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Abstract— Sulcal fundi are 3D curves that lie in the depths of
the cerebral cortex and, in addition to their intrinsic value in
brain research, are often used as landmarks for downstream
computations in brain imaging. In this work we present a
geometric algorithm that automatically extracts the sulcal fundi
from magnetic resonance images and represents them as spline
curves lying on the extracted triangular mesh representing the
cortical surface. The input to our algorithm is a triangular
mesh representation of an extracted cortical surface as computed
by one of several available software packages for performing
automated and semi-automated cortical surface extraction. Given
this input we first compute a geometric depth measure for
each triangle on the cortical surface mesh, and based on this
information we extract sulcal regions by checking for connected
regions exceeding a depth threshold. We then identify endpoints
of each region and delineate the fundus by thinning the connected
region while keeping the endpoints fixed. The curves thus defined
are regularized using weighted splines on the surface mesh to
yield high-quality representations of the sulcal fundi. We present
the geometric framework and validate it with real data from
human brains. Comparisons with expert-labeled sulcal fundi are
part of this validation process.

Index Terms— Brain imaging, MRI, sulcal fundi, brain warp-
ing, surface splines, thinning.

I. INTRODUCTION

WHEN viewed from the outside, a human brain appears
as a volume with a highly wrinkled boundary surface

having numerous long furrows. The term sulci (plural of sul-
cus) is associated with these furrows and the term gyri (plural
of gyrus) designates the regions between the sulci. Fundus
(literally meaning bottom) is applied to sulci to describe the
deepest part of each furrow when viewed in cross section. The
Neuroanatomist’s concept of sulcal fundus is also constrained
by the idea that a given sulcus’s fundus is a continuous 1D
curve (branching if and only if its sulcus branches) connecting
all the sulcus’s endpoints. There are a variety of ways in
which the Neuroanatomist’s intuitive, definitions of sulcus,
sulcal fundus, and sulcal endpoint can be made geometrically
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precise — i.e., by describing exactly which parts of a brain
surface are to be considered sulcus and which 1D curve
lying within each sulci is to be considered its fundus. This
paper introduces an improved system of definitions along
with efficient computational algorithms for realizing these
definitions, and validates the performance of these algorithms
using landmark data provided by Neuroanatomists.

Beyond the possible intrinsic relevance of sulcal research
[1], [2], the importance of curvilinear representations of sulcal
fundi lies in their use as landmarks for constraining (and
thereby improving the identification of) deformation fields in
both surface-based (e.g. [3], [4]) and volumetric (e.g. [5],
[6]) brain warping algorithms. Sulcal depth assignments can
also be used by surface warping algorithms that depend on
optimizing the alignment of dense “iconic” features sets —
e.g. [7]. Surface-to-surface brain warping has been used for
longitudinal and cross-sectional studies of, e.g., brain structure
and function, cortical thickness, and gray-matter density, c.f.
[8] and the references therein.

Traditionally cortical sulci and sulcal fundi have been man-
ually defined by labeling voxels in an MRI brain volume using
a GUI which displays three orthogonal 2D brain slices. This
process is extremely tedious, time consuming and notoriously
prone to error (e.g., due to the fact that the sulcal troughs curve
in three dimensions simultaneously, and the normal direction
corresponding to “depth” can change rapidly as the surface
undulates). Furthermore, manually labeled fundi in the volume
data have to be projected onto the extracted surface for use as
landmarks in surface based brain warping algorithms, and this
process may lead to unanticipated results (i.e. naively project-
ing each point individually to the nearest surface location may
lead to multiple unconnected and self-intersecting curves on
the surface). Automating sulcal fundi extraction can ultimately
improve the quality and reproducibility of the process as well
as yielding considerable time savings.

A. Problem Statement and Contributions

A fully automated method for the extraction of sulcal fundi
from MRI brain volumes combines an automated method for
extracting a 3D, polyhederal mesh representation of a cortical
brain surface with an automated method for defining fundal
curves that lie on the mesh surface (or equivalently, paramet-
ric/implicit surfaces). In this paper, we do not introduce a new
approach to cortical surface extraction; rather, we describe
a method for defining sulcal depth and sulcal fundi given
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Fig. 1. Overview of the main steps of our algorithm. (All figures of the paper are in color.)

a closed mesh representation of the gray-matter (GM) and
cerebrospinal fluid (CSF) boundary of a cortical hemisphere
as an algorithmic input. There are a number of available
software packages that can be utilized to generate such a mesh,
including FreeSurfer1 [9], SurfRelax2 [10], and BrainVisa3

[11]. Reference [12] provides an overview and discussion of
methods that have been proposed to extract the cortical surface
in implicit, parametric, or mesh representations. These meth-
ods have been primarily developed for cortical surface mesh
extraction from “high resolution” (e.g., 1 mm cubic voxels)
T1-weighted brain images. We optimized the parameters in
our experiments for normal human adult brains. However, by
adjusting these parameters the same method can be employed
for different types of brains (e.g., children, non-normal).

