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This paper demonstrates the definition of subdivision processes in nonlinear geometries such that
smoothness of limits can be proved. We deal with curve subdivision in the presence of obstacles,

in surfaces, in Riemannian manifolds, and in the Euclidean motion group. We show how to model

kinematic surfaces and motions in the presence of obstacles via subdivision. As to numerics, we
consider the sensitivity of the limit’s smoothness to sloppy computing.
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1. INTRODUCTION

1.1 Background and previous work

Subdivision is an appealing way of defining a continuous object by a discrete approximation, and a curve or
surface generated by subdivision has many desirable properties. It is therefore not surprising that subdivision
has been extended to nonlinear spaces.

Spheres have been considered by [Kim et al. 1995; Ramamoorthi and Barr 1997; Jüttler and Wagner 2002],
always having in mind that the points of the quaternion unit sphere represent the matrix parts of rigid body
motions. Also with a view toward motion design, Sprott and Ravani [1997] extended B-spline algorithms
to Lie groups. Nonlinear interpolatory schemes in Lie groups were constructed from linear schemes by
[Donoho 2001], and used in various applications such as in smoothly interpolating a motion given at discrete
instances. This material is also contained in [Ur Rahman et al. 2005], which gives a comprehensive treatment
of multiscale representation for Lie-valued data and the corresponding nonlinear subdivision rules employed.
We would also like to mention the nonlinear median-interpolating subdivision schemes and their extensions
[Xie and Yu 2005; Oswald 2004], interpolatory schemes based on the idea of essential non-oscillation [Cohen
et al. 2003], and nonlinear geometry driven schemes [Marinov et al. 2004], whose construction and analysis
is different from the schemes used in this paper.

When subdividing in inherently nonlinear environments, the following problems arise:
— The definition of many linear subdivision rules employs affine combination of points. It is necessary to
find a replacement for this basic way of creating new points.
— Results guaranteeing certain desirable properties (smoothness, for example) of the limits generated by
nonlinear rules are harder to come by. Numerical evidence however says that they must be there.
— Computing in curved geometries often requires discretization, and sometimes also iterative processes too
time-consuming to be pursued ‘until they converge’, as it is sometimes put. Quantitative information on the
consequences of inaccuracies introduced by incomplete computation is usually not available.

It is the aim of this paper to demonstrate how certain ways of mimicking linear subdivision rules in
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nonlinear geometries leads to nonlinear subdivision schemes with provably smooth limits.
For linear subdivision, the smoothness analysis in many cases can be considered complete. We do not

attempt to review the existing literature here, but refer to the surveys [Dyn 1992; Warren and Weimer
2001; Kobbelt 2002; Sabin 2002]. Smoothness results for nonlinear subdivision schemes have been shown by
L. Noakes [1997; 1998; 1999]: the geodesic analogues of the 2nd and 3rd degree Lane-Riesenfeld algorithm
in Riemannian manifolds possess smooth limit curves with Lipschitz derivative. Recently some general
smoothness results have been given for a wide class of nonlinear schemes which arise as perturbations of
linear schemes [Wallner and Dyn 2005; Wallner 2006a]. It is that work which serves as a theoretical basis
of this paper. Some examples are briefly mentioned already in [Wallner and Dyn 2005] in order to illustrate
the theory. They are mentioned again in the present paper, whose contributions to nonlinear subdivision
are a long list of examples where nonlinear subdivision schemes are useful in Computer Graphics; obstacle
subdivision; intrinsic shape properties of geodesic subdivision; the use of configuration spaces for subdividing
poses and the treatment of obstacles. A theoretical result contained in the present paper concerns verification
of smoothness for sloppy computations.

1.2 Overview

This paper is organized as follows: Section 2 gives a long list of examples of nonlinear subdivision schemes
which are constructed in analogy to linear schemes by the means available in various nonlinear geometries.
The nonlinear schemes constructed in this way can be seen as perturbations of linear ones. In a few cases
we also discuss numerical issues.

Section 3 verifies that the available theory applies to the subdivision rules defined in the previous sec-
tion. We invoke general results concerning the proximity of subdivision rules and verify that the proximity
conditions are fulfilled, so that the limits are C1 and in some cases even C2. A proof of convergence from
proximity is also included.

Section 4 deals with the problem of incomplete computation of geodesics in surfaces. It turns out that a
wide class of iterative algorithms used for evaluating certain nonlinear subdivision rules is quite resistant to
sloppy usage.

As we emphasize the smoothness of limits, we mostly speak about smooth geometries like parametrized
surfaces or level sets. After discretization (e.g. when using triangulated surfaces) the question of smoothness
does no longer make sense in the strict mathematical sense. Even so, it is important to know that when
computing approximately by means of a triangulation, the ideal geometric object one tries to approximate is
smooth. On the other hand, there are geometries which are not discretized at all, e.g. the Euclidean motion
group, and for which smoothness has the precise mathematical meaning.

1.3 Notation

We use the symbol p for a polygon, which may be either closed or open, and is a synonym for ‘list of
vertices’. We write pi for the i-th vertex. A binary subdivision scheme S maps a polygon p to the polygon
Sp, consisting of the points (Sp)i, or Spi for short. The result of two rounds of subdivision applied to p is
denoted by S2p, and so on. The symbol S∞p means the limit curve. We express linear subdivision rules in
terms of the affine average operator

avt(a,b) = a + t(b− a). (1)

For instance, the n-th degree B-spline subdivision rule Bn (n ≥ 2) is recursively defined by

B2p2i = av1/4(pi,pi+1), B2p2i+1 = av3/4(pi,pi+1), Bnpi = av1/2(Bn−1pi, Bn−1pi+1). (2)

B2 is Chaikin’s rule. For an illustration of B2 and B3, see Fig. 7. The polygons (Bn)jp converge to the
n-th degree B-spline curve for which the polygon p and, indeed, any polygon (Bn)jp, is a control polygon.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 1. Perturbing a linear subdivision rule by an obstacle and other influences. The sequence of images is described in Sec. 2.1.

