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Abstract has an interpretation, e.g. as ‘curvature concentrated in a vertex’,

or ‘integral of curvature over a face’. This measure-theoretic in-
Differential invariants of curves and surfaces such as curvatures andterpretation of curvatures should not be confused with the integral
their derivatives play a central role in Geometry Processing. They invariants of the present paper.
are, however, sensitive to noise and minor perturbations and do not . . )
exhibit the desired multi-scale behaviour. Recently, the relation- OUr approach to the numerical problems inherent in the computa-
ships between differential invariants and certain integrals over small tion of higher order differential invariants of noisy geometry is the
neighborhoods have been used to define efficiently computable in-following: For given 3D data, we integrate various functions over
tegral invariants which have both a geometric meaning and useful SUitable small kernel domains like balls and spheres, which yields
stability properties. This paper considers integral invariants defined intégral invariantsassociated with each kernel location. These in-
via distance functions, and the stability analysis of integral invari- Variants turn out to have a geometric meaning and can be used as
ants in general. Such invariants proved useful for many tasks whereCurvature estimators. This method has been initiated by [Manay
the computation of shape characteristics is important. A prominent €t & 2004] and [Connolly 1986] and is also the topic of [Yang
and recent example is the automatic reassembling of broken object<et &l- 2006; Pottmann et al. 2007].

based on correspondences between fracture surfaces. The following properties of curvature estimators are important:

Keywords: geometry processing, curvature, integral invariant, sta- e Robustness with respect to noise, including discretization ar-

bility, 3D shape understanding tifacts;
. e Multi-scale behaviour, i.e., adaptability to the choice of reso-
1 Introduction lution.

Local shape analysis of curves and surfaces usually employs con-Integration, which is an essential ingredient in the definition of in-
cepts of elementary differential geometry like curvatures (see e.g. tegral invariants, has a smoothing effect and achieves stability and
[do Carmo 1976; Porteous 2001]). Likewise, global shape under- robustness without the need for preprocessing.

standing benefits from differential geometry concepts like principal . . . .
curvature lines or crest lines (see for instance [Alliez et al. 2003; '€ Present paper studies robustness aspects of integral invariants,
Hildebrandt et al. 2005; Kim and Kim 2005; Ohtake et al. 2004: 25 well as integral mva_rlants relatec_i to distance functions. _Thus
Yokoya and Levine 1989]). However, the actual computation of we estabhsh the theloretlcal explanatlon of robustness properties en-
curvatures for real data, given as triangle meshes or voxel grids, iscountered in numerical experiments and geometry processing algo-
a nontrivial task, because numerical differentiation is sensitive to thMs. For the volume descriptor and similar invariants the rela-
noise. A standard method to deal with rough data is denoising and ion t0 shape (i.e., curvatures) have already been established; we
smoothing prior to numeric computation. These techniques come N€re Present this analysis for geometry descriptors based on dis-
in two categories: Global methods which employ appropriate geo- {@nce functions.

metric flows (cf. [Bajaj and Xu 2003; Clarenz et al. 2004b; Osher

and Fedkiw 2002]) and local ones, which use approximation by 1A Prior Work

smooth surfaces (cf. [Taubin 1995; Cazals and Pouget 2003; Gold-

feather and Interrante 2004; Ohtake et al. 2004; Razdan and BaeThe first to introduce integral invariants were [Manay et al. 2004].
2005]). We especially want to mention the method of tensor voting One example is tharea invariantsuitable for estimating the curva-

(cf. [Tong and Tang 2005]). Semi-differential invariants in the sense ture of a curve: at a pointp, wherec is assumed to be the boundary

of [Van Gool et al. 1992] are a way of avoiding higher derivatives of a planar domairD (see Fig. 1, left): Consider the circular disk

by combining reference points with first order derivatives. B (p) of radiusr and centep, and compute the are#.(p) of the
intersectionB,-(p)ND. The relation betweed.,.(p) and the curva-

;

An alternative approach to differential geometry for meshes is to
employ an exact theory of discrete analogues of differential quanti-
ties, instead of numerically approximating the smooth theory. This
area of research, which could be called discrete differential geom-
etry in a narrower sense, has been investigated for a long time, and
many results have been achieved — see e.g. work by [Aleksandrov
and Zalgaller 1967], [Cheeger et al. 1984], [Pinkall and Polthier
1993], [Bobenko and Pinkall 1996], [Polthier 2002], [Meyer et al.
2002], [Cohen-Steiner and Morvan 2003], [Bobenko and &abdar
2005]. It is possible to deal with noisy data using such discrete
theories, as shown by [Hildebrandt and Polthier 2004], [Rugis and
Klette 2006], and [Rusinkiewicz 2004]. However, handling noisy
data appears to be neither the main strength nor the original intentFigure 1: Examples of simple integral invariants for planar curves
of an entirely discrete theory. which are defined by means of disks+ B and circlesp + rS
centered in a poinp. The area invariant (left) is the surface area of
the intersection of the digk -+ r B with the domainD, whereas the
Connolly function (right) is the perimeter of the &g + rS) N D

to appear in Computer Aided Geometric Design divided byr.

Typically a discrete theory of curvatures associates them to vertices
or edges or faces in a mesh, and such a discrete curvature ofte




ture yields a way to estimate curvataescaler, because features 2 Basics

smaller than- hardly influence the result of computation. Manay

et al. show the superior performance of this and other integral in- o Notation and definition of integral invariants
variants on noisy data, especially for the reliable retrieval of shapes

from geometric databases. In this paper we assume that a curvéRihor a surface irR? is the
o . ) . ) boundarydD of a domainD in R", with n = 2, 3, respectively

A similar invariant appears in earlier work (see Fig. 1, right): The (|ocally, this is always the case, so this is no actual restriction). We

angle of the circular ar6B..(p) N D has been used by [Connolly  rite 1, for the indicator function of that domairni:p (x) = 1 if

1986] for molecular shape analysis. If we multiply this so-called  the pointx is contained inD, and1p (x) = 0 otherwise.

Connolly function by the kernel radiuswe obtain the length of the

circular arc, which happens to be the derivative of the area invariant B denotes the unit ball, angl + B denotes the ball with radius

with respect to the kernel radius. and centep. In R?, such a ball is actually a disk, but we use the
same notation regardless‘ of dimension. Further, the unit circle of

The extensions of area invariant and Connolly function to surfaces R” and the unit sphere & are denoted byg. S is the boundary

in three-space are straightforward. One arrives at the volume de-0f B- The symbolp + rS denotes the sphere or circle with center

scriptor, whose relation to mean curvature is derived by [Hulin and P and radius-.