Improving the accuracy of surface extraction algorithms
remains an active area of research in neuroimage analysis.
For the validation work described here we chose to use data
produced by FreeSurfer as our inputs, but the idea underlying
our work is that the triangle mesh input has become a reason-
ably standard form of intermediate result in Neuroimaging.
We believe our algorithm will work well with closed mesh
surfaces produced by many other surface extraction packages;
overall accuracy will be increased by future improvements in
the surface extraction.

In this paper we present a geometric algorithm that aims
at extracting the complete set of sulcal fundi as a network of
partially connected curves that are guaranteed to be on the
extracted brain surface. To validate our results we compare a
subset of automatically extracted fundi to manually extracted
ones as marked by expert anatomists in the volume image.

A flow chart illustrating the major steps of our algorithm is
shown in Fig. 1. In the first step, the triangular mesh repre-
senting the cortical surface is extracted (this process actually
consists of a number of sub-steps involving additional pre-
processing algorithms prior to surface extraction proper, which
are described in more detail below). Second, an outer hull
surface which wraps the cortical surface is constructed. Third,
numbers representing sulcal depth (measured in millimeters

1FreeSurfer, see http://surfer.nmr.mgh.harvard.edu/
2SurfRelax, see http://www.cns.nyu.edu/∼jonas/software.html
3BrainVisa, see http://www.brainvisa.info/

according to minimal path-based distance between the input
surface and the outer hull) are assigned to every point on the
surface mesh. Fourth, based on the sulcal depth measure, the
sulcal regions are extracted. Fifth and finally, the fundus curves
obtained by thinning the sulcal regions are smoothed using
weighted splines on the surface mesh to yield a high-quality
curve representation. Each step of the algorithm is described
in detail in Section II of the paper. Our key contributions are

• a novel depth measure that is anatomically reasonable,
• an automatic algorithm that aims at the extraction of a

complete set of sulcal fundi, and
• a high-quality representation of the fundi as smooth

curves lying on the pial (mesh input) surface.
The algorithmic steps outlined in Fig. 1 lead to a complete

system for automatic extraction of fundi curves. In Sect. III
we present experiments to validate our automatic results via
comparison with curves traced by two experts. Furthermore,
reproducibility studies are presented as well. In Sect. IV we
discuss the relation of our work to prior art and in Sect. V we
conclude the paper with an outlook towards future research.

II. METHODS

In this section we explain in detail the main steps of our
algorithm, which can be sketched as follows. The input to our
algorithm is a T1-weighted MRI human brain volume. For
skull stripping, segmentation of the brain into white matter,
gray matter, and cerebrospinal fluids, and for extraction of
a triangle mesh surface from the MRI volume data, we use
publicly available software. Then we use a regular grid to
derive an implicit representation of the pial surface. Using
a level set technique we compute an outer hull surface that
encloses the pial surface in a shrink-wrap type fashion. The
outer hull is such that one can still distinguish the gyri, but
the sulcal regions are now covered. Then we define a novel
depth measure for the pial surface as the shortest distance
that connects each surface point to a point of the outer hull
such that the point path stays inside the sulcal regions. The
computational realization uses a fast sweeping algorithm. We
are now able to extract the sulcal regions by thresholding the
computed depth. We identify endpoints of the sulcal fundi
and extract the fundi by a thinning algorithm. Such extracted
curves are then smoothed using weighted splines in manifolds.
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Fig. 2. Pial surfaces (left) and outer hulls (right) for different brains:
Front and top view. The black lines mark where we cut the surfaces for
the illustration in Fig. 5.

A. Segmentation, Surface Extraction, and Representation

A topologically correct triangular mesh representing the pial
(GM/CSF) surface of the cerebral cortex was extracted by
FreeSurfer4 [9] after skull stripping using BET5 [13]. In Fig. 2
we show front and top views of the extracted pial surfaces
(using FreeSurfer) for different human brains.

By TM we denote a triangle mesh with faces T1, . . . , TN ;
we require TM to be a closed and orientable 2-manifold in
Euclidean 3-space. Our approach to the definition of sulcal
depth is based on a level set technique. In order to apply it, the
triangular-mesh representation is transformed into an implicit
representation by computing the signed distance function to
the surface on a Cartesian grid. In the implicit form, the pial
surface becomes the zero level set {Φ = 0} of the signed
distance function Φ. We obtain the signed distance function
in two steps.

In the first step, the signed distance function Φ is efficiently
computed (within machine accuracy [14], [15]) up to a given
maximum distance d, i.e., in a band of width 2d extending
from both sides of the surface. We choose d = 5 mm in
our implementation. For each component (face, edge, and
vertex) of the triangular-mesh, a polyhedron which contains
its Voronoi cell as a subset is constructed. By using the scan
conversion algorithm, one can determine which grid points
are possibly within the given distance of the component and
compute the distance. Since there are overlapping regions of
polyhedra, some grid points may be scan converted more than
once. In this case, the distance which has smaller magnitude
is chosen.

