
Approximating Boundary-Triangulated Objects with Balls∗

O. Aichholzer† F. Aurenhammer‡ T. Hackl† B. Kornberger† M. Peternell§ H. Pottmann§

Abstract

We compute a set of balls that approximates a given
3D object, and we derive small additive bounds for
the overhead in balls with respect to the minimal so-
lution with the same quality. The algorithm has been
implemented and tested using the CGAL library [7].

1 Introduction

Representing a complex geometric object with prim-
itives is a fundamental task in computational geom-
etry and computer graphics. A general distinction is
between exact representation, like slab decomposition
or triangulation, and approximate representation, like
spline boundary conversion or approximate covering.
The choice of the primitives used depends on the ap-
plication, for example, whether the object is to be
processed for visualization or for subsequent manipu-
lation.

In the present note, we deal with the problem of
converting a 3D object into a set of balls. While such
a representation may be less advantageous for visual-
ization (than, e.g., a conversion into ellipsoids [4]) it
is sometimes particularly convenient for further pro-
cessing. The main applications we have in mind are
computing Minkowski sums and detecting collisions.

Calculating the Minkowski sum of two nonconvex
3D objects is a complicated task with various appli-
cations to problems where proximity is involved [14].
For instance, planning a translational motion of a
robot A in a workspace B can be based on construct-
ing their Minkowski sum A ⊕ B. A common approach
is to decompose the (polyhedral) objects A and B into
convex parts and adding them up pairwise. Using
few but complex parts leads to the need of invoking
Minkowski sum algorithms for general convex polyhe-
dra [10, 8], and decomposition is a challenging ques-
tion in itself even when tetrahedra are used [6, 18].
As an alternative, the objects to be summed may
be approximately covered by balls. Calculating the

∗Research supported by the FWF Joint Research Project
’Industrial Geometry’ S9205-N12.

†Institute for Software Technology, Graz University of Tech-
nology, Austria, {oaich,thackl,bkorn}@ist.tugraz.at

‡Institute for Theoretical Computer Science, Graz Univer-
sity of Technology, Austria, auren@igi.tugraz.at

§Institute of Discrete Mathematics and Geom-
etry, Vienna University of Technology, Austria,
{peternell,pottmann}@geometrie.tuwien.ac.at

Minkowski sum of two balls is trivial; the main objec-
tive is finding a small set of covering balls.

In collision detection, object handling is typically
based on hierarchical representations. Common data
structures in this context are so-called sphere-trees
which, as an easy possibility, can be derived from
octrees [17, 16]. This approach does not make explicit
use of the geometry of the objects, however. Refined
methods for constructing sphere-trees have been pro-
posed [11, 5], utilizing the medial axes of the objects.
Again, the problem of converting an object into a min-
imum number of balls arises. The reverse process of
extracting the boundary of an approximating set of
balls is treated in [3].

We develop an algorithm that takes as input a 3D
object with triangulated boundary, and generates an
almost-minimal set of balls that covers all the trian-
gle endpoints, ensuring that no such point is covered
with more than a user-specified offset ε. The qual-
ity of the approximation thus will also depend on the
quality of the boundary mesh. If the object bound-
ary is not covered completely, this can be achieved if
desired, with a simple postprocessing step. Follow-
ing known paths [1, 2], we first generate a candidate
set of approximating balls centered on the triangles
endpoints’ Voronoi diagram. Correct labeling of balls
as having their centers inside or outside the object
becomes an issue, and we propose a simple though
efficient labeling algorithm using the boundary trian-
gulation. A method for reducing the candidate set of
balls is then applied as an instance of the set covering
problem. The heuristic we use allows us to determine
how close to the optimum is the produced set of balls.
Experimental results for practical data are described.

2 Ball generation

We specify the input object, A, as a bounded and
interior-connected 3-manifold whose boundary is con-
nected and triangulated. Thus A may have tunnels,
but holes are disallowed. For each boundary triangle
of A its orientation with respect to A is given. This
is a common representation of an object, sufficiently
general for many applications. Let P be the set of ver-
tices of A, called sample points in the following. Our
first aim is to produce a candidate set of balls which
covers P and at the same time approximates A.

Call a ball b ⊆ A maximal if there exists no
ball b′ ⊆ A such that b′) b. The medial axis of A

1

is defined as the set of centers of all its maximal balls.
As A is just the union of all maximal balls, a set
of n sufficiently large balls centered close to the me-
dial axis of A will serve the desired purpose. This
observation has been made use of in various papers in
computational geometry and computer graphics; see,
for example, [11, 5] and [1, 2], respectively.

