j)

E(j−1)2
E(j)

E(j)
E(j−1)

E(j)

E(j−1)2

0 2.942e-2 — — 2.942e-2 — —

1 4.540e-3 0.1543 5.245 1.109e-2 0.3769 —

2 9.067e-5 1.997e-2 4.398 7.569e-3 0.6825 —

3 2.324e-8 2.563e-4 2.827 5.335e-3 0.7084 —

4 6.200e-16 2.668e-8 1.148 3.904e-3 0.7318 —

.

.

.

200 — — — 1.996e-11 0.9131 —

our algorithms are quadratically convergent, while ICP and shows only linear
convergence.

After examining the local convergence, we come to the second test which
focuses on global stability. In this case, affine registration tends shrink the
point cloud converge to a point and thus we do not include it in this test.
To ensure global convergence (i.e., convergence to a local minimizer from any
initial position), all three tested algorithms are regularized by the Armijo rule.
Figure 4 shows the initial position of the point cloud X and the progress made
by each tested algorithm. The latter is illustrated with help of the positions of
the barycenter and the vertices of the inertia ellipsoid of X. Moveover, each
figure shows on the left hand side the panoramic view; on the right hand side
it zooms into the situation near the minimizer.

In Table 3, the errors E(j) of our algorithms and the standard ICP algorithm
are given. Our algorithms stop after several iterations with the error below
1e − 16, whereas ICP still has E(200) = 2.996e − 10 after 200 iterations.
Moveover, compared with the second order Newton method, the first order
Newton method appears to be more stable.

Now we can summarize the behavior of our algorithms for zero residual prob-
lems. We find that affine registration exhibits the fastest local convergence
behavior. However, in other examples we verified an expected phenomenon:
affine registration can lead to severe shrinking effects, since there are many
undesirable local minima corresponding to positions, where the entire data

28

Fig. 4. Comparison of our algorithms with standard ICP, visualized by the motion
of barycenter and inertia axes of the data point set in a panoramic view and a zoom
into the region near the final position: Newton algorithm with (upper left) first
order motion approximation, and (upper right) second order motion approximation,
respectively; (bottom) standard ICP.

Table 3: Error reduction for a zero residual problem; global stability test
Newton, 1st order Newton, 2nd order ICP

j E(j)
E(j)

E(j−1)
E(j)

E(j−1)2
E(j)

E(j)
E(j−1)

E(j)

E(j−1)2
E(j)

E(j)
E(j−1)

0 8.832e-1 — — 8.832e-1 — — 8.832e-1 —

1 6.013e-1 0.6908 0.7709 4.065e-1 0.4602 0.5211 4.207e-1 0.4763

2 3.397e-1 0.5549 0.9395 4.028e-1 0.9908 2.438 2.434e-1 0.5785

3 2.232e-1 0.6570 1.934 1.834e-1 0.4553 1.130 1.846e-1 0.7584

4 1.265e-1 0.5567 2.539 6.437e-2 0.3509 1.914 1.564e-1 0.8472

5 6.078e-2 0.4804 3.798 3.283e-2 0.5100 7.923 1.397e-1 0.8932

6 1.749e-2 0.2877 4.734 9.475e-3 0.2886 8.791 1.298e-1 0.8854

7 1.181e-3 6.752e-2 3.861 7.792e-4 8.223e-2 8.679 1.112e-1 0.8989

8 4.468e-5 3.783e-2 32.03 1.392e-5 1.786e-2 22.92 9.876e-2 0.8881

9 1.058e-8 2.368e-4 5.298 8.267e-10 1.629e-5 4.266 8.789e-2 0.8899

10 6.300e-16 5.955e-8 5.628 <1e-16 — — 7.867e-2 0.8950

..

.

200 — — — — — — 2.996e-10 0.9131

29

set shrinks to a point on the model surface. From a stability perspective, the
Newton algorithm with a first order motion approximation and a step size
control seems to be superior to other algorithms.