In the second step, the eikonal equation

|∇Φ(x, y, z)| =
√

Φ2
x + Φ2

y + Φ2
z = 1

is solved for the remaining grid points which have distances
greater than 5 mm. This is done using a fast sweeping algo-
rithm [16], [17], [18]. This gives the first order approximation
of the distance function for the grid points away from the
surface. We combine these two algorithms in order to maintain

4FreeSurfer, see http://surfer.nmr.mgh.harvard.edu/
5Brain Extraction Tool (BET), see http://www.fmrib.ox.ac.uk/fsl/bet/

Fig. 3. Axial, coronal, and sagittal slices of the MRI brain volume and the
outer hull surface of one hemisphere.

high accuracy near the surface and efficiency for the overall
distance computation.

Now for the pial surface we have both, an explicit triangular-
mesh representation, and an implicit level-set representation on
a Cartesian grid.

B. Outer Hull Surface Extraction

An outer hull surface, which wraps the pial surface is
computed using a morphological closing operation applied
to the level set function Φ [19]. Note that even the gross
shape of the human cortex is far from being convex (see e.g.
Fig. 2), so computing convex hulls after smoothing would not
produce desirable results. For morphological closing we move
the surface outward by a time parameter T and then move the
surface inward by the same amount of time. The governing
equation is {

Φt + V (t)|∇Φ| = 0
Φ(x, y, z, 0) = Φ(x, y, z),

where
V (t) =

{
1 for t ≤ T
−1 for T < t ≤ 2T

}
.

In our algorithm we choose T = 10 (mm/unit time). This
is based on the width of sulcal regions. We want to choose
the parameter T to be large enough to close the sulcal regions
and small enough to maintain the overall shape of the brain.
Practical experimentation has shown us that overall algorithm
results are relatively insensitive to 50% increases or decreases
in this parameter. The above equation is implemented with
standard numerics.

The implicit representation of the outer hull surface is given
by

Ψ(x) = min {Φ(x, y, z, 2T ),Φ(x, y, z, 0)} .

The minimum in the formula enforces the condition that the
outer hull surface wraps — but does not penetrate — the
pial surface. We illustrate the computed outer hull surface for
different brains in Fig. 2. In Fig. 3 we show an axial, coronal,
and sagittal slice of the original MRI brain volume combined
with the intersection curve of the outer hull surface in these
slices.

C. Geodesic Depth Computation

After we obtain the outer hull surface, we calculate the
geodesic depth (distance) for any given point on the pial
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a. Euclidean
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Fig. 4. A 2D illustration comparing the depth computation as explained in
the text: (a) Euclidean, (b) on mesh, (c) our measure.
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Fig. 5. We slice through the pial and hull surface at height indicated in
Fig. 2 with a black line. (Left) The bottom half of the hull surface in top view.
(Middle) The intersection curve with the pial surface. (Right) The bottom half
of the pial surface in top view. The color corresponds to the computed depth
from the hull. (Bottom) The color bar shows depth in mm.

surface to the outer hull. The desired geodesics correspond
to the shortest paths from each pial surface location to the
outer hull which do not cross the surface of the brain, i.e.,
the volume enclosed by the pial surface is considered as an
obstacle that needs to be avoided by the paths. Our approach
is different from that of previous work of [20] and [21],
which either consider the Euclidean distance to the outer hull
(Fig. 4a) or the geodesic distance on the triangular mesh
(Fig. 4b). The depth measure we propose is illustrated in
Fig. 4c. By the depth measure of [20] (Fig. 4a), point C and
point D are approximately the same Euclidean distance from
the hull curve h. By the depth measure of [21] (Fig. 4b), point
A and point B are approximately the same geodesic distance
to the hull h along the curve s. In our approach (Fig. 4c) the
order of the depth is d(C) > d(B) > d(A) ∼= d(D), which
is intuitively more correct. In all three illustrative drawings
the thick blue curves illustrate the respective geodesic curves
from the fundus points A,B,C, D to the outer hull h.

The geodesic depth calculation is done in three dimensions
by applying the fast sweeping method [16], [17], [18] to the
restricted (CSF) region between the outer hull and the pial
surface {Ψ ≤ 0 and Φ ≥ 0}. The calculation is performed on
a refined rectangular grid. Then, using trilinear interpolation,
we propagate the depth information onto each triangle Ti of
the triangular-mesh surface TM . In Fig. 5 (right) we show in
a top view the bottom part of the pial surface with the top
part removed. The color coding corresponds to the computed
geodesic depth, where blue indicates shallow and red indicates
deep. The pial surface is cut open by the plane indicated
in Fig. 2 as a black line, and Fig. 5 (middle) illustrates the

0 5 10 15 20 25 30 35 38.7

Fig. 6. Color coded geodesic depth (see color bar) displayed on axial, coronal,
and sagittal slices of the pial surface overlaid onto the MRI brain volume.

corresponding intersection curve. In Fig. 6 we display axial,
coronal, and sagittal slices of a MRI brain volume onto which
we overlay the color coded geodesic depth of the extracted
pial surface.