Troyanov 2003], and which is used by [Gelfand et al. 2005] for

global surface matching. Its derivative with respect ts the sur-

face area of the spherical pat@#B, (p) N D (see [Connolly 1986]).

The precise relation between these integral invariants on the one

hand, and the curvature of planar curves and the mean curvature on

surfaces on the other hand, has been derived by [Cazals et al. 2003]. I-(p) = /Q(X)w(p —x)dx, I;(p) = /Q(X)w(P —x)dx, (1)

p+rB p+rS

In many cases, integral invariants, evaluated at the boundary point
p of a domainD, have the form of one of the two following convo-
lution integrals:

Principal component analysis of the domai (p) N D is done

by integrating coordinate functions and their products over that do- whereg is a function associated with the domain (e.g., its indica-
main. Therefore also principal moments of inertia and principal tor function or the distance from the boundary), anis a weight
directions of B,.(p) N D are integral invariants. A discussion of function (e.g., a constant). The symhbt has various meanings,
their relation to principal curvatures and of computational issues is depending on the domain of integration. E.g. in dimensica 3,
given by [Pottmann et al. 2007], while [Yang et al. 2006] shows when integrating over the domajn+ r B, it means a volume inte-
applications and compares this method with other ways of estimat- gral. In dimensiom = 2, when integrating ovep + rS, it means
ing principal curvatures. We also point to [Clarenz et al. 2004b; an arc length integral. In the remaining cases< 3, integral over
Clarenz et al. 2004a], who use principal component analysis of sur- a sphere, and = 2, integral over a diskyx means an area integral.

face patches for feature detection. . . .
P As an example, both the area invariant and the Connolly function

(cf. Fig. 1) have the general form of Equation (1): wedék) =

Results of a similar flavour, without the emphasis on computability 1 (x) anduw(x) = 1
D = 1.

and robustness, are the formulae of J. Bertrand and V. A. Puiseux
(1848) which relate Gaussian curvature to perimeter and area of

geodesic disks (cf. p. 127 of [Strubecker 1969]). 2B Integral invariants as functions of the kernel radius
o ) o For geometry processing applications, the multi-scale behaviour of
1B Organization and main contributions of the present an integral invariant defined by (1) is important, which means the
paper change of its value, if the kernel radiusvaries. This leads us to

consider integral invariants as univariate functions of the kernel ra-

. . . . . ius. A useful pi finformation on th functionsis th neral
Our paper is organized as follows: After introducing notation and ?ellj;ionuse ul piece ofinformation on these functions s the genera

some basic facts in sections 2 and 3, we briefly discuss integral in- d ,

variants for planar curves in Section 4. Those are mainlatea o 1r(P) = Ir(p), 2
invariantand its derivatives with respect to kernel radius and kernel ) ) )

center, respectively. The analogous but slightly more involved dis- Which follows immediately from the product formula for integrals:
cussion of the 3D counterparts, namely the volume descriptor and I-(P) = [, I;(p)dp (see [Pottmann et al. 2007]). Another im-
its derivatives, is performed in Section 5. Section 6 studies invari- Portant topic is the asymptotic behaviour when the kernel radius
ants for curves in surfaces and shows how to obtain the geodesic”” tends to zero. [Pottmann et al. 2007] give a general recipe for
curvature by integration. Invariants based on distance functions computing the first few terms in the Taylor expansioofp). In-

are the topic of Section 7 — both for surfaces and for space curves.variants which are of this type are the area and volume functionals
Section 8 analyzes the stability of some important integral invari- (See below), geometry descriptors based on the distance function
ants in the presence of noise or surface perturbations. Section ointroduced in the present paper), and quantities used in principal
is concerned with efficient computation and implementation issues. cOmponent analysis (cf. [Yang et al. 2006; Pottmann et al. 2007]).
Applications are briefly surveyed in Section 10. We conclude our

paper with Section 11, which contains pointers to future research. 2C Integral invariants as functions of the kernel center

The main contributions of the present paper are (i) new facts about When the radius used in the definition of an integral invariatp)
asymptotics expansion of integral invariants and their relations to or I/.(p) is kept constant, then this invariant is a function of the
curvature, notably those computed from distance functions (ii) a point p. Usually we are interested in the values of the invariant
thorough theoretical stability and robustness analysis of integral in- when the poinp is situated on the surface under investigation. The
variants, with a focus on the volume descriptor; (iii) methods for relations between integral invariants and geometric characteristics
computing integral invariants, especially the octree-based approachof the surface (mostly curvatures), which one is interested in, are
of Section 9B. no longer valid ifp is not contained in the surface.



Nevertheless we are interested in the behaviour of the invariant Taylor approximation of the signed distance function is given by
whenp leaves the surface. The main reason for this is that in ac- 1

tual computations we are often concerned with imprecise or quan- dist(x, ®) = = (k127 + Kox3) — 23 + O(3), (5)
tized data, and the point for which integral invariants are eval- 2

uated may actually lie at some distance from the hypothetical whereO(3) means a third order remainder term (we y§&) =
smooth surface under consideration. In order to estimate the ef-o(k) as an abbreviation of(z) = O(||x||’“) as||z|| — 0). Note

fect of these perturbations, we compute the gradient vegthr that this Taylor expansion does not contain any quadratic terms
= (3272 525 53) * Jorris 9(x)dx, and the same fof;(p). The which involvez; (cf. [Ambrosio and Mantegazza 1998; Pottmann
magnitude of perturbation is then measuredlbyp + Ap) = and Hofer 2003]).

IL.(p) + (Ap, VI.(p)) + O(2), whereO(2) denotes second or-
der terms and, ) is the scalar product of vectors. Consequently, 3C Space curves
we can give a simple estimate for the chagé. in the integral

invariant in terms of the change in the pot Approximately, A space curve(u) has several orthonormal frames associated with

AL S 1Ap|| - IV it. For the purposes of this paragraph, we assumedhsatan arc
length parameter, and a dot indicates differentiation with respect to
andb = t x h. Herex is the curvature. Furthebh = —7h,

This material is found e.g. in the monographs by [do Carmo 1976] wherer is the torsion of the curve. By rotation of the Frenet frame
or [Spivak 1975]. References for the facts on distance functions @boutthe unittangent vectowve get the class of frams, e1, e>}

quoted below are [Ambrosio and Mantegazza 1998] and [Pottmann With €1 = cos ¢h + sin ¢b ande; = —sin ¢h + cos ¢b. If we

and Hofer 2003]. choose the functiog such thatp = —7, then bothe; andé, are
proportional tot, and{t, e, ez} is called a rotation-minimizing
frame.