Another prominent rule is the interpolatory four-point scheme of [Dyn et al. 1987]:

Sp2i = pi, Sp2i+1 = av1/2(av−2w(pi,pi−1), av−2w(pi+1,pi+2)) with 0 < w < 1/8. (3)

2. EXAMPLES

A long list of examples demonstrates how to modify linear curve subdivision rules so that they work in the
presence of obstacles, within surfaces, and in the Euclidean motion group. Smoothness is discussed in Sec. 3.

2.1 Subdivision in the presence of obstacles

Designing curves in the presence of obstacles is an old problem, and we do not attempt to give an overview
about the literature. We use a simple method which in the end amounts to perturbing linear subdivision
rules such that smoothness is preserved.

We work in three-dimensional Euclidean space minus a certain forbidden domain (the obstacle, denoted
by O). When applying a subdivision scheme S to a polygon p, then the polygon Sp might have points which
lie in O, even if p was outside O. Fig. 1.1 shows an example: The vertices pi are outside an obstacle (blue).
The result Sp of subdivision can be seen in Fig. 1.2. Here O is the set {x | F (x) < c} where F is a blob
function, and S is the B-spline scheme B4 defined by Equ. (2).

In order to define a subdivision rule T which respects the forbidden domain O, we assume that there is a
mapping P which moves a point in the interior of O to the obstacle boundary ∂O, and let Tpi = PSpi in
case Spi lies in O and Tpi = Spi otherwise.

Later, when discussing smoothness, properties of this projection onto the boundary will become relevant.
In our example, ∂O is the level set F (x) = c, and P is the gradient flow of F towards that level set. The
result looks like Fig. 1.3.

Actually the subdivision scheme T used for this particular example was constructed in a slightly different
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



4 · J. Wallner and H. Pottmann

Fig. 2. The left hand

image shows the con-

trol polygon of provably
smooth spaghetti. The

right hand figure illus-

trates this smooth limit
by depicting the result of

5 rounds of nonlinear B-

spline subdivision avoid-
ing the interior of the

hand, with added gravity.
For details, see Sec. 2.1.

way: In the recursive definition of B4 given by Equ. (2) every averaging is immediately followed by a
projection onto the boundary of the obstacle, should the result of averaging lie in O. It turns out that both
ways of perturbing a linear scheme lead to smooth limit curves.

We want to show that for applications one might want to modify a given subdivision scheme for a variety
of reasons and in many different ways. In our case we produce an image of a handful of spaghetti, which
in the real world is under the influence of gravity. Thus we add the following perturbation: Before again
subdividing with B4, we decrease the z-coordinate of each point by a small amount. Here we choose

pi → pi − C · ‖pi+1 − pi‖2 · (0, 0, 1). (4)

This small movement of vertices is hardly visible. The result is shown by Fig. 1.4.
The sequence of images of Fig. 1.1–12 documents several rounds of this iterative process – an orange

polygon first experiences a gravity-like perturbation, is further subdivided linearly for illustration (shown
with transparent obstacle), and nonlinearly (shown again in orange). Subdivision of a longer polygon p is
shown in Fig. 2. Note that this procedure neither simulates the actual statics of pasta, nor does it take
self-intersections into account. It intends to demonstrate two possible perturbations which may be inflicted
on a linear subdivision rule.

2.2 Geodesic Subdivision

If the vertices pi of a polygon are contained in a surface M , it is in general not true that after subdivision
with a linear scheme S, the vertices Spi are also contained in M . It is therefore impossible to use such
subdivision schemes directly if one wants to work entirely in M . One way of dealing with this problem is to
employ geodesic analogues of linear rules, which are the topic of the next paragraphs.

2.2.1 Curve Subdivision within Surfaces. An idea which occurs naturally when looking for an intrinsic
equivalent of linear subdivision rules is to replace straight lines by geodesic lines, which are the shortest paths
between points on the surface [do Carmo 1992]. Because of the computational difficulties involved, geodesic
subdivision defined in this way is useful only in special circumstances. The idea however is important and is
explained now in more detail: If c(t) is a constant speed parametrization of a geodesic line emanating from
a and ending in b, then a geodesic average is defined by

c(0) = a, c(1) = b =⇒ g-avt(a,b) = c(t). (5)

Because of the symmetry relation g-avt(a,b) = g-av1−t(b,a), “g-av” is a a satisfactory intrinsic replacement
of “av”. We replace “av” by “g-av” in the definition the B-spline rule Bn in Equ. (2) and thus get a geodesic
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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1. 2. 3.

Fig. 3. Geodesic Subdivision. 1–3: Subdivision by the geodesic analogue T2 of Chaikin’s rule B2. The polygon p is shown in

red and, from left to right, T2p, T 2
2 p, T∞2 p in yellow. The variation diminishing property of geodesic B-splines is illustrated

by means of a grey geodesic line.

1 round

q = T2p

2 rounds

q = T 2
2 p

4 rounds

q = T 4
2 p

8 rounds

q = T 8
2 p

1 round

q = T3p

2 rounds

q = T 2
3 p

4 rounds

q = T 4
3 p

8 rounds

q = T 8
3 p

polyline
q

1st derivative
∆q/h

2nd derivative
∆2q/h2

3rd derivative
∆3q/h3

Fig. 4. Visualization of smoothness of the geodesic Chaikin rule “T2” in the wriggly surface of Fig. 3 (left) and of the cubic

geodesic B-spline rule “T3” (right). The figures illustrate numerical smoothness after several rounds of subdivision. Each
small figure depicts a diagram of the first coordinate of the points under consideration, the diagrams for the second and third

coordinate being similar. Scaling in each figure depends only on the order of differentiation, so that derivatives of different

polylines are comparable. From the blue figures it is obvious that for the Chaikin rule T2, the second numerical derivative
no longer appears to be continuous, while for the cubic rule, the third numerical derivative (green) is the first to show this

behaviour.

B-spline rule of degree n, which is illustrated in Fig. 3

Generically, the shortest geodesic which contains two given points a, b is unique, and for a given surface
there is always a certain positive distance δ such that uniquenes holds in case ‖a−b‖ < δ. Another problem
which might arise is that in a non-complete surface it can happen that there is no unbroken geodesic which
joins two given points a, b. These problems are unlikely to occur at all, as we usually subdivide polygons
whose vertices are close together.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 5. Hyperbolic swordfish (Geodesic analogue of B-Spline subdivision B3

with C2 limit curves). One hyperbolic control polygon is also shown.