D. Sulcal Fundus Extraction

The algorithmic steps described above result in the associ-
ation of a sulcal depth estimate d(Ti) with each mesh triangle
Ti. Next, we use a depth threshold dT to define the sulcal
regions of the pial surface as those triangles with a depth
d(Ti) > dT , see Fig. 1 (second image from the right). In
the literature [21], dT is usually considered to be 2− 3 mm.
We use dT = 2.5 mm (using an adaptive threshold is open
to future refinements). Within these sulcal regions we find the
connected components Ci by a connected components labeling
algorithm [22]. For the remainder of the algorithm we only use
those components that have more than a minimum number of
triangles (see Section III for details).

For each component Ci we compute the strip Bi of bound-
ary triangles. The next stage of our algorithm identifies a
small subset of each Bi which constitutes the endpoints of
the sulcus (a non-branching sulcus has exactly two endpoints;
a branching sulcus is illustrated in Fig. 7). The algorithm for
identifying endpoints uses the barycenters pj of the triangles
in the set Bi, and is based on the concept that the point set
{pj} is of a curve-like nature with one or more endpoints. To
identify these endpoints we associate with each point pj of Bi

a principal component direction of the set of points Npj in a
local neighborhood around pj , and we identify as endpoints
those points pj which are extremal according to the principal
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Fig. 7. Fundi endpoints p1, . . . , p4 of a component C are those points of
the boundary of the C that are extremal according to the principal component
direction in a local neighborhood Npj .

component direction in their local neighborhood Npj
. We use

a moving least squares (MLS) algorithm [23] to compute the
local principal component directions. The example shown in
Fig. 7 illustrates a component Ci with the set of boundary
triangles Bi and the four endpoints p1, . . . , p4 identified by
our algorithm.

In the next step of our fundi extraction algorithm we run,
for each component Ci, a surface thinning algorithm. We then
take those triangles of the boundary strip Bi that correspond to
the computed endpoints pj and add them to an initial skeleton
list Si. The following two steps are then repeated until all
triangles of the component Ci have been processed:

1) Find the triangle ∆ of Bi with the least depth.
2) If removing ∆ would change the connectivity of the

mesh, then add ∆ to the skeleton list Si. Else, we remove
∆ from the list of boundary triangles Bi and add the
edge neighbor triangles of ∆ to Bi.

The result of the thinning algorithm is the skeleton Si of
each connected component Ci, which is made up of connected
strips of triangles. We then use a minimum spanning tree
algorithm [24] to construct the tree structure of Si. The
longest non-branching path within the tree can be calculated by
iteratively discarding the shortest branch leaving each vertex
that has degree greater than two until only vertices of degree
one and two remain. The thick 3D curve in Fig. 8 illustrates
the longest non-branching path for the component shown in
Fig. 7 (the other fundal branches for this component are
not shown). By connecting the barycenters of the triangle
strips we get our initial fundi curves. In Fig. 9 we show
all automatically extracted fundi as thick 3D curves, where
the color corresponds to the geodesic depth (blue is shallow,
yellow is medium, and red is deep).

E. Sulcal Fundi Smoothing

The extracted sulcal fundi are so far only polygons connect-
ing the barycenters of the extracted triangle strips. We smooth
these polygons by an algorithm that minimizes a counterpart
to the cubic spline energy for curves on surfaces. For that
purpose we extend the algorithm of [25] to weighted spline

e

e

p2

p1
c

Fig. 8. The longest non-branching path (illustrated as a thick 3D curve c)
for the component shown in Fig. 7 runs from endpoint p1 to endpoint p2.

curves c(u) in manifolds, minimizing the energy

E(c) =
∫ un

u1

w(c(u))‖c̈(u)‖2du, (1)

under the constraint that c(u) is on a surface. If we want the
curve to stay in the deep part of the sulcus, then we have to
choose a small weight w for these regions. This is achieved
by choosing the weight w as a function depending on the
computed geodesic depth d(c(u)) at the curve point c(u),

w(c(u)) :=
1

1 + d(c(u))α
.

The weight so defined is locally smaller for the fundus area
than for the remaining sulcal region with shallower geodesic
depth. The basic idea of the smoothing algorithm involves
interleaving the steps of numerically minimizing the energy
of a weighted spline curve and projection of the curve to
lie on the mesh surface. A detailed analysis for splines on
manifolds (without weights) is given in [25]. Here we present
the extension to weighted splines using a straightforward
optimization procedure for minimizing (1) with a projected
gradient descent algorithm.