3A Planar curves
Now consider the ruled surfack; parametrized by (u,v) =

For every pointp of a sufficiently smooth curve we can choose  c(u) + ve;(u). By differentiation we see that the partial deriva-

a Cartesian coordinate system withas origin, such that the, tives g1 ., g1,» and therefore the tangent planef in the point

axis is tangent to the curve (the Frenet frame). With respect to suchg; (u, v) is spanned b¥(u) ande; (u). As there is no dependence

coordinates, the curve may be written as the graph of a function on v, the surface is developable. An analogous result is true for

z2 = f(z1), with f(21) = az? + Bz} + vz1 + O(2f). With the surfacell; which is defined viae,. It follows that the planes

the well known formulas = f”(1 + (f')%)~/2 for the curva- orthogonal tac are orthogonal to botf; and¥», and therefore

ture we can relate the coefficients in the Taylor expansion with the dist(x, ¢)? = dist(x, U1)? + dist(x, U)>. ©6)

derivatives of the curvatures; the result is

As the surfacel; is developable, its principal frame in the point
c(u) = gi1(u,0) is {t,e1, ez}, with e, as normal vector. By
Meusnier's theorem, the principal curvatures have the vatyes
e . kcos<{(h,ez) = kcos(¢ + 7/2) andk, = 0. For the surface
Here the derivatives:” and " of the curvature are with respect , the principal frame i§—t, ez, e;}, and the principal curva-
to z1. Forz; = 0 this is also the derivative with respect to arc  tyres have the values, = « cos <((h, e1) =  cos ¢ andsz = 0.

length. If the curve is ?f lesser smoothness, this Taylor expansion Thijs information will be useful when computing distance functions.

terminates not wittD (x?), but earlier. Because we need it later, we
record in this place the coordinate of the intersection paifitand
¢, of this curve with the circlec? + 22 = r? (see Fig. 2)«c; =

2 K _Kﬁ/ 1" . . ) .
(r, 57°)+ (==, 5)r’ + (==, 57)r* +O(r°). The coordinates A curvec contained in a surface has an associatdarboux frame

K K k" — 3K3
T2 = 593% + Eﬁ + Tl’il +0(=}). (3)

3D Curves in surfaces

of c¢,- are found by substituting r for  in the previous formula. {t,e2,n}, wheret is the unit tangent vector af, n is the sur-
face normal vector, and, = n x t. If the curve is traversed

3B Surfaces with unit speed, thet = rgex + knn, &2 = —kKyt + 74n,
andn = —k,t — 74e2. The coefficient functions:y, kn, 74

Next, we discuss coordinate systems for surfaces. For every pointWhiCh occur here are the geodesic curvature, normal curvature,
p of a sufficiently smooth surface there is a coordinate system and geodesic torsion of the curvew.r.t. @, respectively. In this

with p as origin, such that the surface can be written as the graph Place we would like to mention the famous Gauss-Bonnet formula:
of a function For a closed curve with interior D C ®, we have the identity

§ kg = 2r — [ K(x)dx, with K as the Gaussian curvature of

the surfaceb.

x5 = - (K12} + Kow3) + R(21, 22), (4)

N | =

wherek, k2 are the principal curvatures of the surface in the point 4  Simple invariants for planar curves

p, and the remainder teri(z1, x2) is bounded byR(x1, z2)| < o _
C - (v/22 +22)%, i.e., itis of third order. Mean curvaturdl and 4A  Area invariant and Connolly function

Gaussian curvatur&’ are defined by = 1152 K = ki k. If
the surface is the boundary of the domdm we assume that the
positivexzs axis points to the inside @b, so that a convex domain
gets nonnegative curvatures. Tdlistanceof a pointx € R3 from
the surface can be given a sign, depending on whetlemnside D
or outside:dist(x, ®) > 0 <= x ¢ D. Recall that the distance, A o 1 d 7
signed or not, fulfills the eikonal equatidfVdist(x, ®)|| = 1. A r(p) = - p(x) dx. )

Given a planar curve which occurs as the boundary of the planar
domainD, and a poinp € ¢, [Manay et al. 2004] define therea
invariantas the invarianf,. according to Equation (1) with = 1p
andw(x) = 1 = const., i.e.,



@ (b)

© (d)

Figure 2: Deriving the gradient of the area invariant. (a) The pwint
is moved towardg + d. (b) This is equivalent to moving the curve
c in the opposite direction. (c) The area difference is highlighted.
(d) The apparent lengthy of the chorde,” — c,” when viewed in
directiond contributes to the area difference.

A, is the area of the intersectidn N B,.(p) of the curve’s interior
and the kernel dislB,.(p). The perimeter of the circular af N
(p + rS) defines the invariant

AT (p)a (8)

CA,(p) ::/ 1p(x) dx = —

p+rS dr
(see Fig. 1). The differential relation follows from (2). The name
“Connolly function” is given toCA,(p)/r. It has been shown by
[Cazals et al. 2003] that there is the Taylor expansion

CA, = r — rr® 4+ O(r®). 9)

By integrating (9), we get
T 2

A, =
2

gr?’ + o). (10)
This is a more precise estimate thap ~ r* arccos(rx/2), which
was given by [Manay et al. 2004], in the sense that these two ex-

pressions have different Taylor expansions as 0.

It is worth noting how the behaviour of both the area invariant and
the Connolly function changes if the curve under consideration is

not smooth. Of course, formulas (9) and (10) are useless. Sup-

pose that the curveis still smooth, but consists of two curvature
continuous pieces joined together at the paqintlf left and right
limit curvatures have values_ andx_, then Equation (9) is obvi-
ously still valid, with the arithmetic mean of the left and right hand
curvature instead of. If the curve is not even smooth, but piece-
wise smooth with an opening angledifferent from 180 degrees,
then the perimeter of the circular arc which lies inside the curve is
shortened or lengthened accordingly, and we arrive at

CA, = ar — B2 4 o3, 11)
A =5 — %1«3 Lo, (12)

where the second equation is found by integrating the first one. The

casen = 7w andk_ = k4 = k Yields the smooth case.