2.2.2 Subdivision in Riemannian
manifolds. The word Riemannian
manifold means a manifold (which for
the purposes of Computer Graphics
is realized as a piece of Rd or a
parametrized surface or a triangula-
tion), where the way of computing
the scalar product of two tangent
vectors attached to the same point is
not the one of ambient space, but is
allowed to change smoothly with the
point quite independent of the way
the manifold lies in some other space.
Of course we might as well use the
scalar product of ambient space, so
every surface in the ordinary sense
is a Riemannian manifold. It turns
out that the theory dealing with
smoothness of limits extends easily to
Riemannian manifolds, so for the sake
of completeness we give an example
of subdivision in terms of geodesics of
a Riemannian manifold.

The Poincaré disk model of hyperbolic geometry (here thought to be contained in the unit disk of R2,
see Fig. 5) is a fascinating geometry which appears in Computer Graphics e.g. because it is suitable for
visualization of surface-like data which will not fit well into the Euclidean plane. Geodesics are easily
computable [Alekseevskij et al. 1993] – they appear as circles which intersect the boundary of the hyperbolic
disk orthogonally. The geodesic midpoint g-av1/2(a,b) of points a, b is computed by

g-av1/2(a,b) = ψ
( φ(a) + φ(b)
|||φ(a) + φ(b)|||

)
, where |||x|||2 = x2

1 − x2
2 − x2

3, (6)

φ(x) = 1
1−x2

(
1 + x2, 2x1, 2x2

)
, ψ(x) = 1

1+x1

(
x2, x3

)
.

Equ. (6) is sufficient for defining hyperbolic B-spline subdivision analogous to Equ. (2). because

g-av1/4(a,b) = g-av1/2(a, g-av1/2(a,b)), g-av3/4(a,b) = g-av1/4(b,a). (7)

The curves which appear in Fig. 5 are the result of hyperbolic B-spline subdivision analogous to B3.

2.2.3 Intrinsic shape properties of geodesic schemes. If a planar subdivision rule S works by corner cutting
(the B-spline schemes do), then it enjoys the variation diminishing property: A straight line intersects the
edges of each polygon Sip at least as often as it intersects the edges of the polygon Sjp, if j > i (j = ∞ and
i = 0 are allowed). This follows directly from the fact that two line segments have at most one intersection
point.

Therefore geodesic subdivision rules in a 2-dimensional surface or manifold have the same property, pro-
vided geodesic segments intersect in one point only. This is not the case in general, but can be guaranteed
for any compact surface if the shorter of the two segments in question is not longer than a certain constant,
which depends on the intrinsic curvature of the surface [do Carmo 1992]. This geodesic variation diminishing
property is illustrated by Fig. 3.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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2.2.4 Numerics of geodesic lines. Here we discuss some issues related to discretization and computation
of geodesics in surfaces. Fast computation of geodesics is a topic of its own (see e.g. [Mémoli and Sapiro
2001; 2005; Surazhsky et al. 2005]). We show how geodesics can be computed in principle, and we collect
facts which in Section 4 help to analyze the results of incomplete computation.

In the following we discuss a well known infinitesimal characterization of geodesic lines “(i)” and a char-
acterization of arc length minimizing geodesics in terms of energy “(ii)”: (i) If a geodesic c(t) in a surface
M is traversed with constant speed, the vector c′′(t) is orthogonal to M ; (ii) minimal geodesics traversed
with constant speed are precisely the minimizers of the energy functional

∫
‖c′(t)‖2dt. When representing

the curve c(t) by a polygon p0,p1, . . . ,pk, a classical discretization of this is as follows: (i): the second
forward difference ∆2pi−1 = pi+1 − 2pi + pi−1 is orthogonal to M in the point pi; (ii): the discrete energy∑
‖pi+1 − pi‖2 is minimal. It is well known that polygons with property (ii) also satisfy (i).
Discretization (i) is suitable for solving the initial value problem, i.e., computing a discrete geodesic with

given endpoint a and tangent vector v: We choose p0 = a, determine p1 as close as possible to a + v, and
recursively find pi+1 such that the condition on ∆2pi−1 is fulfilled, which means that pi+1 is the intersection
point of the given surface with a line orthogonal to the surface at pi and and passing through the point
pi + (pi − pi−1). This is a numerical “Euler polygon” method for solving an ODE, so the discretization
error, i.e., the difference between the point pi and an actual geodesic, is bounded by a constant times the
step size squared. The precise inequality is given in Section 4.2, Equation (17).

Discretization of type (ii) is suitable for solving the boundary value problem, i.e., computing a discrete
geodesic with given endpoints a and b. We let p0 = a, pk = b, and choose the remaining points somehow
in between. It is elementary that moving the points pi (0 < i < k) in direction ∆2pi−1 decreases energy,
so it is easy to set up a gradient descent or conjugate gradient method for minimization. If k is a power
of two, the multigrid idea accelerates this procedure. The discretization error is the same as it was for the
initial value problem. This is because property (ii) implies (i), so a polygon found with (ii) occurs among
the polygons found using criterion (i).

2.3 Projection Subdivision

Often projections onto surfaces are computable. Here projection does not necessarily mean orthogonal pro-
jection, but any smooth mapping which maps onto the surface and which leaves the points of the surface
fixed. Especially if the surface in question is a level set F (x) = c, a projection is provided by any procedure
which moves a point towards the level set and whose output depends smoothly on the input.

If a projection P is given, we modify a given subdivision scheme S as follows: An analogous projection
scheme “T” is defined by Tpi = PSpi. In fact in our detailed discussion of subdivision in the presence of
obstacles we already encountered such a projection. The difference to the obstacle setting is that here the
projection is applied to all points, not only those inside a forbidden domain.

If a subdivision scheme happens to be defined by a certain number of averaging steps, we might apply the
projection onto the surface every time after averaging. This leads to a different kind of analogous projection
scheme. The idea of projection subdivision is especially important in the next section, which deals with
motion design.