We consider a polygon p = (p1, p2, . . . , pK), which is an
ordered sequence of K points pk ∈ R3, as a discrete curve
representing a sulcal fundi. Furthermore we have an associated
sequence of weights w = (w1, . . . , wK). The weight wk :=
1/(1+ d(pk)α) belongs to the point pk whose geodesic depth
is d(pk) and we set α = 2. In the present application, the
polygon always has two endpoints and all polygon vertices are
constrained to lie on the pial surface S. We want to minimize
the discrete version of the energy (1) under the nonlinear side
condition that the polygon p is constrained to S. The discrete
energy E(p) is given by

E(p) =
K∑

k=1

wk‖∆2pk‖2, (2)

where the second difference vector is given by

∆2pk := pk−1 − 2pk + pk+1, (1 < k < K), (3)

and we set ∆2p1 = ∆2pK = 0. We collect all second
difference vectors in a second difference polygon of length
K,

∆2p := (∆2p1,∆2p2, . . . ,∆2pK). (4)
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0 5 10 15 20 25 30 35 42.4
Fig. 9. All automatically extracted sulcal fundi illustrated as thick 3D curves
for the brains of Fig. 2: Front and top view. The color visualizes geodesic
depth in mm as indicated by the color bar. To better see all fundi curves we
do not show the pial surface.

We define qk := wk(pk−1−2pk+pk+1) for 1 < k < K. Using
this notation the gradient ∇E(p) of the energy function E(p)
can be written as

∇E(p) = 2(q2,−2q2 + q3, qk−1 − 2qk + qk+1,

qK−2 − 2qK−1, qK−1), (5)

where k = 3, . . . ,K − 3. To compute the optimal stepsize s
for the current descent direction q = −∇E(p) we note that
the energy function E(p+ sq) for p and q fixed is a quadratic
function in s. Thus a simple calculation leads to the optimal
choice of s,

s = −〈diag(w)∆2q, ∆2p〉/〈diag(w)∆2q, ∆2q〉,

where the second difference polygon ∆2p is defined in (4)
and ∆2q is defined completely analogous; 〈·, ·〉 denotes the
standard scalar product in R3K and diag(w) is a block
diagonal matrix whose non-zero entries are taken from the
weight sequence w.

Geometrically we interpret the gradient ∇E(p) as a se-
quence of vectors v1, . . . , vK that are attached to the points
p1, . . . , pK of our polygon. Since we want to minimize the
energy of the polygon p under the nonlinear constraint that p
lies on the surface S, we project the vectors vk into the tangent
spaces of S at pk. Given two unit length basis vectors ak, bk

of the tangent space at each point pk, the projected vectors
are vT

k := 〈ak, vk〉ak + 〈bk, vk〉bk.
Now the polygon for the next iteration step is obtained by

projecting the points pk + svT
k back onto the surface S. For

those points that shall be kept fixed we simply set vT
k := 0. In

Fig. 10 we compare typical fundi polygons before and after
smoothing. For better comparison we only show the vertices
of the polygon.

III. EXPERIMENTS, DATA ANALYSIS AND EVALUATION

We evaluated the validity of our algorithm via comparison
with sulcal fundi delineated by two expert raters (“the validity

e

s

"!
# 

"!
# 

Fig. 10. Surface constrained sulcal fundi smoothing illustrated for typical
fundi: Black dots indicate the points of the fundus polygon after extraction
(e) and after smoothing (s). Note for example the regions inside the circles.

experiment”) from six subjects, and tested the reproducibility
of the algorithm by measuring the distance between sulcal
fundi extracted from two separately acquired image volumes
from the same subject (“the reproducibility experiment”). In
both cases, we also quantify the fraction of the discrepancy that
may be attributable to inaccuracies or variance in the extracted
surface inputs to the fundus detection algorithm.

A. Image Data

Image data for the validity experiment consisted of MR
volumes of six normal adult subjects acquired at the Montreal
Neurological Institute and provided to us by Dr. Alan C.
Evans. Image data for the reproducibility experiment, provided
to us by Dr. Roger Woods, consisted of a pair of MR volumes
from the same adult subject acquired in two different scanning
sessions using two different MR pulse sequences (see [26]
for further detail). All images were T1 weighted (1.5T) with
spatial resolution of 1.0 mm3. Triangular mesh surfaces as
well as splines representing the fundi of all detected sulci
were extracted by our automated algorithm for both cortical
hemispheres of all eight image volumes. The same processing
and parametric details described in Sect. II (Methods) were
used in each case.

B. Validity Evaluation of Our Algorithm on Six Subjects

For the six brains that we used for validity evaluation, the
extracted pial surfaces consist of an average number of 392455
triangles per hemisphere with a standard deviation of 10047.
On average the area of the outer hull surface compromises
37.1% of the area of the pial surface (with a standard deviation
of 0.0061%). The maximum geodesic depth of the sulcal
regions assumes for the six brains a mean value of 38.36 mm
with a standard deviation of 2.30 mm. By using a threshold
of dT = 2.5 mm the extracted sulcal regions (see Sect. II-D)
compromise a mean 66.7% of the pial surface with a standard
deviation of 0.008% (for 6 brains). The average geodesic depth
of the sulcal regions for the six brains has a mean value of
11.73 mm with a standard deviation of 0.17 mm.

As mentioned in Sect. II-D, after extracting sulcal regions,
we next find the connected components within those regions.
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Fig. 11. (Left) The 6 sulcal fundi manually-labeled by an expert anatomist
on each of the brain hemispheres for a single brain. (Right). The sulcal
fundi automatically extracted by our algorithm closest to the manually marked
voxels shown as black dots. The symbol X marks areas where the extracted
pial surface obviously is incorrect.