4B The gradient of the area functional

Following the general discussion of Section 2C, we are interested Ve =

in the change of the area invariafit (p), if the pointp varies. We

pick a directiond and consider,.(p + d). Figures 2.(a)—(d) show
the change in area inflicted by the chang@inMe have

Ar(p+d) = Ar(p) = La - || + O(d]|*),  (13)
whereLq is the apparent length of the curve segment(p + r B)
when viewed from direction (see Fig. 2).

Denote the two points of intersection of the cirglet- .S with the
curvec by ¢, ¢;f, and consider thehord vector

c-(p)=c¢ —c;. (14)
With the symbolc for a rotation about 90 degrees, the apparent
length L4 of the curve segment visible in Fig. 2 is now expressed

asLa = (c;, 1gy)- This leads to the following theorem:

Theorem 1 The gradient of the area invariad,-(p) with respect
to p is obtained by rotating the chord vector about 90 degrees. The
gradient and its norm are expressed by

+

= (c]

VA, =cy )+

; (15)

().

—cy
2
K™ 3
—r°+0

IvA- @)l =2r - %

(16)

Proof. The discussion preceding the theorem implies that the
change in area iA A, (p) = (c;,d) + O(2), so the area gradient
equalsc;-. For the computation dfVA.|| = || — ¢, || we use
the Frenet frame associated with the pgirdnd the coordinates of
¢ andc;, given by Section 3A: We get
cr = 2r — kPP /A+ 00, o) a7
and compute the norm of the gradieniie:|| = ||c|| = [(2r —
K23 /44 0(r")? + O(r®))"? = 2r[1 — k212 /4 + O(r*)]Y/? =
2r(1 — x*r? /8 + O(r")), by the binomial series. O

The proof of Theorem 1 shows a phenomenon which occurs often
when computing with Taylor expansions: The coordinate of the
vector ¢, is known up to third order, whereas thg coordinate

has only the general ter® () there. It would appear that we
cannot compute the norm up to third order at all. Nevertheless, the
computation shows that the third order term in thecoordinate is
irrelevant.

5 Simple invariants for surfaces

5A The volume and surface area descriptors
3D counterparts of the invariant,. (p), CA.(p) are thevolume

descriptorV,.(p) and thesurface area descriptafA..(p) of a point
p on the boundary surface of a domdn

Vi(p) = / o9, (18)

dvi(p)

dr (19)

SA,(p) = /+»s 1p(x) dx

The relation of these quantities to mean curvature is discussed in
[Hulin and Troyanov 2003] and [Pottmann et al. 2007]:

2 3 mH 4
-7 = —r

3 1 SA, = 2mr® — nHr® + O(r").

(20)

+0(r%,



Ara reference plane

Figure 3: The apparent areb. 4 enclosed by a space curyp +

rS) N ® when seen in direction of the vectdris found as area
enclosed by the planar curve which arises when projecting the given
space curve onto a reference plane orthogonal.toThe area is
endowed with a sign, depending on the orientation of the boundary
curve. With the area vecter,., we haveA, 4 = (a.,d/||d||).

The normalized sphere area descripfdr. /r* has been introduced

by Connolly [Connolly 1986] for molecular shape analysis. For an
application in the same field it has been studied by [Cazals et al.
2003].

Equation (20) can be used to estimate the mean curvature. We de

fine the mean curvature estimatdfs (p) andflr(p) at scaler by
deleting higher order terms in the Taylor expansions in (20):

8 4V, (p)

3r

2 SA:(p)

H.(p) = H.(p) = (21)

wrd r w3
In the limitr — 0, both H,.(p) andfh(p) tend to the actual mean

curvatureH (p).

Like in the curve case, we would like to study the behaviour
of the volume descriptor for surfaces which are only piecewise
smooth and piecewise curvature-continuous. Consider a point

¢ = ® N 9B,-(p) onto any plane which is orthogonal &b Let
c-(u) be a parameterization of this curgg on the spherés? (p).
We consider it@rea vector

1 1
dx = =
%CXX X 2

2 /.

/cr(u) X € (u) du.

1

a,(p) (23)

It is well known that the apparent areh. 4 can be expressed as
Ara = (a-(p), 1), which leads taAV;.(p) = (a,(p), Ap) +
0(2).

> idll

Theorem 2 The gradient of the volume descriptof(p) with re-
spect to the poinp is the area vecton, (p), whose definition in
terms of the intersection cun&n (p + r.5) is given by Equation
(23).

VV.(p) = ar(p). (24)
If n(p) is a unit normal vector of the surfadein the pointp, which
points towards the inside of the domdin then the area vector has
the following Taylor expansion:

Jn@)+06). (@5

Proof. Equation (24) follows directly from the discussion preced-
ing the theorem. In order to investigate the behaviompffor

r — 0, we express the intersection cumein the principal frame
associated with the poins, and we employ cylinder coordinates
(p, ¢, x3), such thatz; = pcos¢p, xz2 = psing. The point

of the curvec, which lies in the plane) = const according to
(4) is found by intersecting the curves L(k1(pcos ) +
k2(psin¢)?) + O(p®) with the circlep? + 25 = r. From the
coordinates ot (r) in Section 3A we read off that this point in
cylinder coordinates is given hy(¢) = r — £x3(¢)r® + O(r?),
z3(¢) = 2rn(@®)r® + O(r®), wherer,(¢) = ri1cos®¢ +

k2 sin? ¢. When we return to Cartesian coordinates, we get a point

c-(¢) of the intersection curve, and the area vector is computed
2

J 1p(¢) cos ¢, p(¢) sin ¢, z3(9)]" x

1

2

by integration:a,(p)

25 [p(0) cos &, p(¢) sin ¢, z3(¢)]". Carrying out this integration
yields Equation (25). d

at a sharp edge, where two smooth surface patches meet. The open-

ing angle of that edge shall he In the smooth case (no edge),
a = . Clearly, the Taylor series of the volume descriptor starts
with 2ar5/3, but the higher order terms are not so obvious. A more

6 Invariants for curves in surfaces

detailed analysis shows that the curvature of the edge relative to theggction 4A dealt with the area invariant for a planar curvehich

adjoining surfaces is irrelevant for thé term, and that the volume
descriptor has the fori. = 227% — %7’4 +0O(r®). Here

H* andH ™ are the mean curvatures to either side of the edge. The
case of a sharp corner is more complicated.