After testing and analyzing a zero-residual problem, we come to a large residual
problem. With an application in 3D face recognition in mind (see also [26]),
we randomly choose 1000 noisy points from a head model. The point data
should be aligned with the model shape, a ’generic’ face given as a triangular
mesh. The goal of this application is to bring the point data (measurement
data) of the face into a standard position such that further processing steps
can be applied to the data. In this application of face registration, we use the
modified d2tree structure to compute the distance information of the model
shape a priori. It is appropriate since many different face data sets might be
registered with one fixed model shape.

One should actually take the variation in head size into account and register
by a similarity transformation, composed of uniform scaling and a rigid body
transformation. This requires only minor modifications in the algorithms pre-
sented above (see [26]). In our test, we did not include the scaling, since we
wanted to test a large residual problem anyway.

Fig. 5. A registration problem with a large residual: (left) initial position of the
data set with respect to the head model, (right) final position.

We test the Newton algorithms with first and second order motion approxi-
mants, respectively, as well as the standard ICP. Figure 5 shows initial and
final position of the data set in view of the ’generic’ face. Besides, to make
our experimental data clear, we scale coordinates of our system such that the
data set is approximately 0.334 × 0.516 × 0.246 units in size.

In Table 4, the errors E(j) of our algorithms and of the standard ICP al-

30

Table 4: Error reduction in a large residual problem
Newton, 2nd order Newton, 1st order ICP

j E(j)
E(j)

E(j−1)
E(j)

E(j−1)2
E(j)

E(j)
E(j−1)

E(j)

E(j−1)2
E(j)

E(j)
E(j−1)

0 7.238e-2 — — 7.238e-2 — — 7.238e-2 —

1 1.964e-2 2.713e-1 3.749 3.039e-2 0.4198 6.860 4.505e-2 0.6224

2 7.817e-3 3.980e-1 20.265 1.335e-2 0.4393 1.160e+1 3.462e-2 0.7685

3 2.195e-3 2.807e-1 35.921 2.926e-3 0.2198 1.517e+1 3.078e-2 0.8870

4 9.238e-4 4.208e-1 191.738 4.574e-4 0.1563 5.192e+1 2.736e-2 0.8832

5 4.286e-5 4.639e-2 50.222 7.837e-5 0.1713 3.161e+2 2.434e-2 0.8874

6 1.514e-7 3.532e-2 82.418 1.319e-5 0.1683 1.992e+3 2.160e-2 0.8872

7 2.718e-13 1.795e-6 11.858 2.077e-6 0.1575 1.232e+4 1.922e-2 0.8880

8 — — — 3.272e-7 0.1578 7.585e+4 1.708e-2 0.8890

.

.

.

13 — — — 3.071e-11 0.1579 8.078e+8 9.490e-3 0.8890

14 — — — 4.907e-12 0.1598 5.204e+9 8.436e-3 0.889

15 — — — 7.842e-13 0.1597 3.252e+10 7.499e-3 0.8897

.

.

.

200 — — — — — — 3.102e-12 0.8894

gorithm are given. Our algorithm stops after several iterations with an error
below E = 1.0e − 12, whereas ICP still has E(200) = 3.102e − 12 after 200
iterations. Moreover, when comparing our algorithms, we see that the quo-
tient E(j)/E(j − 1)2 for the second order algorithm is bounded, while the
corresponding quotient Newton algorithm with first order motion approxima-
tion tends to infinity as j increases; besides, the quotient E(j)/E(j − 1) is
approximately constant in the first order Newton algorithm. All of this nu-
merical evidence reveals that the Newton algorithm with second order motion
approximant is quadratically convergent for large residual problems, whereas
first order motion approximation in the Newton algorithm exhibits linear con-
vergence only. Last but not least, the same quotient E(j)/E(j − 1) is much
larger for the standard ICP algorithm.