2.4 Subdivision in the Euclidean motion group

Like previous sections, Sec. 2.4 describes ways of defining intrinsic subdivision rules in a nonlinear environ-
ment. Here we work with Euclidean positions of a rigid body.

The position of a rigid body in space is described by a 3×3 orthogonal matrix A with positive determinant
and a vector of a ∈ R3. If x is the coordinate vector of a point with respect to a coordinate system attached
to the rigid body, then its position in space is Ax + a. The set of all such matrix-vector pairs is called
the Euclidean motion group SE3. Subdividing a sequence “p” of positions of a rigid body should lead to

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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1. 2.

3.

(A,a)
(B,b)

Fig. 6. 1. Group-midpoint (C( 1
2
), c( 1

2
)) of positions

(A,a), (B,b). 2. Positions (A,a) and (B,b) together
with averages avt((A,a), (B,b)). 3. Projection of aver-

ages onto SE3.

ever denser sequences Sp, S2p of positions and, in the limit, to a continuous motion S∞p. There are two
straightforward ways of defining subdivision in the set of positions – one similar to geodesic subdivision in a
surface, the other one being a kind of projection subdivision. They are described also in [Wallner and Dyn
2005] – here we briefly repeat the constructions in Sections 2.4.2 and 2.4.1. We subsequently extend the
method to motions in the presence of obstacles, kinematic surfaces, and multibody kinematic chains.

2.4.1 Helical subdivision. We consider a uniform helical motion (C(t), c(t)) which moves position (A,a) =
(C(0), c(0)) of a rigid body into position (B,b) = (C(1), c(1)). It is illustrated in Fig. 6.1 and can be
interpreted as a curve in the motion group SE3. The helical motion which joins given positions (A,a) and
(B,b) is not unique, but it is tacitly understood that we always choose one with the smallest possible angle
of rotation. Then the group average of (A, a) and (B, b) is given by

g-avt((A,a), (B,b)) = (C(t), c(t)). (8)

Any subdivision rule expressible by the av operator has an analogous group rule, where “av” is replaced by
“g-av”. We now illustrate this concept by means of the B-spline rule B3 defined by Equ. (2):

We start with a planar polygon p whose edges are shown in red and whose vertices are shown in blue (Fig.
7.1). We insert the vertices of B2p (which lie on the edges of p, Fig. 7.2) and draw an image of edges and
vertices of B2p (Fig. 7.3). On the edges of B2p, we draw the vertices of B3p (Fig. 7.4). Fig. 7.5 shows p
together with B3p, and Fig. 7.6 has p and B2

3p. The group analogues of these constructions are indicated
with a polygon “q” of positions and the group subdivision rules T2 and T3 which are analogous to B2 and
B3 (Fig. 8.1–6). Instead of the edges of a polygon we show the helical motions which connect the vertices.
The blue positions are scaled by a factor of 1.2 for better visibility.

2.4.2 Projection subdivision in the motion group. The helical way is not the only one how subdivision
in the motion group can be defined. The matrix/vector pairs (A,a) with A ∈ R3×3 and a ∈ R3 without
any restriction imposed on A comprise the space of affine positions, which is a vector space of dimension
3× 3 + 3 = 12 and which contains the Euclidean motion group as a surface of dimension six. Applying the
affine average operator to Euclidean positions usually yields affine positions which are not Euclidean (Fig.
6.2), but by projecting them onto the group we get Euclidean positions again (cf. Fig. 6.3). Thus we may
define projection subdivision in SE3.

It remains to define a projection onto the Euclidean motion group. This is a so-called matrix nearness
problem [Higham 1989]. We follow Belta and Kumar [2002], who define a distance between affine positions:
Assume that points x1, . . . ,xr in which are not co-planar represent a rigid body and points yi = Axi + a
and zi = Bxi = b represent two different positions α = (A,a) and β = (B,b), resp., of that body. We
assume that

∑
xi = o, which means that the barycenter of the points xi is the origin of the coordinate

system attached to the rigid body in question. Then dist(α, β)2 :=
∑r

i=1 ‖yi − zi‖2. For given (A,a), we
ask for the Euclidean position (B,b) nearest to (A,a).
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 7. Linear B-spline subdivision rules B2

and B3. The various combinations of a poly-
gon p and the subdivided polygons B2p and

B3p correspond to the images in Fig. 8.1–8,

which show analogous B-spline subdivision
in the Euclidean motion group.

p, p, B2p,
p B2p B2p
1. 2. 3.

B2p, p, p, p, p,

B3p B3p B2
3p B3

3p B∞3 p

4. 5. 6. 7. 8.

1. q, q 2. q, T2q 3. T2q, T2q 4. T2q, T3q

5. q, T3q 6. q, T 2
3 q 7. q, T 3

3 q 8. q, T∞3 q

Fig. 8. 1–8: Helical subdivision T2, T3 in the Euclidean motion group analogous to Chaikin’s Rule B2 and the cubic Lane-
Riesenfeld rule B3. The images correspond to Fig. 7.1–8.

The answer to this question in the case detA > 0 requires computation of the matrix J =
∑r

i=1 xi · xT
i

and is given by b := a and B := PQ, if AJ = PDQ is the singular value decomposition of AJ . The
definition b := a means that “a”, the position of the barycenter of the given rigid body, is not affected by
the projection. In the case detA < 0, we have B := PD′Q, where D′ = diag(−1, 1, 1), under the assumption
that the singular values are sorted by size, smallest first. The distance defined above is compatible with a
scalar product in R3×3+3 and the projection used here is the corresponding orthogonal projection onto SE3.
Thus this construction is a special case of projection subdivision (see Sec. 2.3), where the surface we project
on is given by SE3.

Kinematic surfaces, such as surfaces of revolution, are traced out by the motion of a curve. Previous work
on subdivision in relation to kinematic surfaces includes pp. 216–220 of [Warren and Weimer 2001], which

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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1. 3. 5.

2. 4. 6.