The average number of sulcal region components per hemi-
sphere (for dT = 2.5 mm) is 43.25 with a standard deviation
of 3.54. However, several of these components only consist
of a few triangles and are therefore not useful for further
processing. We discard all components that have less than 50
triangles which leaves us with an average number of 33.5 (and
a standard deviation of 4.03) components per hemisphere.

Note that the threshold dT is not critical for our algorithm.
By using a smaller value the fundi endpoints we find move
closer to the outer hull. A larger threshold will move the
fundi endpoints further inward and return more components
per hemisphere. However, e.g., the olfactory sulcal fundi is
rather shallow and will be missed if dT is too large. It is
interesting to note that the sulcal regions are highly connected:

• the largest component compromises an average 62% of
the sulcal regions (with a standard deviation of 12%), and

• the largest five components compromise an average 86%
of the sulcal regions (with a standard deviation of 5%).

Note that the number of components per se is not relevant
for our algorithm. However, the small number of components
that make up a large part of the human brain indicate
the interconnectedness of the sulcal regions. Our sulcal
fundi extraction algorithm preserves these connections. Our
algorithm returns a rich set of automatically-extracted sulcal
fundi which are illustrated in Fig. 9 in top and front view
as thick 3D curves, where the color indicates the geodesic
depth.

Remark. To use our automated extraction technique for
applications where two endpoints for each fundal landmark
are explicitly required, one could proceed as follows: After
our large network of sulcal fundi has been extracted and
smoothed on the pial surface, one could interactively mark
the two endpoints of as many fundi curves as needed and
then use the such chosen curves as landmarks for downstream
applications in Computational Anatomy.

Two different expert raters manually marked voxel locations
representing the fundi of the calcarine, central, olfactory,

pm

ps

pa

r

S

pm pa

Fig. 12. (Left) We compute the closest points ps of manually-labeled voxels
pm on the pial surface S, and then measure the distance r = ‖ps − pa‖ to
the automatically extracted points pa. (Right) The two images illustrate the
cortical surface in relation to the brain parenchyma, a manually-labeled point
pm, and an automatically-labeled point pa on the fundus of the left superior
temporal sulcus.

precentral, superior frontal and temporal sulci on both hemi-
spheres (see Fig. 11, left) of the six volumes featured in the
validity experiment. These six sulci were carefully chosen
to satisfy the following criteria: 1) they are present in a
recognizable, similar form in almost all adult subjects, 2)
Neuroanatomists agree on their description and nomenclature,
and 3) they are spread out over different parts of the brain.
These attributes makes these sulci particularly suitable as
landmarks relevant to intersubject brain registration.

The visualization and labeling software utilized by the raters
allowed for simultaneous viewing of each image location in
the three standard orthogonal viewing planes as well as stan-
dard image processing operations such as zoom and contrast
enhancement.

The manual labeling is carried out in the MRI volume data.
So the manually marked voxels are, in general, not lying on the
extracted pial surface. For landmark-based surface warping,
the manually marked fundi are usually projected onto the
pial surface. Thus, for comparison of our automatic results
to the hand-marked ones (see Fig. 11, right), it makes sense
to also perform this projection. In the following we denote an
automatically extracted fundus point by pa, a manually marked
fundus point by pm, and the projection of pm onto its closest
point on the extracted pial surface by ps, see Fig. 12 (left).
Then we adopt, as a basic unit of error, the Euclidean distance
r = ‖ps − pa‖.

Since the set of manually marked sulcal fundi is not
intended to be exhaustive in any sense, our basic notion of
performance for this experiment is the extent to which for
all manually labeled points pm the error r is small. Aside
from any potential shortcomings in our definition of sulcal
depth and fundal location, there are several possible other
reasons for geometric divergence. These reasons include errors
in the underlying extracted mesh surface (see the symbol X
in Fig. 13) and errors in the manual labeling (see the circled
areas in Fig. 13).

In Figure 14 we illustrate the manual fundi labeling results
with several consecutive slices of the MRI volume data for the
central sulcus. Figure 15 displays the frequency histograms of
the error r = ‖ps − pa‖ for different brains and two different
raters (experts). The histograms show that there are outliers
with large values of r up to 12 mm, although the total number
of such outliers is small. The numbers n1, n2 of manually-
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Fig. 13. Comparison of the automatically extracted fundi (thick curve) with
the manually marked voxels (black dots) for two different central sulci. Note
the different results of the two raters and that both miss the middle part marked
by a circle (which happened in all six brains we looked at). The symbol X
marks an error in the extracted pial surface.

labeled voxels pm in each of the six brains, and the total
percentages m1,m2 of points pm for which r < 2 mm are
given in the following table (the first two rows are rater 1, and
the second two rows are rater 2; the columns correspond to
the six different brains).

n1 639 663 604 578 594 611
m1 77% 83% 66% 77% 78% 70%
n2 632 639 641 577 614 638
m2 69% 62% 63% 79% 73% 73%

Following a careful examination of the automatic and man-
ual labeling results, we can conclude that most of the errors
arise for one of two reasons:

(1) An erroneous manually-labeled point. The sulcus pen-
etrates deeply into the brain, and the fundus is difficult to
visualize on the traditional three orthogonal planes. In Fig. 12
the automatically-labeled point, which lies on the fundus, is
approximately 8 mm away from the manually-labeled point,
which lies above the fundus. Clearly our automatic algorithm
outperforms the manually-labeled one in this case.