5B The gradient of the volume functional

We are now interested in the gradievit/,.(p) of the volume de-
scriptor with respect tp. We consider the surface which is the
boundary of the domai®. As in Section 4B, we choose a direc-
tion d and investigate the differendé.(p + d) — V;-(p). The 2D
counterpart of this analysis is illustrated by Fig. 2: the difference of
volumes is given by

Ve(p +d) = Vo(p) = Aralld| + O(Id["),  (22)
where A, 4 is the apparent oriented area of the surface p&tch
B, (p) when viewed from the directiod. This area is the same

arises as the boundary of a domdh The area invariant, (p)
means that part ab whose distance frorp does not exceecl

The same question can be asked if both the donfaiand its
boundary curve are contained in a smooth surfadeWe define

A (p, ®) == Ared(p + rB) N D). (26)

Itis interesting that the Taylor expansion of this area invariant given
by the following theorem does not feature surface curvatures in its
first two terms.

Theorem 3 The area invariant of a curve contained in a smooth
surface® has the Taylor expansion
Ar(p,®) = 5r* = Zr® 4 00",

wherex, is the signed geodesic curvature of the cuev@e., the
curvature of the projection of onto the tangent plane in the point

27

as the oriented area enclosed by the projection of the closed curvep).



Proof. We use a coordinate frame wighas origin andes axis or- Theorem 4 The signed distance integré). (p) defined by Equa-
thogonal to®. Without loss of generality has the parametriza-  tion (29) has the Taylor expansioR,. = 4755 1 O(TG), Here H

. . . K 15 .
tion z3 = g(z1,z2). We use the notatiory; = % and is the mean curvature of the surfagein the pointp.

p = \/x? +z3. As both thez; andz, axes are tangent @,

g1 = O(p), g2 = O(p). The surface area differential equals , I . , ,
Proof. We consider the principal coordinate frame associated with

dx = \[1+4 g% + ghdar dry = (1+ O(p*))da1 dus. the pointp and the quadratic Taylor polynomial of the signed dis-
- tance function given by Equation (5). ObviousF,. = fTB ( —

A domain D in the surface has a corresponding doma&irin the 1 2 2L O(p3) ) dx. with p = (22 +22+22)/2. The

x1, x2 plane, which arises as projection bf If the diameter ofD zot 5 (a2t +hm) +0(0)) dx, p = (witaztas)

is of magnitudeO(p?), then the area oD, which is computed as

/5 dx, obviously equaly; dz1 dza + O(p*).

volume integral ofO(p?) over a volume of siz&(r*) is bounded
by O(r®). Computation of the integrals of the functions, =3, =3
finally yields the expression fab,.. O

It follows that we can compute the area invariantp, ®) to an ac-

curacy ofO(p*), if we project the curve under consideration into ) ) )
the 1, z2 plane. The result now follows directly from Equation Note that the descriptadD,. is related to mean curvature, just as the

(10). 0 volume descriptor, which moreover is more stable (see the discus-
sion below). Figure 4 illustrates the similarity between these two
descriptors. The sphere integigl,. corresponding td,. by dif-

We notice that the last paragraph of the preceding proof shows thatferentiation has the Taylor expansiég™ r* + O(r°).
the area of the surface patén (p + rB) equals

Aq(p) = rm + O(r"), (28)

(which is e.g. Equ. (21) of [Pottmann et al. 2007]).

Remark 1 The area invariant for curves in surfaces employs those 1
points of the surface whose distance from the ppinheasured in
Euclidean space, does not exceedlVe could also ask for the points 1, D noise
whose distance, measured inside the surfacdoes not exceed 0-8 04 0-4
As it turns out, Theorem 3 remains unchanged. The reason for this
is that the area of a geodesic disk (i.e., the points at distafce
from p) differs from the area of a Euclidean disk only by a term
of magnitudeO(r*): According to the formulae of J. Bertrand and

V. A. Puiseux (see p. 127 of [Strubecker 1969]), that area has the
expansion GA= 7r* — X Kr* + O(r®). Here K is the Gaussian
curvature of the surface. We should note that the cost of computing
geodesic disks usually is too high to merit their use if all we want
to compute is curvatures.

noise
DO.S

7 Invariants from distance functions

Figure 4: Comparison of the descriptr. derived from the signed
In applications where we have access to a distance function, it (Uun-squared) distance the volume descriptarBoth are related to
makes sense to employ this function or functions derived from it mean curvature. From top lef.. for two different kernel radii;
for the definition of integral invariants. We discuss several ways to D for two different kernel radii with artificial noise added; for
do this. two different kernel radii. It is clearly visible that all descriptors try
to capture the same geometric property (in this case, mean curva-
ture), and that the effect of adding noise is almost eliminated when
choosing a bigger neighbourhood for computation. For the kernel
ball size compared to the bunny, see Fig. 5.

7A Invariants composed from the signed distance

Letdist(x, ®) be the signed distance function associated with a sur-
face®: dist(x, ®) is positive ifx lies outside the domain bounded
by ®, and negative ik lies inside. The absolute value of the signed 78 |nvariants composed from the squared distance
distance equals the distance frdnin the ordinary sense.

We employ the general method of Equation (1) to definestheed V\_/(_e now use thsquargof the signed distance funqtion for_the defi-
distance integralD,.. Letting g(x) = dist(x, ®) andw(x) = 1 nition of integral invariants. We study tisguared distance integral
leads to
D>, (p) = / dist(x, ®)*dx, (30)
D, (p) = / dist(x, @) dx. (29) p+rB
p+rB

and the corresponding squared sphere distance intéfral (p)
The relation of these descriptors to shape characteristics is de-defined by integration ovep + rS. The following theorem de-
scribed as follows: scribes their relation to the curvatures of the surface



Theorem 5 The integral invariantsD- ,.(p) and SD-,,.(p) have
the Taylor expansions

4

Day(p) = 157" = qog (M1 —#2)’r" +00%), (3D
4

SDs..(p) = ?ﬂr‘l - 115(,-;1 — k2)2r® + O(r"). (32)

Herek, andk. are the principal curvatures of the surfadein the
pointp.