Fig. 9. Projection subdivision in the Euclidean motion group. 1–2: Kinematic surface produced by a projection scheme based

on the interpolatory rule (3) and a projection onto the motion group. (1 round of subdivision and limit surface). 3–5: Avoiding

the interior of a solid without gliding constraint: Control Positions of a coffee pot are shown in blue. We see 1, 2, and 4 rounds
of subdivision derived from the Chaikin rule. Positions which had to be modified in the last round because they intersect with

the teapot are in a different colour. 6: Kinematic surface with gliding constraint (subdivision scheme derived from the DGL

rule (3)).

describe subdivision schemes converging to surfaces of revolution. We interactively design kinematic surfaces
by choosing control positions of the generator curve and apply subdivision to these positions, which in the
limit yields a smooth kinematic surface generated by the original curve, provided the motion generated by
subdivision is smooth (Fig. 9.1–2). After the design process we might want to convert the surface into a spline
representation – this benefits from the evenly spaced discrete parametrization furnished by the subdivision
process.

2.4.3 Comparison and limitations of the two methods of subdivision. If subdividing a dense sequence
of positions it hardly matters whether we use helical subdivision (Section 2.4.1) or projection subdivision
(Section 2.4.2). A difference is noticeable only if the positions to be subdivided are wide apart.

It is always possible to construct helical motions which connect two given positions, but the shortest such
motion is possibly not unique. This happens exactly if the rotation angle from the first position to the
second equals π. This situation is comparable to finding the shortest arc of a great circle which connects
two antipodal points on a sphere.

As to projection subdivision, the only place where the computation of averages in the nonlinear way can
fail is where the computation a singular value decomposition is not unique the average ((1− t)A+ tB)J of
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 10. Kinematic chain con-

sisting of three bodies and two

spherical joints, which suddenly
cease to exist.

matrices A,B is singular. It is easy to convince oneself that this happens only if the rotation described by
the matrix A−1B is about an angle of 180 degrees, and t = 1/2. So apparently both methods have about
the same limitations.

2.4.4 Motions generated by subdivision which avoid obstacles. There are several ways of dealing with
motions which are to avoid a forbidden domain O. Suppose that we start with a sequence q of positions.
Suppose further that for each position (A,a) of the rigid body under consideration we can find another one,
denoted by PO(A,a), which is as close as possible to the original, such that the body does not enter O,
but touches the obstacle boundary ∂O. A subdivision scheme T acting on positions may be modified in the
following way: If the body at position Tqi intersects O, let T̃qi := PO(Tqi). Otherwise, let T̃qi := Tqi.
Then the subdivision scheme T̃ produces motions where the given rigid body avoids the interior of O (see
Fig. 9.3–5). If a body is to glide on ∂O, we let T̂qi := PO(Tqi) in all cases. Then T̂ is a subdivision scheme
which produces a tangential gliding motion along the obstacle boundary ∂O (see Fig. 9.6). We don’t go into
the computational issues involved in computing PO. In fact, “as close as possible” may well be replaced by
“close enough for the purpose we have in mind”. We return to PO when discussing smoothness in Sec. 3.

2.4.5 Kinematic chains. We may use subdivision for the modeling of motions of several rigid bodies
interacting with each other. This is done by subdividing polygons in the so-called configuration space, a
point of which represents the positions of the bodies in question [Latombe 2001]. Here we consider only the
simple case of two bodies connected by a spherical joint: Assume that the joint is located at coordinates x
and y in respective local coordinate systems attached to the two bodies. The two bodies can assume only
such positions (A,a) and (B,b), where Ax + a = By + b. This is the equation of the configuration space C
of this two-element kinematic chain:

C = {(A,a, B,b) | Ax+a = By+b, (A,a) ∈ SE3, (B,b) ∈ SE3} ⊂ Rd, d = 3×3+3+3×3+3 = 24. (9)

C is a smooth surface in Rd. A way of projecting a general element (A,a, B,b) of R24 onto the configuration
space is to first project both (A,a) and (B,b) onto elements (A′,a′) and (B′,b′) contained in the Euclidean
motion group, and then to modify a′ and b′ such that the side condition is fulfilled. We may choose e.g. a′′ :=
a′+n and b′′ := b′−n with n = (B′y +b′−A′x− a′)/2. Then the mapping (A,a, B,b) 7→ (A′,a′′, B′,b′′)
is a smooth projection onto the configuration space, and we can do projection subdivision (see Fig. 10).

2.5 Tensor product rules

There is an obvious extension of the concept of curve subdivision scheme to higher dimensions – it is the
tensor product rule S ⊗ S′ of curve subdivision rules S, S′ which does not operate on polygons, but on
regular grids which, combinatorially, are products of polygons. One round of subdivision by S ⊗ S′ means
subdividing the columns of the grid with S, and then subdividing the rows of the resulting refined grid with
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Fig. 11. Both images show a tensor product surface together with its cylindrical control grid defined by an obstacle modification

of the linear scheme B5 ⊗B5.

S′. A picture of an obstacle modification of such a tensor product rule is shown in Fig. 11.

2.6 A note on implementation

Any existing implementation of a subdivision scheme based on affine averages can be “perturbed” in order to
become an implementation of one of the nonlinear schemes described in the present paper. The perturbation
either consists of projecting the affine average, or of replacing the affine average with a group or geodesic
average. It is usually not hard to implement projections, and for group-midpoints explicit formulae are
available. The computation of geodesics, however, is a topic of much previous and current research, and
many solutions are available [Mémoli and Sapiro 2001; 2005; Surazhsky et al. 2005].

3. THEORY: NONLINEAR PERTURBATIONS OF LINEAR SCHEMES

This section first describes the concept of proximity of subdivision schemes and the smoothness results which
are available from [Wallner and Dyn 2005] and [Wallner 2006a]. Afterwards we verify that the various ways
of perturbing linear schemes introduced in Section 2 fulfill the requirements of the theory. This turns out to
be easy for the surface and motion cases, because general results already exist.