Following the approach in [2], we consider the
Voronoi diagram, V (P), of the given point sample P .
For a point p ∈ P , let πp be an (inner) pole of p,
that is, a vertex of the region of p in V (P) that lies
inside A and maximizes ‖p−πp‖. In contrast to arbi-
trary Voronoi vertices, the value of poles is that they
are located near the medial axis of A if the sample P

is sufficiently dense [1]. (Let us temporarily ignore the
fact that πp does not exist if all region vertices for p

happen to lie outside of A.) If we take, for each p ∈ P ,
the (closed) Delaunay ball with center πp and radius
‖p − πp‖ then the resulting set, B, of balls covers P .
Also, B approximates A with a quality which depends
on that of the boundary mesh. Observe that B is op-
timal in the sense that any other set of balls which
’touches’ P and is of the same cardinality will be in-
ferior to B in approximating A.

Identifying poles among the vertices of a Voronoi
diagram is a problem in itself. In [2], for the sake of
subsequent power crust construction, two vertices per
sample point are identified using an angle criterion
that works for dense samplings. (At most) one of
these two vertices is located in A and is the pole we
are looking for. We need to exactly find the poles, as
balls centered outside A will lead to a violation of any
approximation property. To this end, we utilize the
given triangular mesh that bounds A (which is not
part of the input in [2]). After having computed all
the vertices of V (P), we use ray shooting to determine
their location with respect to A. Among those lying
inside A, one vertex per region which is at maximal
distance from the respective sample point is selected.
This direct method will work correctly regardless of
the quality of the sample mesh.

The outcome of the ray shooting procedure is cru-
cial, hence a correct and efficient implementation is
needed. To decide u ∈ A for a vertex u of point p’s
Voronoi region, we use the ray −→up and determine the
first point of intersection of −→up with the boundary
of A. Clearly, if this point is p, then decision can be
made locally from the orientations of the incident tri-
angles. Otherwise, the boundary triangle hit first is
not incident to p, and we adopt the following strategy
for finding it. Let Su be the sphere with center u and
radius ‖p − u‖. Define a critical sphere Sp centered
at p, as below. Let L be the length of the longest
edge of the boundary mesh, and put R = 1√

3
L. If

‖p − u‖ ≥ R then choose Sp so as to intersect Su in a
circle of radius R. Otherwise, define the radius of Sp

as
√

‖p − u‖2 + R2. Consult Figure 1.

p u

S S
p u

p u

R

Su

R

q

S’u

Sp

Figure 1: Defining the critical sphere Sp

Lemma 1 If the ray −→up intersects a boundary trian-

gle ∆ of A then at least one endpoint of ∆ is enclosed

by Sp.

Proof. Let ∆ be intersected by −→up. Consider the
smallest disk, D∆, that contains ∆. All edges of ∆
are of length at most L, so the radius of D∆ is at
most R = 1√

3
L. We treat the case ‖p− u‖ ≥ R first.

As the (Delaunay) sphere Su does not enclose any
endpoint of ∆, we get that ∆ intersects −→up between
p and the center, q, of the circle Su ∩ Sp. On the
other hand, assuming that no endpoint of ∆ is en-
closed by Sp implies that ∆ intersects −→up between q

and u, a contradiction. Now let ‖p− u‖ < R. In this
case, the plane normal to −→up at u intersects Sp in
a circle of radius R. Assuming that Sp encloses no
endpoint of ∆ now implies that ∆ avoids the ray −→up

altogether, a contradiction again. �

By Lemma 1, the first triangle hit by −→up can be
detected once the subset Q of P enclosed by the criti-
cal sphere Sp has been reported. This spherical range
search problem has a practically efficient implementa-
tion based on kd-trees. Observe that the radius of Sp

is Θ(L); it lies between R and
√

2 · R. Thus only O(1)
points will be reported if P obeys a minimum distance
of c · L for some constant c.

To facilitate later decisions v ∈ A, we make use
of the following property, which holds if the (prac-
tically more relevant) case ‖p− u‖ ≥ 1√

3
L occurs for

the present vertex u. See Figure 1, left-hand side.

Lemma 2 Let S′
u be the sphere centered at u and

passing through the center of the circle Su ∩ Sp. All

Voronoi vertices v enclosed by S′
u have the same rel-

ative position to A as the vertex u.