7 Gauss–Newton iteration and the Levenberg–Marquardt regular-

ization

At the final steps, the second order approximants Fd(xi) will be close to
squared distance functions of tangent planes at the foot points yi. This means
that the influence of αi,1 and αi,2 will be negligible and thus these parameters
can be set to zero. We may then simply use F̃2 instead of F2. Minimization of
squared tangent plane distances has been first proposed by Chen and Medioni
[4], and it has been observed in various papers that this results in faster con-
vergence than ICP. From a geometric point of view this is explained as follows
(see [25]): Squared tangent plane distances are in the near field of the model
shape close to second order approximants of the squared distance function.
However, squared distances to foot points as employed in ICP are far away
from second order precision; in fact they are second order approximants at

31

infinity. Hence, the original formulation of registration by Chen and Medioni
performs much better for fine registration than ICP.

7.1 Some basics on Gauss–Newton iteration

We would like to understand registration based on squared tangent plane
distances from the viewpoint of optimization, and for that, we recall a few
basic facts [18]. Our objective function F in equation (19) is a sum (1/2)

∑

i d
2
i

of squares. One speaks of a nonlinear least squares problem [18]. For a nonlinear
least squares problem, the Hessian is ∇2F =

∑

i ∇di · (∇di)
T +

∑

i di∇
2di.

Often, the computation of the Hessians ∇2di is too costly and thus one works
with the first part only, considered as an approximation to the true Hessian.
A step in the resulting Gauss-Newton iteration is equivalent to the solution of
the linear least squares problem

min
N

∑

i=1

[di(xc) + ∇di(xc) · (x − xc)]
2. (50)

It is well-known ([18],pp. 24) that the distance ‖ec‖ = ‖xc−x∗‖ of the current
iterate to the minimizer x∗ is related to the error ‖e+‖ in the next iterate by

‖e+‖ ≤ K(‖ec‖
2 + ‖R(x∗)‖ ‖ec‖). (51)

Here, R(x∗) = (d1, . . . , dN)(x∗) is the residual at the minimizer, and K is an
appropriate constant which involves the Jacobian of R(x). The error estimate
is only true, if one is sufficiently close to the minimum. The well-known con-
clusions of (51) are: Gauss-Newton iteration converges quadratically for a zero
residual problem. There, the data can be fitted exactly. Moreover, for good
initial data and a small residual problem, convergence of Gauss-Newton is
fast. For a large residual problem, the iteration may not converge at all.

7.2 Registration with a Gauss-Newton algorithm

We have to formulate equation (50) for the present registration problem. It is
better to start the discussion without the rigidity constraint, i.e., to consider
affine registration.

For this, we note that the gradient ∇di of the distance function to Φ at a
point xi, taken with respect to the spatial coordinates x, is given by the unit
normal vector ni at its foot point yi ∈ Φ, ∇di = (xi − yi)/‖xi − yi‖ = ni.

32

The term ∇di(xc) · (x − xc) describes, in our case, the directional derivative
of this distance for an affine displacement of xi, which equals

ni · (c + xi,1c1 + xi,2c2 + xi,3c3).

Therefore, the minimization of squared tangent plane distances, which is de-
scribed in (43), is identical to a Gauss–Newton iteration (50).

Adding the rigidity constraint has been discussed in Sec. 6; in exactly the same
way we can handle the constraint for Gauss–Newton iteration. The only dif-
ference is, that we do not use full local quadratic approximants of the squared
distance function at the current data points, but we only use squared tangent
plane distances, described in function F̃2.

Let us summarize the conclusions, one can make with known results from
optimization, which have been mentioned in 7.1.

Proposition 10 Registration algorithms, which are based on the Chen &
Medioni approach [4] and iteratively minimize the sum of squared distances
to tangent planes at the normal foot points yi of the current data point loca-
tions xi, correspond to a Gauss–Newton iteration. Therefore, these algorithms
converge quadratically for a sufficiently good initial position and a zero residual
problem (i.e., the data shape fits exactly onto the model shape).

Moreover, we see that the Chen & Medioni method works well for small resid-
ual problems. However, there is no reason to expect convergence for a large
residual problem.

7.3 Regularization according to the Levenberg–Marquardt method

Optimization theory provides several methods to achieve convergence of Gauss–
Newton like iterations even for large residual problems [18].