3.1 Notation and general results

We use the symbol ∆p for the forward difference sequence of a polygon: ∆pi = pi+1 − pi, and also
the notation δ(p) = supi ‖pi − pi+1‖. Following [Wallner and Dyn 2005; Wallner 2006a], we define that
subdivision schemes S and T are in 0-proximity, if if there is a constant C such that

sup
i
‖Spi − Tpi‖ < Cδ(p)2, (10)

whenever δ(p) is small enough. Similarly, S and T are said to be in 1-proximity, if they are in 0-proximity,
and in addition for small enough δ(p),

sup
i
‖∆Spi −∆Tpi‖ < C(δ(∆p)δ(p) + δ(p)3). (11)

The following is a result of [Wallner and Dyn 2005]: Suppose that S and T are subdivision schemes in
0-proximity, and that S is an affinely invariant linear scheme, which has certain technical properties (the
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Intrinsic Subdivision with Smooth Limits for Graphics and Animation · 13

B-spline schemes Bn for n ≥ 2 and also the interpolatory four-point scheme of Equ. (3) have them). Then
T∞p exists for all polygons p with δ(p) small enough, and T∞p is a C1 curve for all polygons p where
subdivision converges. According to [Wallner 2006a], if S = Bn with n ≥ 3 and S, T are in 1-proximity,
then T∞p is a C2 curve for all polygons p where subdivision converges.

3.2 Overview of the convergence proof

For the convenience of the reader, we repeat the proof of the convergence theorem as presented in [Wallner
and Dyn 2005]. Recall that convergence of a linear subdivision scheme “S” is essentially equivalent to the
existence of µ < 1 such that

δ(Slp) ≤ µlδ(p) for all l,p. (12)

There are linear schemes which are convergent without fulfilling (12). In that case, several rounds of S have
to be taken as one round of a new linear scheme, which then fulfills (12), see [Dyn 1992].

For the precise formulation of convergence, we have to assign a polyline to a sequence of vertices. For an
N -ary subdivision scheme, this is done as follows: For points pi, the piecewise linear function “t 7→ Fj(p)(t)”
assumes the value pi exactly for t = i/N j , and is assumed to be linear in each interval [i/N j , (i+ 1)/N j ]. It
is obvious by construction that for all j,

supi ‖pi − qi‖ = ‖Fj(p)−Fj(q)‖∞, where ‖f‖∞ := supt ‖f(t)‖. (13)

If subdivision is applied to p, we get sequences Tp, T 2p, . . . We consider the polylines F0(p), F1(Tp),
F2(T 2p), . . . and ask for the limit of this sequence of functions. Now the subdivision scheme S is said to
converge when applied to p, if the limit of the functions Fj(T jp) exists for j → ∞ in the sense of the
sup-norm defined by (13).

For a linear convergent scheme S with finite mask the rate of convergence towards its limit is well known
(cf. Equations (3.8)–(3.10) of [Dyn 1992]): There is a constant γ, depending only on S, such that

‖Fl+1(Sq)−Fl(q)‖∞ ≤ γ δ(q), for all q, l. (14)

We are now ready to formulate and prove a theorem on convergence of nonlinear subdivision schemes which
are in proximity with linear ones.

Theorem 1. Assume that S, T are in 0-proximity, i.e., there is ε > 0 such that (10) holds true whenever
δ(p) < ε. Further assume that the linear scheme S fulfills (12). Then there is ε′ > 0 and µ < 1 such than
an inequality analogous to(12) is fulfilled:

δ(T lp) ≤ µlδ(p) for all l,p with δ(p) < ε′. (15)

In that case, the sequence T lp converges to a continuous curve.

Proof. We let dl := δ(T lp). By the triangle inequality, we have the implication supi ‖pi − qi‖ ≤ K =⇒
δ(p) ≤ δ(q)+2K . This together with (10) shows that dl ≤ δ(ST l−1p)+2Cδ(T l−1p)2. We use (12) and the
definition of dl to get the recursion dl ≤ µdl−1 + 2Cd2

l−1. Now we choose ε′ > 0 such that µ := µ+ 2Cε′ < 1.
It is our aim to show that dl+1 ≤ µdl, for all l. This property is referred to as “R(l)”, and if it holds
true for all l, we obviously have shown (15). “R(0)” follows immediately from our choice of ε′: We have
d1 ≤ d0(µ+ 2Cd0) ≤ (µ+ 2Cε′)d0 = µ0d0. In order to show “R(l)” in general, we use induction. Assuming
the truth of “R(l−1)”, we compute dl ≤ µdl−1+2Cd2

l−1 ≤ µl−1δ(p)(µ+2Cµl−1δ(p)) ≤ µl−1δ(p)(µ+2Cε′) ≤
µlδ(p). Thus we have “R(l)” and (15).

We now use (14) and (10) together with (13) to compute ‖Fj+1(T j+1p)− Fj(T jp)‖∞ ≤ ‖Fj+1(T j+1p)−
Fj+1(ST jp)‖∞ + ‖Fj+1(ST jp)− Fj(T jp)‖∞ ≤ Cδ(T jp)2 + γ δ(T jp). By (15), this expression is bounded
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by a factor times µj , with µ < 1. It follows that Fj(T jp) is a Cauchy sequence with respect to the sup-norm,
i.e., the limit curve exists and is continuous.

3.3 The proof of the smoothness results

The proofs of the smoothness results in [Wallner and Dyn 2005] and [Wallner 2006a] are along the lines of
§ 3.2, but considerably more complicated. For an N -ary subdivision scheme T , they aim at inequalities of
the following form, which for k = 0 is similar to (12):

δ(N jl∆jSlp) ≤ µl
jPj(l)δ(p), j = 1, . . . , k, (16)

for some k, where Pj is a nonnegative polynomial. This inequality is the key ingredient in showing Ck

smoothness of the limit curves limj→∞ Fj(T jp). For details, the interested reader is referred to the papers
mentioned above.

3.4 Verifying proximity

We apply the general results of the previous paragraphs to the nonlinear schemes encountered in Section 2.
In each case we have to show that a nonlinear scheme T and a linear scheme S fulfill the proximity inequality
(10) for C1 smoothness and in addition the inequality (11) for C2 smoothness.

While it is usually not difficult to show (10) in the various cases where it holds true, the currently available
proofs of (11) for both geodesic and projection subdivision occupy 13 densely written pages in [Wallner 2006a].