Proof. It turns out that in order to derive the first two nontrivial
terms of the Taylor polynomial oDs .(p) we need to know the
Taylor polynomial ofdist(x, ®)? up to order four, which can be
obtained from a third order Taylor polynomial dfst(x, ®). We
use the principal frame associated with the p@irsind write down
a third order Taylor polynomial for the surfadg thus extending
Equation (4):

%(mx% + kows) + % Ziﬂz?) dijoxizd +O(4). (33)
We are not interested in the geometric meaning of the coefficients
dijo. The 3rd order Taylor polynomial of the signed distance func-
tion has the following general formatist(x, ®) = —z5+ 3 (k127 +
R2t3) + & o4 s digkTizhas + O(4), where the coefficients
d;j1, are taken from (33) in case = 0. This is because the zero
level set ofdist(x, @) coincides with the surface described by (33).
Once the surface is given, the coefficiedis, are known, and it
turns out that the remaining coefficiemlg. for £ # 0 can be com-
puted by requiring the eikonal equatifpWdist(x, ®)|| = 1 for the
distance function. Comparing coefficient¥ dist(x, ®)||?
yields the following expressions for the distance and its square:

xr3 =

w—s(kc%x? + m%x%)

X 1
dist(x, ®) = —x3 + 5(:‘6130% + Koxh) + D)

1 i
+ 6 Zi+j:3 dijoxlx% + 0(4),

dist(x, <I>)2 =gz QZg(HAZE? + Hgmg) - xﬁ(ﬁ%x% + m%x%)
x3

3 4

Integration over the balt B yields the formula forD; ,, and the
one for SD, ,. follows by differentiation. Note that the integrals
involving the coefficientd; ;o are zero. O

A dijoxim% + (mm% + n2x§)2 + O(5).

Theorem 5 allows to define estimatdré and k2 for the squared
difference(s; — k2)? of principal curvatures. We neglect terms of
higher order and let

2877° — 105 D2 (p)), (34)

pe

1
ﬁ(207ﬂ"4 —158D2,(p)). (35)

7C The squared distance from curves in 2D and in 3D

The squared distance function of a planar curve has properties sim
ilar to the respective function associated with a surface. Thus it is

D2 o.4

\

,0.

{
2, )&
SD2.0.5 (e

Figure 5: Geometry descriptors derived from the squared distance.
These figures illustrate the volume integréls . for two different
kernel radii, and the surface integrai®- ., for the same kernel
radii. The higher resolution in case of smaller kernel balls is clearly
visible. These descriptors estimate the difference of principal cur-
vatures.

SD20.4

Theorem 6 If ¢ is a planar or spatial curve, the squared distance
integral D2 - (p) is related to its curvatures via

2
. 2 _ E 4 KT ¢ 7
/ dist(x, ¢)*dx = " T o +O(r") or
p+rB
. 2 8t 5 KT 4 8
dist(x,c)” dx = T + O(r®),
p+rB

respectively. Here is the curvature ot in the pointp.

Proof. We use (3) as a starting point to derive a 3rd order Taylor
polynomial of the unsigned distance from the cuev@his is com-
pletely analogous to the proof of Theorem 5. Its square yields the
4th order approximation of the squared distance:

!

4
o zia3) — zo(kat + %:c3) (36)

dist(x, ¢)? ~ z3 + K*( 1

This formula is very similar to the corresponding formula for sur-
faces given above. We integrate this expression over a disk of radius
r and get the result for planar curves.

easy to repeat the discussion of Section 7B for the case of planar

curves and derive an analogue of Theorem 5. The extension of thisFor a space curvewe use (6) to express the squared distance from

result to space curves is also not difficult, as shown below. Smooth ¢ as the sum of squared distances from the developable surfaces

space curves do not separate space into two components, so the disg |, &, swept by the motion of a rotation-minimizing frame (r.m.f.)

tance from a space curve is always considered to be nonnegative. e, e,, as discussed in Section 3C. In the point under consideration,
we let the r.m.f. coincide with the Frenet frame, so that, e and



t, e, e; are principal frames fod,, ¥,, respectively, and these
surfaces then have the principal curvatu(@s0) and (x,0) (cf.
[do Carmo 1976]).

We now use the proof of Theorem 5 to get Taylor expansion of the
distances fron¥; and¥,: dist(x, ¥1)? = 23 + (odd)+ O(5) and

2.4
dist(x, U2)* = 23 — k327 + "L + (odd)+ O(5). Here “odd”
means a linear combination of term$z) 2% where at least one of
1, j, k is odd. Now (6) implies that

change ‘directly ovel’ (see Fig. 6) has the form

1
AV = / (6 —6°H + §63K)dx. (39)
v
Here H, K are the mean and Gaussian curvatures, respectively.
Note thatAV is an oriented volume, ascan be positive or neg-
ative. The formula is valid only as long as the surface offsets are
regular.

The surface ared.(p) inside the kernel balp + rB, which has
been computed in Equation (28), is used in the definitionrokan

4
: 2 _ 2 2 2,1 2 2 It
dist(x, )" = 23 + 25+ £ ( 7izz) +(0dd)+ O0). (37) perturbationd,. and amaximum perturbatiof, ax:

4

This expression is similar to (36), the only relevant difference being _ 1
thez? term. Integration over the ballB yields the desired result. or(P) = A,(p) / 4(x) dx, (40)
0 r N (p+rB)
5max = max |5(X)‘ (41)

xePN(p+rB)

8 Stability analysis

Alli iant idered in thi btained by int " Theorem 7 If a perturbationd(x) is applied to a surfac®, then
Invariants considered in this paper are obtained by integration , change in the volume descriptdt.(p) can be expressed in
rather than by differentiation, which lets us expect robust behaviour .
terms of mean curvaturé, mean perturbation.(p), and max-

with respect to perturbations and noise — at least, a behaviour which. . A
is more robust than that of quantities computed by numerical dif- imum perturbatiommax. For a zero mean value perturbation (i.e.,
ferentiation. In this section we investigate this stability problem - = 0), we have

from a theoretical perspective. Experimentally, robustness proper-

ties have been confirmed by the successful usage of curvature mea- |AV;| < 10 o (\HI +
sures derived from integral invariants in algorithms for solving the

k1] + k2]

T+ OBmax) + 0(7«)).