A variant of the Gauss–Newton iteration does not apply the full step x+ −xc,
but just a scalar multiple λ(x+ − xc), usually with λ < 1, to the current
iteration. Various methods for a line search along xc + λ(x+ − xc) can be
applied (see [18]). This results in a so-called damped Gauss–Newton algorithm.

Another way to modify Gauss–Newton is a regularization with the Levenberg–
Marquardt method [18]. Here, a scalar multiple of the unit matrix is added to
the approximate Hessian. This method, applied to the Gauss-Newton iteration
with a first order motion approximant, requires iterative minimization of

F̃2 =
∑

i

[ni · (c̄ + c × xi) + di]
2 + ν(c̄2 + c2). (52)

33

For the choice of the parameter ν, we refer to [18].

We present here an example to test the effect of Levenberg–Marquardt reg-
ularization on registration with a Gauss-Newton algorithm and first order
motion approximation. The chosen object is a mechanical model, which is
represented as a triangular mesh (see Fig. 6). The size of the object is ap-
proximately 0.858 × 1.542 × 2 units. Data points are obtained by sampling,
without adding Gaussian noise. We compare the first order Newton algorithm
with Armijo rule and Levenberg-Marquardt regularization, respectively. The
behavior of the two regularization methods is graphed in Figure 6. One should
keep in mind that both the Armijo rule and Levenberg–Marquardt regular-
ization are aiming at global stabilization, and thus we only present the data
from a few initial steps.

iteration1 2 3 4 5 6 7 8 9 10 11

error

1e-9
1e-8
1e-7
1e-6
1e-5
1e-4
1e-3
1e-2
1e-1
1.0

Armijo rule

L-M Regularization

Fig. 6. Comparing Levenberg-Marquardt regularization with the Armijo rule:
(upper left) initial position, (upper right) final position, (bottom) error decay

In our example, Levenberg-Marquardt regularization is faster than the Armijo
rule, except for a few initial steps. We have also tested different initial posi-
tions. In some cases, the Armjio rule method converges to a local minimizer
while Levenberg-Marquardt still reaches the global minimizer. Comparing the

34

two methods, we find that Levenberg-Marquardt regularization exhibits a be-
havior of global stability.

8 Simultaneous registration of multiple views without correspon-

dences

We are now addressing the following registration problem: Surface patches Si,
i = 1, . . . , N , which define rigid body systems Σi, shall be assembled to a
single surface assuming that each patch has some overlap with at least one
adjacent patch. Although we speak of patches, these could be point cloud
data; for details on handling point cloud data, we refer to [23]. Let us point
out that we are interested here in the simultaneous registration of the given N
systems in contrast to the major part of the literature, which is solving this
problem by pairwise registration (see e.g. [22] and the references therein).

We assume that we have some roughly correct initial positions Si with in-
formation on a possible overlap. The confidence value of an overlap between
patches Si and Sj shall be γij ∈ [0, 1]. The objective function we are going to
minimize is

F (α1, . . . , αN) =
N

∑

i,j=1

γijd
2(αi(S

i), αj(S
j)). (53)

Here, d2(., .) denotes a distance measure between two patch positions which
will be defined in the following subsection. Of course, αi are the rigid body
transforms which map the initial patch positions Si to their final location.
One of the patches, say S1 needs to be fixed. Thus, α1 is the identity.

8.1 Distance of two patches in the overlapping region

We define a distance measure between two patch positions Si := αi(S
i) and

Sj, which is active only in the overlapping region. Our distance will in general
not be symmetric, d2(Si, Sj) 6= d2(Sj, Si); however, both distances appear in
the objective function (53), which finally gives symmetry. Let us randomly
choose M points xijk on Si, and let yijk be their closest points on Sj. Each
pair gets a weight

wijk :=











1 if ‖xijk − yijk‖
2 ≤ T

exp[−τ(‖xijk − yijk‖
2 − T)2] if ‖xijk − yijk‖

2 > T
(54)

35

Thus, overlap detection is accomplished by setting some threshold T on the
squared distance. It helps to confine the overlap region. T needs to be reduced
during the optimization. The constant τ controls the decay of influence and
can be increased in later steps of the iterative procedure. For each patch pair
(Si, Sj), we can use another number Mij of data points, depending on the size
of the overlapping region. To keep the notation simple, we will disregard this
possibility in the following.