Geodesic subdivision. It is shown in [Wallner and Dyn 2005] that a geodesic subdivision scheme T is always
in 0-proximity with the linear scheme S it is derived from; provided the surfaces and manifolds involved are
C2. Together with the results of Sec. 3.1, this means that the geodesic subdivision rules in surfaces and
Riemannian manifolds produce C1 limits. Wallner and Dyn [2006a] show that for the B-spline schemes Bn

with n ≥ 3 we have even 1-proximity (provided the surfaces and manifolds involved are C3), and therefore
geodesic B-spline subdivision has C2 limit curves.

Helical subdivision. According to [Wallner and Dyn 2005; Wallner 2006a] the results concerning C1 and
C2 smoothness of geodesic subdivision extend to helical subdivision in SE3.

Projection subdivision. Again according to [Wallner and Dyn 2005; Wallner 2006a] the results concerning
C1 and C2 smoothness of geodesic subdivision extend to nonlinear schemes defined in terms of a projection
onto a surface; provided after some rounds of subdivision all edges of polygons do not leave a neighbourhood
of the surface where the projection is smooth and has bounded derivatives up to second order (for C1

smoothness) or third order (for C2 smoothness). These conditions are fulfilled for the projection onto SE3

employed in Section 2.4.2.

Obstacle rules for curves. An obstacle rule is a kind of one-sided projection rule. Consider an obstacle O,
its boundary surface ∂O, and the projection P onto ∂O. Suppose that S is a linear rule, T is the projection
rule, and T̃ is the obstacle rule corresponding to S. By the previous discussion, S and T are in 0-proximity.
As T̃pi either equals Tpi or Spi, it is trivial that also S and T̃ are in 0-proximity. It follows that the results
concerning C1 smoothness of projection rules extend to obstacle rules.

“Arbitrary” perturbations. This title refers to perturbations like the one described by (5) in Sec. 2.1, which
are not entailed by the underlying geometry.

0-proximity is obviously transitive in the following sense: If S and T are in 0-proximity, and so are T
and U , then also the schemes S and U are in 0-proximity. This means that further perturbing a nonlinear
scheme such that the magnitude of perturbation is bounded by a constant times ‖pi+1 − pi‖2 does not
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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destroy 0-proximity, and therefore does not influence C1 smoothness. The gravitational effect introduced by
(4) is an example of this.

Subdivision rules which generate motions in the presence of obstacles. Using the concept of configuration
space, we are able to reduce these cases to the previous ones. The set of positions of a rigid body such that
it intersects a given obstacle O, is a subset of SE3 denoted by Õ (SE3 minus Õ then is the configuration
space of moving outside the obstacle). Its boundary ∂Õ consists of the set of positions such that the given
rigid body touches ∂O without intersecting the interior of O (∂Õ is the configuration space of gliding on O).
Computing PO(A,a) means projecting (A,a) onto ∂Õ. Thus the subdivision process under consideration is
nothing but an obstacle scheme (if we don’t have a gliding constraint) or a projection scheme (if we consider
gliding on O). The smoothness results apply, if PO is smooth enough. The smoothness of PO depends on
the surfaces involved and on the exact definition of PO. We do not deal with this topic here, as it would lead
too far. The obstacle in Fig. 9.3–5 is only piecewise smooth – and so are both PO and the limit motion.

Tensor product rules. The smoothness of nonlinear tensor product rules does not follow in a straightforward
way from the results of on curve subdivision and is the topic of [Wallner 2006b]. There it is shown that
the tensor product rules, if some technical conditions are fulfilled, have essentially the same smoothness
properties as curve subdivision rules. The surfaces shown in Fig. 11 are C1.

4. PERTURBATION BY COMPUTATION

The very aim of Computer Graphics – visualization – often makes speed of computations more important
than their accuracy. It is therefore important to know that smoothness of a limit is stable with respect to
sloppiness in computations.

Suppose that a linear subdivision scheme S and a nonlinear scheme T satisfy the requirements cited above
which ensure that T ’s limit curves are C1, but T is cumbersome to compute and therefore is replaced by
an approximation T . The limit curves of T are C1 also, if T and T are in 0-proximity, because then so are
S and T . This section shows that this principle applies to the discretization of the concept of geodesic line
and the incomplete computation of such discrete geodesics. It can be seen as a model for the treatment of
other differential equations.

4.1 Computation of discrete geodesics

Section 2.2.4 discusses how to compute a discrete geodesic p0, . . . ,pk with given endpoints a = p0 and
b = pk. For the use in subdivision, we suggest that k is even (e.g. k = 2 or k = 4), because then pk/2

serves as discrete geodesic midpoint. For evaluating the Chaikin rule, we have to discretize both g-av1/4 and
g-av3/4: We choose k as a multiple of four, and use the points pk/4 and p3k/4, respectively.

Minimizing the discrete energy mentioned in Sec. 2.2.4 can be done by the numerical optimization algo-
rithm of your choice. Usually such an algorithm works by first finding an initial guess, which is improved
iteratively. We are interested in the order of accuracy of such a method. For simplicity, we consider only
the case that k is even, and we assume that the subdivision algorithm is defined solely using geodesic mid-
points (because of Equ. (7), this includes all B-spline rules.). We assume that pk/2 is the exact discrete
geodesic midpoint, and that qk/2 is the point computed by some algorithm which we don’t want to specify,
but which is required to meet two conditions. The first one is as follows: Assume that the given surface
is parametrized by some function f(u), where u is a list of surface parameters (e.g. u = (u, v)), and that
a = f(u0), b = f(u1). With ri := f(u0 + i(u1 − u0)/k), we use r0, . . . , rk as initial polygon of our iteration.

The second condition which our iterative algorithm has to satisfy is that its result qk/2 of computation
must not be far from both the initial value rk/2 and the exact result pk/2. So we assume that there is a
constant D with ‖rk/2 − qk/2‖ ≤ D‖rk/2 − pk/2‖. This assumption is reasonable and rather weak. It will
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certainly be fulfilled for iterative procedures where qk/2 actually converges to pk/2.