Proof. By the bound on the smallest containing disk
for a mesh triangle, no such triangle intersects the
sphere S′

u. Thus S′
u either lies completely inside or

completely outside of A. Also, S′
u does not enclose A

because S′
u is empty of points from P , as is Su. �

The output is a set of Delaunay balls for P whose
union approximates the object A. We observed a run-
time linear in |P | in all our examples. In particular,

2

the number of vertices of V (P) stayed below 9 · |P |.
Each produced ball covers at least four points in P

with its boundary. There may be uncovered points
(at rare cases), due to the lack of their poles. Such
points are added to the set as balls of radius zero. In
order to be able to delete a large fraction of balls later
on, we increase redundancy in covering by enlarging
the radius of each ball by a user-specified constant ε.
Each point in P is now covered with an offset of at
most ε. It will turn out that the obtained set of balls
is highly redundant even for small offsets ε.

3 Reduction algorithm

Let Bε denote the set of ε-offset balls produced in
Section 2. We aim at finding a subset of Bε of min-
imal cardinality that still covers the set P of sample
points. This is an instance of the classical set cover-
ing problem, shown to be NP-complete in [13]. We are
going to describe a hybrid heuristic that reduces Bε

almost to the optimum in many cases, and that allows
to bound the produced overhead.

In a first step, we arrange P in a kd-tree and
determine which points of P are covered by which
balls in Bε. The result is stored in an incidence ma-
trix, where entry (i, j) is put to 1 or 0 depending on
whether the i-th ball contains the j-th point. Stan-
dard reduction rules are then applied iteratively to
the rows and columns of this matrix: (1) If column j

has exactly one entry 1, say (i, j), then delete row i

and all columns having entry 1 in that row. Sphere i

has to be taken for any solution. (2) If row i1 is dom-
inated (in 1s) by row i2 then delete row i1. All points
covered by sphere i1 are also covered by sphere i2.
(3) If column j1 dominates column j2 then delete col-
umn j1. Every solution that covers point j2 has to
cover point j1 as well. We speed up these operations
by using hashing techniques, and avoid excessive stor-
age by sparse matrix representation.

If the reduced matrix is nonempty, we try to decom-
pose it into independent submatrices. These are given
by the connected components in the corresponding
(bipartite) incidence graph. For each submatrix M ,
if small enough, the respective set covering problem
is solved exactly, using branch-and-bound [15] for its
integer programming formulation: Minimize

∑

xj w.r.t. MT · x ≥ (1, . . . , 1)T , xj ∈ {0, 1}.

Whereas up to this point optimality is ensured, we
have to resort to a heuristic for approximating sub-
problems too large for exact solving. To this end,
we next choose one ball covering the most yet uncov-
ered points. When applied repeatedly, this is a sim-
ple greedy algorithm, yielding an O(log n) approxima-
tion [12]. In fact, the set covering problem is unlikely
to be approximable beyond a factor of c log n in poly-
nomial time; see [9]. Here n denotes the number of

covering sets (i.e., balls in our case). Our algorithm,
after each single greedy pick, runs through the steps
before again. Figure 2 displays its flow chart.

Success?

Finished?

Decomposition

IP Solution

Reduction

Greedy Pick

Y N

Y N

B

B f

ε

Figure 2: Control flow of the algorithm

There are several ways of checking the overhead in
balls for the produced set, Bf . An obvious though
quite effective way is to solve the linear program
above under the relaxation xj ≥ 0. Unfortunately,
even when being applied after the first reduction and
decomposition, this method becomes very time con-
suming for larger offsets ε, and it also suffers from
numerical problems. We therefore consider two alter-
native methods where a lower bound is easy to obtain.

Theorem 3 Let n∗ be the size of the optimal solu-

tion. If the algorithm takes k greedy picks then

|Bf | ≤ n∗ + k .

Proof. After the last greedy pick, bk, let B̃ be the set
of balls still to choose from. Assume that the optimal
solution for B̃ uses m balls. Taking no more greedy
picks, our algorithm solves B̃ ∪ {bk} with m + 1 balls,
whereas the optimal solution for B̃ ∪ {bk} uses at
least m balls. The theorem follows by induction. �

To get another bound, consider any set B of balls
which covers P . For a ball b ∈ B put α(b) = |P ∩ b|.
Further, for a point p ∈ P , define its share as

share(p) =
1

maxp∈b∈B α(b)
.

Let b(p) be a ball that achieves the maximum in the
denominator above. Under the (ideal) assumption
that B is a disjoint covering of P (and hence covers
each point p with b(p) and no other ball), share(p) ex-
presses the amount that p contributes to |B|. Thus,
for any solution B, we have the lower bound

⌈

∑

p∈P

share(p)
⌉

≤ |B| .