The patch distance can now be defined as

d2(Si, Sj) :=
M
∑

k=1

wijkd
2(xijk, Sj). (55)

This is very similar to (19) and therefore the basic results can be carried over
to the present setting. We use quadratic approximants of the squared distance
fields of the patches Sj and can formulate Newton-type algorithms as before.
Even the convergence results are the same. In order to show how relative
kinematics enters the considerations, we outline this at hand of a Newton
algorithm with linearized motions.

8.2 A Newton algorithm with first order motion approximants for the simul-
taneous registration of N systems

For the kinematical analysis, we consider Σ1 =: Σ fixed and view the motions
of the other systems Σi against Σ. The transition from the current position
of a system Σi to the next position will be estimated by the velocity field vi

described by (ci, ci). In particular, we have (c1, c1) = (0, 0). Thus, in each
iteration, we will solve for 6(N − 1) unknowns (ci, ci), i = 2, . . . , N in the
local quadratic model

F2 =
N

∑

i,j=1

M
∑

k=1

γijwijk[α
1
ijk[n

1
ijk · (ci − cj + (ci − cj) × xijk)]

2 + (56)

α2
ijk[n

2
ijk · (ci − cj + (ci − cj) × xijk)]

2] + F̃2.

As before, F̃2 arises from squared tangent plane distances,

F̃2 =
N

∑

i,j=1

M
∑

k=1

γijwijk[nijk · (ci − cj + (ci − cj) × xijk) + dijk]
2, (57)

and can be used instead of F2 when we are already close to the final surface.

36

After solving the linear system arising from the minimization of (56), we move
each individual patch Si by a helical motion computed from (ci, ci) according
to subsection 2.4. Step size control is recommended, and has to be performed
with the same factor for all systems.

For a second order motion approximant, we would have to apply formula (8),
which results in very similar additions as observed in subsection 6.3.

8.3 Examples

The main goal we have in mind is the numerical verification of the local con-
vergence behavior of our algorithms in the environment of N systems. We use
manually specified confidence values of surface patches and manually defined
initial positions to simplify our discussion. An automatic determination could
be obtained by methods proposed in [15,17,22].

Our example has 10 systems, which are partially overlapping scans of a cat
model, acquired with a 3D laser scanning device. This process is illustrated
in Fig. 7(a). Each point cloud contains 40000–60000 points, but only 1000
randomly chosen points are taken in each iteration step. However, this data
point selection is not applied when we are computing distance functions among
different point clouds.

We test the Newton algorithms with first and second order motion approxi-
mants, respectively, and the standard ICP as well. One patch is fixed during
the whole process for all three algorithms. The squared distance fields are
represented via the modified d2tree structure introduced in section 3.1. Fig-
ure 7(b) shows initial and final positions of the ten point clouds from three
different views. The initial positions for all three algorithms are chosen to
be the same and their final positions are nearly the same, so that we only
illustrate the final position of the second order Newton method. To ensure
global convergence, the second order Newton algorithm is regularized by the
Levenberg-Marquardt method. The convergence behavior of the algorithms is
shown in Table 5.

Comparing the tested algorithms, we find that the second order Newton al-
gorithm exhibits the fastest local convergence, while the first order Newton
algorithm is superior to the other algorithms with respect to global stability.