(2) The sulcus is extremely curvaceous, and the manually-
labeled points are not contiguous because of the difficulty of
identifying the sulcus on the three orthogonal planes. This
is illustrated in Fig. 13, where we visually compare the
automatically extracted fundi of two different central sulci to
the manually obtained results by two different raters. If the
sulcus is perpendicular to the plane of section, the manually-
labeled points are quite accurate; however, if the sulcus is
parallel to the plane of section (see Fig. 14), the manually-

11111111111111111 22222222222222222 33333333333333333
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Fig. 14. Manual labeling of the central sulcus fundi in 6 consecutive slices
of the original MRI volume: If the sulcus is parallel to the plane of section,
manual-labeling may miss points in the areas indicated in Fig. 13.
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Fig. 15. The histograms of r = ‖ps − pa‖ for three different brains. The
horizontal axis is r and the vertical axis is the number of fundus points. The
two rows show the results for the same brains for two different human raters.

labeled points may be far from each other in three dimensions.
For the central sulci of Fig. 13 this is especially true for the
curvaceous middle part which both raters miss consistently.

To give a more detailed analysis per major sulcal fundi
we give the results of our comparison in the next table. The
mean values per major sulci are taken over six brains for two
different raters. We denote by n̄ the mean of the number n
of handmarked voxels per sulcal fundi, by r̄ the mean of the
distance value r, and by m̄ the mean of the total percentage
of voxels for which r < 2 mm. Further, by σ(·) we always
denote the corresponding standard deviation.

calc. cent. olfa. prec. supe. temp.
n̄ 54.5 63.5 45.7 15.5 48.4 82.0
σn 4.2 3.8 4.3 4.0 10.9 10.0
r̄ 1.0 1.1 1.0 1.8 2.5 2.4
σr 0.4 0.4 0.4 0.9 0.8 0.6
m̄ 86% 86% 87% 63% 52% 55%
σm 9% 9% 9% 28% 19% 11%

The results suggest that it is more difficult to manually mark
the precentral, superior frontal, and temporal sulcal fundi, than
it is to manually label the calcarine, central, and olfactory
sulcal fundi. Figure 16 shows overlaid axial projections for
extracted fundi from six different brains as given by two raters
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Fig. 16. (Left and middle) The 6 sulcal fundi manually-labeled by two expert
anatomists overlaid for six different brains: calcarine A, central C, olfactory
O, precentral P, superior frontal SF, temporal T. (Right) All automatically
extracted fundi overlaid for six different brains.

and our automated procedure. Note that the raters’ explicit
task was to label voxels corresponding to only six named
sulci per hemisphere and this task required approximately
12 hours per brain volume, while our automated procedure
returns spline curves for all locations that correspond to our
geometric/algorithmic definition of sulcal fundi.

To conclude, our detailed examination of individual cases
of high divergence between the automatically and manually
labeled fundi, showed that these cases are generally due to
either errors in the surface mesh extraction or errors in the
manual labels, not in the automatic fundal extraction procedure
we propose. The automatically extracted fundal curves are
similar to the “gold-standard” fundal outlines defined manually
by the anatomist. If the extracted pial surface is correct, then
the automatic results look more accurate than the manually-
labeled ones.

C. Reproducibility Evaluation of our Algorithm
The image volumes for the reproducibility experiment were

rigidly aligned prior to surface extraction using the methods
described in [26] so that the coordinates of their extracted
surfaces and sulcal fundi would be directly comparable in a
common Euclidean frame. For the result below we use an
MPRAGE image from session 1 and an SPGR image from
session 2. We name the extracted surfaces s1 and s2, and the
automatic-labeled fundal curves f1 and f2 respectively. For
each point p1 on the fundal curve f1, we look for the nearest
point q2 on the surface s2 and the nearest point r2 on the fundal
curve f2, and vice versa, see Fig. 17. We compute distances
d1 = ‖p1−q2‖, d2 = ‖p1−r2‖, d3 = ‖p2−q1‖, d4 = ‖p2−r1‖
and differences δ1 = |d1 − d2|, δ2 = |d3 − d4|. The mean µ
and standard deviation σ of di and δj are given in the table
below:

d1 d2 δ1 d3 d4 δ2

µ 0.405 0.913 0.508 0.464 0.959 0.495
σ 0.327 1.061 1.002 0.474 1.251 1.176

We see that corresponding fundal curves extracted on two
different surfaces of the same brain are on average less than
1 mm away from each other. The fundal curves on one surface
are on average about 0.4 mm away from the other surface.
Thus we conclude that our algorithm gives promising results
concerning reproducibility with an average deviation from the
surface displacement of less than a pixel.

s1

f1

p1
q2

r2

s2

f2

p2
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f1 f2

Fig. 17. (Left) Distances d1, . . . , d4 measured between fundal curves fi

and surfaces sj for the reproducibility example (see text for details). (Right)
All fundal curves f1 and f2 of the same hemisphere extracted using surfaces
s1 and s2.