42
kinematic registration problem (see e.g. [Gelfand et al. 2005]), for (42)
establishing surface correspondences for 3D puzzles (see [Huangn general,
et al. 2006]), and others. 5 ~ ) —
AV, = 7°w(dr + O(dinax) + O(077)). (43)

Let us start with some general remarks. Our integral invariants (de-

scriptors) compute a value which is defined by a kernel ball and a

given surface. Mostly only thgt_p_art of the_surface which lies |n§|de Proof. The change in volume when a surface is perturbed, consists
the kernel ball enters the definition. We discuss how the descriptor 4t ihe integral (39) over the surface pateim (p + rB), illustrated

value changes if either the kernel or the surface undergoes a perturyy, Fiq. 6. left. together with the volume of the ring-shaped part
bation. Clearly instead of moving the kernel ball, one could also y 19 0 €l 00 g-shapec p

move the surface in the opposite direction, so we confine ourselves

to perturbations of the surface. Without loss of generality we con-
sider onlynormal variationsof the form

p* =p+d(p)n(p), (38)

wherep is a point on the surfacey(p) is the unit normal vector
of the pointp and pointing outside (with respect to the domaih
andd(p) is the amount of perturbation.

Figure 6: Perturbatiop™ = p + 6(p)n(p) of a surfaced and its
influence on the volume descriptor. Left: The voluh® between
surface patche& and¥*. Right: Correction volume¥.oy,.

8A Stability of the volume descriptor: Theory

Stability computations for the volume descriptor are very much re-
lated to the volume formula for a normal variation of a surface ac-
cording to (38): If¥ is a part of the surfac®, then the volume

illustrated by Fig. 6, right (correction volume). Any cross section
of this correction volume is triangle-shaped of first order. Its area is
given by ‘(baseline times height2’, i.e.,

Aa(x) = 8(x)? cotw/2 + O(5°).

Herex is a point of the intersection curve = ® N (p +rS). The
correction volume therefore reads

(44)

Veorr = ?{ %c§(x)2 cot w(x)dx + O(r?6%).

T

(45)

We want to relateV.,,r to the mean curvature ofo. For
that purpose, we note that Equ. (19) of [Pottmann et al. 2007]
gives the following parameterization of the curug c,(¢)
(pcos ¢, psin @, z), with p = r + O(r®) andz = O(r?). By
differentiating (4), we get the surface’s normal vector in the point
c(¢): n.(¢) = [—rr1 cos ¢ + O(r?), —rre sin ¢ + O(r?), 1)7.
The intersection angle(¢) between surface and sphere then obeys

sinw(¢) = —(n.(0), cr(¢))/[n-(¢)]llle-(¢[l. By some simple

computations it follows that

cotw(¢) = %(m cos® ¢ + kg sin® ¢) + O(r?). (46)

The arc length differential of the curwe.(¢) readsds

1+
O(r?))d¢. We get

21 (2
Veorr = A B (g(,‘il Cos2¢+/§2 Sin2 ¢)+O(7‘2))d¢+0()

2
< Shax - ([ma] 4+ [r2]) + O 5haa) + OG0,



Another term which occurs in the computation of the volume
change according to (39) is the integr@ 6%H. If x is at dis-
tance at most from the midpointp, thenH (x) = H(p) + O(r).
Therefore,

/ P Hdx < 62,0’ mH + O(020xr).  (47)
PN (p+rB)

We have now collected sufficient properties of the various integrals
involved to show the statement of the theorem. The total volume
change is bounded By, .,z (0 + 8% H + O(83)| + |Veorr|.

The dominant term equals the surface patch afedl + O(r?))

— (i) 9.~ is small compared to the kernel raditisand

— (ii) the estimated mean curvature radiis * is of the same mag-
nitude or smaller than.

If H is employed in feature recognition procedures, then a region
of higher mean curvature, i.e.,faature is more likely to persist
through perturbations than a non-feature. This behaviour is exactly
what is needed from a robust curvature estimator.

Remark 3 The significance of the stability inequalities presented
here lies in the fact that robustness against perturbations is quan-
tified in terms of the magnitude of the perturbation alone, without
reference to the perturbation’s derivatives.

times mean perturbation — the dominant error term being the surface

integral of H62. The latter is of order?62,,,. In case the mean
perturbation is zero, the volume change is dominated ByT> +
Veorr- Thus the theorem is proved.

Remark 2 The results of Theorems 7 and 2 agree, which is seen
as follows. The gradient vector of the volume descriptor is given
by 7r?n(p) plus higher order terms, whema(p) is the normal
vector of the surface under consideration. When evaluating the
volume descriptor not for a boundary poipt but for a pointp +

Ap, Theorem 2 shows that the change in the volume descriptor
approximately equalar®(n, Ap). The same value is also given
by Theorem 7, since the change— p + Ap is equivalent to
moving the surface by the amount&f= (Ap,n) in orthogonal
direction.

8B Stability of the volume descriptor: Discussion

Remark 4 This allows to draw a further conclusion: If a real data
set can in theory be seen as a perturbation of a much smoother
one, then the previous paragraphs apply. Therefore, the mean cur-

vature estimatorr defined via a certain kernel radiusactually
measures, with the bounds given above, the mean curvature of this
hypothetic smooth surface.

8C Stability of the sphere area descriptor: Theory

The sphere area descriptéid.. (p) is the derivative of the volume
descriptorV/,.(p) with respect to the kernel radiusand thus cannot

be expected to have the same amount of stability. One source of
instability is a possibly near-tangential intersection between surface
and kernel sphere in case of a kernel radius which is of the same
magnitude or smaller than the curvature radii of the surface.

“n

If this intersection angled” is known, the deviation of the inter-
section curve from its unperturbed state can be quantified. In the
limit » — 0, the intersection angle tends to 90 degrees, but in gen-
eral it is unknown. Nevertheless, we first consider the devialtion

In order to assess the Significance of Theorem 7 and also Theorem %f the intersection curve asdf were known. The reason for that is
which is a special case, we study the effect of a surface perturbatlonthat a bound on the maximum curve perturbadep,... leads to a

on the mean curvature estimathr defined by Equation (21).
case of a zero mean perturbation, we get

_ 4|AV,]
mr

|AH |5 =0

< (48)

51]]&){
< (FUE)PAMH] + k] + [K2] + O(r) + O(Omax))-

Therelative changen the mean curvature estimator consequently
is given by

‘Aﬁr|37‘:0 < (6nlax )2(6+O(T’) +O(6Inax)).
max(k1,k2) — T

(49)

reasonable bound on the perturbations inflicted on the sphere area
descriptor. By elementary geometry,

5e(x) = 25 1 o(5r2).

sinw

(50)

As the kernel radius tends to zero, Equation (46) together with

1/sinw V1 + cot?w implies that 6. (x) S(x)(1 +

r?