37

(a) Simultaneous registration of ten scans of a cat model

(b) (Top) Initial positions and (Bottom) registered model

Fig. 7. Simultaneous registration of 10 views

38

Table 5: Error reduction for the simultaneous registration of 10 views
Newton, 2nd order Newton, 1st order ICP

j E(j)
E(j)

E(j−1)
E(j)

E(j−1)2
E(j)

E(j)
E(j−1)

E(j)

E(j−1)2
E(j)

E(j)
E(j−1)

0 1.322e-1 — — 1.322e-1 — — 1.322e-1 —

1 4.363e-2 3.301e-1 2.496 4.363e-2 3.301e-1 2.496 4.601e-2 0.3480

2 1.509e-2 3.458e-1 7.927 1.291e-2 2.959e-1 6.782 3.215e-2 0.6987

3 4.279e-3 2.835e-1 18.792 2.924e-3 2.265e-1 1.754e+1 2.347e-2 0.7300

4 4.874e-4 1.139e-1 26.620 3.283e-4 1.123e-1 3.841e+1 1.938e-2 0.8257

5 9.037e-6 1.845e-2 38.041 1.617e-5 4.925e-2 1.501e+2 1.608e-2 0.8297

6 2.897e-8 2.763e-3 305.75 7.210e-7 4.459e-2 2.757e+3 1.335e-2 0.8302

7 1.784e-13 7.144e-6 286.12 3.528e-8 4.893e-2 6.787e+4 1.108e-2 0.8299

.

.

.

10 — — — 4.455e-12 5.135e-2 7.194e+8 6.336e-3 0.8304

11 — — — 2.228e-13 5.023e-2 1.122e+10 5.259e-3 0.8305

.

.

.

100 — — — — — — 4.979e-10 0.8326

9 Conclusion and future research

Exploiting the geometry of the squared distance function and using known
facts from kinematical geometry and optimization, we have been able to im-
prove the local convergence behavior of registration algorithms. In particular,
we have proposed algorithms with local quadratic convergence. The theoretical
results could be nicely verified at hand of computed examples.

We have also observed (see [23]) that one may get a larger funnel of attraction
for the minimizer with the proposed schemes compared to the standard ICP
algorithm, but we still need a reasonable initial position. This holds in partic-
ular, if we want to simultaneously register several overlapping parts (scans) of
the same object.

Our future work will concentrate on the early phase of registration, in par-
ticular on the choice of the initial position. Currently, we are investigating
algorithms which rely on a distance measure between local surface regions. We
want to realize this idea by the use of image manifolds [19], which are formed
over the given geometry data with help of integral invariants [21]. The lat-
ter can be computed in a stable way even in the presence of noise. Thus, for
the present application, they are superior to differential invariants, especially
if we have to handle point cloud data. The new algorithms shall not only
use distances in 3D object space, like the concepts presented in the present
paper, but employ the distance function to the image manifolds in a higher
dimensional space. There, surface parts with similar local shape appear to be
close, even if they are still far away in object space. This is expected to give
a significant improvement of the global convergence behavior.

39

Acknowledgements

Part of this research has been carried out within the Competence Center
Advanced Computer Vision and has been funded by the Kplus program. This
work was also supported by the Austrian Science Fund (FWF) under grant
P16002-N05, by the innovative project ’3D Technology’ of Vienna University
of Technology, and by the Natural Science Foundation of China under grants
60225016 and 60321002.

References

[1] F. Bernardini, H. Rushmeier. The 3D model acquisition pipeline. Computer
Graphics Forum 21 (2002), 149–172.

[2] P. J. Besl, N. D. McKay. A method for registration of 3D shapes. IEEE
Trans. Pattern Anal. and Machine Intell. 14 (1992), 239-256.

[3] O. Bottema, B. Roth. Theoretical Kinematics, Dover, New York, 1990.

[4] Y. Chen, G. Medioni. Object modeling by registration of multiple range
images. Proc. IEEE Conf. on Robotics and Automation, 1991.

[5] M. P. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice
Hall, 1976.

[6] D. W. Eggert, A. W. Fitzgibbon, R. B. Fisher. Simultaneous registration
of multiple range views for use in reverse engineering of CAD models. Computer
Vision and Image Understanding 69 (1998), 253–272.

[7] D. W. Eggert, A. Lorusso, R. B. Fisher. Estimating 3-D rigid body
transformations: a comparison of four major algorithms. Machine Vision and
Applications 9 (1997), 272–290.

[8] N. Gelfand, L. Ikemoto, S. Rusinkiewicz, M. Levoy. Geometrically
stable sampling for the ICP algorithm, Proc. Intl. Conf. on 3D Digital Imaging
and Modeling, 2003.