4.2 General remarks on the discretization of ordinary differential equations

The numerical theory of ODEs has been a standard topic of numerical analysis for a long time. As this
paper needs only the differential equation of geodesics, we here consider second order ODEs which have
the implicit form F (t, y(t), ÿ(t)) = 0 with y and F as smooth vector-valued functions. The function F is
given, and y(t) is unknown except for y(t0) and ẏ(t0). We choose a time step ∆t, so that tj = t0 + j∆t
(j = 0, 1, 2, . . .) and discretize this ODE by the definitions y0 = y(t0), y1 = y0 + ∆tẏ(t0), and letting
F (tj , yj , (yj+1 − 2yj + yj−1)/∆t2) = 0 for j = 2, 3, . . . Thus solving the ODE is reduced to the (possibly
numerically hard) solution of a finite system of equations. This is a so-called implicit Euler method. The
error we make in a fixed number “k” of steps is bounded as follows:

‖y(t0 + j∆t)− yj‖ ≤ Ĉ ·∆t2, j = 0, . . . , k, where Ĉ depends on F , y(t0), ẏ(t0), and k. (17)

The constant Ĉ depends on y(t0), ẏ(t0) in a continuous way. Thus for any compact set where those values
are picked from, there is a global constant Ĉ. When discretizing the differential equation of geodesics we
make use of this fact: We require that geodesic lines are traversed with unit speed, i.e., the initial conditions
“c(0) = p, ċ(0) = v” are always such that ‖v‖ = 1. As long as we pick p from a compact set, the total set
of pairs (p,v) is compact, and there is a global upper bound Ĉ for the discretization error in (17).

4.3 Error estimates

We consider a linear subdivision rule expressible in terms of midpoints. Its geodesic analogue employs
geodesic midpoints. As this rule is discretized, we use a discrete geodesic midpoint instead (the point pk/2

from above). As we don’t want to spend too much time computing that point, we use qk/2 instead of pk/2.
Our aim is to establish that the resulting subdivision scheme is in 0-proximity with the original one, so that
we still have C1 smoothness.

Theorem 2. A linear subdivision rule expressible via midpoints is in 0-proximity with its geodesic/dis-
crete/numerical analogue as described above.

Proof. Part 1: We have to show that for any a and b, the distance ‖qk/2 − av1/2(a,b)‖ is bounded by
a constant times ‖a− b‖2 =: δ2, provided δ is small enough. According to [Wallner and Dyn 2005], such a
constant C exists for the distance of the actual geodesic midpoint g-av1/2(a,b) from av1/2(a,b) – this is the
fact that a linear subdivision scheme is in 0-proximity with its geodesic analogue. We are going to establish
that such a constant C ′ exists also for the distance of g-av1/2(a,b) from pk/2 – this is the discretization
error (Part 2 of the proof). Part 3 below shows that there is an analogous constant C ′′ for the distance
‖av1/2(a,b)−rk/2‖. We now assume that the constants C,C ′, C ′′ at our disposal. Then each of the distances

rk/2 —— av1/2(a,b) —— g-av1/2(a,b) —— pk/2

has a known bound, implying that ‖rk/2 − pk/2‖ ≤ δ2 · (C + C ′ + C ′′). It follows that ‖rk/2 − qk/2‖ ≤
δ2D(C + C ′ + C ′′). The known bounds for the distances

qk/2 —— rk/2 —— av1/2(a,b)

show that ‖qk/2 − av1/2(a,b)‖ ≤ δ2 · (D(C + C ′ + C ′′) + C ′′), which concludes the proof of 0-proximity.
Part 2: Section 2.2.4, which describes discrete geodesic lines, is actually the application of the general

concept of Section 4.2 to the differential equation of geodesics. We therefore have the error estimate of
(17). Unfortunately (17) is formulated in terms of the discretization time step ∆t rather than in terms
of ‖a − b‖ as required in our proof. This problem is resolved as follows: The curvature radius ρ(s) of
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a geodesic line c(s) is at least ρmin = 1/κ, where κ is an upper bound for the normal curvatures of the
surface in question [do Carmo 1992]. It is an elementary fact that for any such geodesic arc of length L,
we have the inequality L ≥ ‖c(0) − c(L)‖ ≥ L/π, provided L ≤ πρmin (for a semicircle of radius ρmin,
the second inequality is sharp). As geodesics are traversed by unit velocity, the length L of the geodesic
equals k∆t, and we have ∆t ≤ π‖a − b‖/k. This allows to re-formulate the error term of (17) in the form
‖g-av1/2(a,b)− pk/2‖ ≤ C ′‖a− b‖2, as required.

Part 3: As to the existence of C ′′, we consider the curve d(t) = f(u0 + t(u1 − u0)). By construction,
a = d(0), rk/2 = d(1/2), b = d(1), av1/2(a,b) = (d(0) + d(1))/2. By Taylor’s theorem, d(t) = d(0) +
td′(0) + t2d′′(θt)/2, where 0 ≤ θt ≤ t. We plug Taylor’s formula into the previous expressions and find that

rk/2 − av1/2(a,b) = d′′(θ1/2)/8− d′′(θ1)/4.

We easily verify that the i-th component of d′′(t) is computed by d′′i (t) = (u1−u0)T ·Hi(t) ·(u1−u0), where
Hi(t) is the matrix of second derivatives of the i-th component fi of the given surface parametrization in the
point d(t). Those are bounded for a compact piece of surface, so it follows that d′′(t), and therefore also
‖rk/2 − av1/2(a,b)‖ is bounded by a constant times ‖u1 − u0‖2. This is almost what we wanted to show.
Actually we need a constant times ‖a−b‖2. So it remains to find D′ such that ‖u1−u0‖ ≤ D′‖a−b‖. The
meaning of this inequality is that if points of a surface are close together, so are their respective parameter
values. We rephrase the last condition to ‖u1 − u0‖/‖f(u1) − f(u0)‖ ≤ D′ and show that the left hand
expression has a maximum, then equal to D′. This follows (by compactness of the surface) from continuity
of that expression: Continuity is trivial for u1 6= u2 and follows from smoothness of f if u1 approaches u2.
The proof is complete.

5. CONCLUSION

We have shown several natural analogues of curve subdivision rules in nonlinear geometries. All of them
are perturbations of linear rules, but still close enough so that smoothness can be shown. The types of
perturbation range from geodesic instead of affine subdivision, moving points out of obstacles, projecting
points onto fixed surfaces, and perturbation by sloppy computation. The available theory shows that many
ways of intuitively placing control handles and subdividing actually leads to smooth limits.
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