IV. RELATION TO PREVIOUS WORK

Previous work on automatic sulci extraction have made use
of both voxel-based and surface mesh-based representations
of cortical sulci. Voxel-based approaches possess a simplicity
advantage by being closer to the image and its initial tissue-
classified representations, but suffer the important representa-
tional disadvantage that a 1 mm3 grid cannot simultaneously
represent accurate cortical topology and pial surface location.
This is because the CSF channels separating distinct, but
spatially opposed gyri, are often an order of magnitude thinner
than 1 mm. Other advantages of surface-based representations
include their greater suitability for 3D visualization and the
fact that they do not require an additional algorithmic stage to
transform them to surface-based landmarks for surface-based
warping applications. In contrast to the latter point, note that
surface-based landmarks typically maintain their identity as
coordinates within the image volume (i.e. they can still be
used to guide volumetric warping).

Previous approaches to sulcal fundi extraction can be
roughly divided into two distinct approaches: those based on
curvature and those based on distance functions. Curvature
based approaches define sulcal fundi as curves lying within
areas of the extremal mean or principal surface curvature,
whereas distance based approaches define them as curves
whose distance to a hull bounding the cortical surface is locally
maximal in the plane that is transverse to each given point on
the curve.

Previous curvature based approaches are only semi-
automatic: two or more end points of a sulcus are manually
defined, and then a curve connecting these points lying within
areas of extremal mean or principal surface curvature is com-
puted. The proposed methods that follow this approach are,
for example, dynamic programming [27], weighted geodesics
computed by fast marching methods on triangular meshes [28],
or fast marching methods on implicit surfaces [29]. Tracing
in principal curvature directions has also been proposed in
the volumetric setting [30] and in the parameter domain of a
conformal parametrization [31].

Distance-based approaches often compute medial sulcal
ribbons using the volumetric regions that result from sub-
tracting WM, GM, and ventricular labeled voxels from the
bounding hull volume. They define the fundi as the deepest
boundaries of these surfaces [32], [20], or as the projection of
these boundaries onto a triangle mesh representing the cortical
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surface [33]. Previous work that combines curvature- and
distance-based computations are semi-automatic algorithms
that compute fundal curves using a modified fast-marching
algorithm on triangular meshes [34] or on a flat map of the
cortical surface [35].

Distance-based computations are generally more stable than
curvature-based computations due to the perturbation damping
properties of the L2 distance norm and perturbation amplifying
properties of differential operators typically used in computing
curvature. Our method, based on distance computations, can be
expected to yield robust results. This is of significant concern
for this application domain because current technologies for
surface mesh extraction necessarily operate on noisy, under-
sampled MRI images of the geometrically convoluted human
cortex, and as such are highly unstable [36].

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we proposed a geometric approach for the
automatic extraction of sulcal fundi. This approach provides
a novel definition of fundal depth and extracts the fundi as
curves lying on a triangular-mesh representation of the pial
surface. Extraction of the curves directly on the pial surface
is useful for downstream applications that employ sulcal
fundi as anatomic landmarks for surface-based intersubject
registration. Our validation and reproducibility experiments
demonstrate that the algorithm is robust, stable, and consistent
with anatomical theory. Detailed examination of the results
showed that errors in the extracted surfaces our algorithm
takes as inputs probably account for large fractions of its error
and variance. Because our fundal extraction algorithm can
work with any closed mesh representing the cortical GM/CSF
surface (modulo file format transformations), overall algorithm
performance should benefit from future improvements in sur-
face extraction algorithms and underlying MRI technology.

Another strategy of some interest is to produce fundus
like landmarks on meshes representing the parallel GM/WM
surface. While it is less appealing for anatomical visualization,
the GM/WM surface has the advantage of being an easier
target for automated surface extraction because its discrete
voxel based topology is much less ambiguous. Results of a
preliminary investigation into the applicability of our algo-
rithm (with some modified parameter values) to estimation of
fundal curves on the GM/WM surface are illustrated in Fig. 18.
Preliminary analysis reveal strong parallelism between corre-
sponding fundi from GM/WM and GM/CSF based surfaces.

Future research directions to be pursued include the exam-
ination of the utility of our extracted fundi and sulcal depth
measurements for landmark and dense/iconic approaches to
surface-based brain warping (of both GM/CSF and GM/WM
surfaces) as well as algorithms for automatic naming/detection
of cortical landmarks. Another important direction is to test
the overall suitability of the algorithm, with possibly modified
parameter values, for different types of brains (i.e. children
and non-normals).
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