[9] O. D. Faugeras, M. Hebert. The representation, recognition, and locating
of 3-D objects. Int. J. Robotic Res., 5 (1986), 27–52.

[10] R. Fletcher. Practical Methods of Optimization. Wiley, New York, 1987.

[11] C. Geiger, C. Kanzow. Theorie und Numerik restringierter

Optimierungsaufgaben. Springer, Heidelberg, 2002.

[12] M. Hofer, H. Pottmann, B. Ravani. From curve design algorithms to
motion design. Visual Computer 20 (2004), 279–297.

40

[13] M. Hofer, H. Pottmann. Algorithms for constrained minimization of
quadratic functions – geometry and convergence analysis. Tech. Rep. 121, TU
Wien, Geometry Preprint Series.
http://www.geometrie.tuwien.ac.at/ig/papers/foot tr121.pdf.

[14] B. K. P. Horn. Closed form solution of absolute orientation using unit
quaternions. Journal of the Optical Society A 4 (1987), 629–642.

[15] D. Huber, M. Hebert. Fully Automatic Registration of Mutiple 3D Data
Sets. Image and Vision Computing 21 (2003), 637–650.

[16] L. Ikemoto, N. Gelfand, M. Levoy. A hierarchical method for aligning
warped meshes. Proc. Intl. Conf. on 3D Digital Imaging and Modeling, 2003.

[17] A. E. Johnson. Spin Images: A Representation for 3D Surface Matching. PhD
thesis, Carnegie Mellon Univ., 1997.

[18] C. T. Kelley. Iterative Methods for Optimization. SIAM, Philadelphia, 1999.

[19] R. Kimmel, R. Malladi, N. Sochen. Images as embedded maps and
minimal surfaces: movies, color, texture and volumetric medical images. Intl. J.
Computer Vision 39 (2000), 111–129.

[20] S. Leopoldseder, H. Pottmann, H. Zhao. The d2-tree: A hierarchical
representation of the squared distance function, Tech. Rep. 101, Institute of
Geometry, Vienna University of Technology (2003).

[21] S. Manay, B.-W. Hong, A. J. Yezzi, S. Soatto. Integral invariant
signatures. Proceedings of ECCV’04, Springer LNCS 3024, 2004, pp. 87–99.

[22] A. S. Mian, M. Bennamoun, R. Owens. Matching tensors for automatic
correspondence and registration. Proceedings of ECCV’04, Springer LNCS
3022, 2004, pp. 495–505.

[23] N. Mitra, N. Gelfand, H. Pottmann, L. Guibas. Registration
of point cloud data from a geometric optimization perspective. Proc.
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 2004,
pp. 23–32.

[24] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, H.P Seidel. Multi-level
partition of unity implicits. ACM Trans. Graphics 22 (SIGGRAPH 2003), 153–
161.

[25] H. Pottmann, M. Hofer. Geometry of the squared distance function to
curves and surfaces. In: H.-C. Hege and K. Polthier, eds., Visualization and
Mathematics III, Springer, 2003, pp. 221–242.

[26] H. Pottmann, S. Leopoldseder, M. Hofer. Registration without ICP.
Computer Vision and Image Understanding 95 (2004), 54–71.

[27] H. Pottmann, J. Wallner. Computational Line Geometry. Springer-Verlag,
2001.

41

[28] M. Rodrigues, R. Fisher, Y. Liu, eds., Special issue on registration and
fusion of range images. Computer Vision and Image Understanding 87 (2002),
1–131.

[29] S. Rusinkiewicz, M. Levoy. Efficient variants of the ICP algorithm. Proc.
3rd Int. Conf. on 3D Digital Imaging and Modeling, Quebec, 2001.

[30] M. Spivak. A Comprehensive Introduction to Differential Geometry. Publish
or Perish, 1975.

[31] T. M. Tucker, T. R. Kurfess. Newton methods for parametric surface
registration, Part 1: Theory. Computer-Aided Design 35 (2003), 107–114.

42