3

Let now B̂ denote the set of balls being selected before
the first greedy pick. Clearly, the size of the optimal
solution for Bε \ B̂ differs from that for Bε by ex-
actly |B̂|. If we fix the shares for the points in P with
respect to the set Bε \ B̂, then the following holds.

Theorem 4 The overhead in the set Bf is at most

|Bf | − |B̂| −
⌈

∑

p∈P

share(p)
⌉

.

4 Experimental results

We applied the ball generation method to various data
sets, including the two benchmark examples below. In
the following tables, the first column displays the al-
lowed offset in percent of the (longest edge of the)
bounding box. The second column shows the number
of balls produced by a pure greedy algorithm, as op-
posed to our algorithm, shown in column three. The
remaining columns list the three bounds for the over-
head, described in Section 3. The LP bound, though
mostly dominant, turned out to be too time expensive
for the software [15] at entries ’•’.

Offset % Greedy Hybrid LP Thm 3 Thm 4
.00001 4326 4085 3 0 3
.0001 3653 3209 24 62 51
.001 3564 3159 21 55 44
.01 3151 2836 17 42 40
.1 1458 1304 10 46 58
1 168 135 12 31 68
2 73 55 • 8 31
3 45 34 3 8 22

Table 1: Bunny model, |Bε| = 8820

Figure 3: Bunny for offsets .00001%, 1%, and 3%

Offset % Greedy Hybrid LP Thm 3 Thm 4
.00001 16009 15092 39 105 55
.0001 13235 11699 326 1008 863
.001 12502 11193 317 996 864
.01 8995 8142 226 768 828
.1 2749 2378 221 612 928
1 321 255 • 78 162
2 136 107 • 25 74
3 86 65 • 12 37

Table 2: Dragon model, |Bε| = 34636

Figure 4: Dragon for offsets .00001% and 1%

References

[1] N. Amenta, M. Bern. Surface reconstruction by Voronoi

filtering. Discrete & Computational Geometry 22 (1999),
481-504.

[2] N. Amenta, S. Choi, R.K. Kolluri. The power crust,

unions of balls, and the medial axis transform. Compu-
tational Geometry: Theory and Applications 19 (2001),
127-153.

[3] F. Aurenhammer. Improved algorithms for discs and balls

using power diagrams. J. Algorithms 9 (1988), 151-161.

[4] S. Bischof, L. Kobbelt. Ellipsoid decomposition of 3D-

models. Proc. 1st IEEE Symp. 3D Data Processing Visu-
alization and Transmission, 2002, 480-488.

[5] G. Bradshaw, C. O’Sullivan. Adaptive medial-axis ap-

proximation for sphere-tree construction. ACM Transac-
tions on Graphics 23 (2004), 1-26.

[6] B. Chazelle. Triangulating a nonconvex polytope. Discrete
& Computational Geometry 5 (1990), 505-526.

[7] http://www.CGAL.org

[8] E. Fogel, D. Halperin. Exact and efficient construction

of Minkowski sums of convex polyhedra with applications.

8th Workshop Alg. Eng. Exper., Alenex’06, 2006.

[9] U. Feige. A threshold of ln n for approximating set cover.

Proc. 28th Ann. ACM Symp. on Theory of Computing,
1996, 314-318.

[10] K. Fukuda. From the zonotope construction to the

Minkowski addition of convex polytopes. J. Symbolic
Computation 38 (2004), 1261-1272.

[11] P.M. Hubbard. Approximating polyhedra with spheres for

time-critical collision detection. ACM Transactions on
Graphics 15 (1996), 179-210.

[12] D.S. Johnson. Approximation algorithms for combinato-

rial problems. J. Computer and System Sciences 9 (1974),
256-278.

[13] R.M. Karp. Reducibility among combinatorial problems.

R.E. Miller, J.W. Thatcher (eds.), Plenum Press, New
York, 1972, 85-103.

[14] M.C. Lin, D. Manocha. Collision and proximity queries.

J.E. Goodman, J. O’Rourke (eds.), Handbook of Discrete
and Computational Goemetry, 2nd Ed., CRC, 2004, 787-
807.

[15] http://lpsolve.sourceforge.net/5.5/

[16] C. O’Sullivan, J. Dingliana. Collisions and perception.

ACM Transactions on Graphics 20 (2001), 151-168.

[17] I.J. Palmer, R.L. Grimsdale. Collision detection for ani-

mation using sphere-trees. Computer Graphics Forum 14
(1995), 105-116.

[18] J. Ruppert, R. Seidel. On the difficulty of triangulating

three-dimensional nonconvex polyhedra. Discrete & Com-
putational Geometry 7 (1992), 227-253.

4