—(k1cos” ¢ + kasin® ¢)?) , whereg is the polar angle associ-
ated with the intersection poigt We conclude that

)

Note that the previous equation applies only in the limit, and that

~
~

6c,max S 5max(1 + O('f’2 (T — 0) (51)

We see that the stability expressed by Theorem 7 and Equationsthe magnitude of the quadratic terms depends on the curvatures of

(48), (49) is quite good, when we consider perturbations smaller
than the kernel radius, i. eimax/r < 1. Zero mean perturbations
occur e.g. in the form of noise, and also as discretization artifacts.

the surface.

The stability encountered here is the best for curvature estimators Theorem 8 A perturbationd(x) of the given surface causes the

so far.

In the case of a systematic component in the perturbation (i.e.,

nonzero mean,(p)), the change in the mean curvature estimator
has the following form:

37' O 6?1’1&)(
£ Olfhn)

71
—(
This shows that the descriptff is stable against perturbations of
magnitude),., if the following two conditions hold:

O(r&)).

intersection curve:,. to move sideways by an amouhix), the
mean value of which is denoted by. The sphere area descriptor
SA,(p) changes via

H
|ASA, (P)]5.0 < maimax(‘ . L+ o)+ O@emax))  (52)

ASA,(p) = 2176 (1 + O(r®) + O(8c,max))

depending on whether we have zero mean ndise<(0) or a sys-
tematic error §. # 0). Here H is the mean curvature. As— 0,
replacing the curve perturbatiod. by the surface perturbatiot
in formula (52) causesASA,. to be multiplied by a factor of mag-
nitudel + O(r?).



Proof. We consider an arc length parametrizatioris) of the in-
tersection curve:., and associate the Darboux frarfie ez, n}

8E Stability of the squared distance integral

with it (see Section 3D). As we use a coordinate system where So far we have considered stability only for invariants which are

the center of the kernel sphere is the origin, the normal vadfey
simply equals-2x. It follows thatn = ¢, i.e., in the notation of
Section 3Dk, = —1/r andry, = 0. The perturbation cause$s)
to move to the poin€(s), which has the general form

€(s) = c(s) cos ds(s) + rea(s) sinds(s),

where the amount of perturbation is not expressed in terms of chord

length (that would bé.) but rather in terms of a polar ange.
Obviously we haverds = . of first order, and we also have
d. < rds. The exact relation follows from expanding the definition
5c(s) := ||e(s) — c(s)|| and read.(s) = r65(s)(1 + O(62)).

The change in surface area now is the oriented area of the spherical AD:,-(p)

domain parametrized hy(s,v) = cosv c(s) + rsinv ez(s), for
s € [0,L,] andv € [0,ds(s)]. The surface area element can be
written as

dA = det(n, x5, X, ) dvds
= det(n,t cosv + rrgt sinv, —csinv + e2r cosv) dvds
= (rcos® v — 1’k sinv cos v) dvds

(subscripts indicate differentiation, and we have used the formu-
lae of Section 3D). It follows that the change in surface area

ASAA(p) = [1 221 4A equals
] ds

=0 Jv=0

ASA,(p) = 74 [r

Cr

_ [5 2 55 3
= rés — T ﬂgEJrO(rés)] ds.

sin 20 + 205 2

1 — cos 28,
1 rRg————

4

Here we have terminated the sine and cosine series at their quadrati

terms. The Gauss-Bonnet theorgia, = 27 — SA, /r® and the
Taylor expansiorSA, = 2xr? — mHr® 4+ O(r*) together imply
that § r*ky = THr + O(r?). As to § 8, we note that according

to Equ. (25) of [Pottmann et al. 2007], the perimeter of the path of
integration equal&,. = 27r +O(r®), and the mean valu®. is de-
fined to equal- § 6. Thus,§ ré, = § 6.(1+0(67)) = 2mr(1+
O(r*))(6c + O(82 1nax)) = 27r6c + O(ré max) + 0:.0(r%).

By summing up the cases. = 0 andd. # 0 we get Equa-
tions (52). By (51) and the discussion preceding that formula,
de.max = 0(1+0(r?)), so the statement about the limit cases 0
follows. O

8D Stability of the sphere area descriptor: Discussion

In order to investigate how good or bad the inequalities (52) are, we

now consider robustness from the viewpoint of the curvature esti-
mator H ., which is based on th~e descriptfid,.. A perturbation of
the surfaceb causes a changeH , = ASA,./mr3. Consequently,

H—l
T

‘AHT‘EZO <

AH, 5.
= 2—
H

- i

6c,max 2
(Pomm)?

+...7
(53)

1
=2

r

related to mean curvature. Fortunately, the squared distance integral
D-  which has arelation not to mean curvature, butte- -, also
exhibits sufficient stability for practical purposes. If the perturbed
surface®” is at distance< ¢ from the original surfacep, then
obviously|dist(x, ®*) — dist(x, ®)| < e. With the implication

|d—d*| <e = |d° —d™®|=|d—d*|(d+d") < e(2d +¢)

the difference of squared distance integrals with respedt &mnd
d* reads

3
<e /(2|dist(x, ®)| + )dx = 2D} + 22T

p+rB

Here the quantityD;’ is the integral of theinsigneddistance func-

tion over the kernel ball. It would not be hard to relate it to cur-
vatures, using the Taylor expansion of the signed distance function
given in this paper, and the general method, presented by [Pottmann
et al. 2007], of integrating functions over that part of a kernel ball
which lies to one side of the given surface. However, it is obvious
that the dominant term i®;" is given by the integral ofxs| over

the kernel balr B, i.e., 72"

We investigate the effect of a surface perturbation in the geometry

descriptor, which is based o ., and which estimates —rz|.
From (34) we get

105 105 /€ 4
~ (, + =
r 3

o
wr?

~ €
A(K*) ~ ADz,.(p) = ())- (64
s k estimates a difference in curvatures, it has to be compared to
he curvature of the kernel sphere, i.'. We therefore rewrite

the previous equation as

A(K?)
(0.09757)—2

de
(1+§;).

~
=~

- (55)
r

Again, we consider perturbations with« r. We see that the right
hand side is bounded in terms @fr. In contrast to the mean cur-

vature estimatorgl andﬁ, the robustness inequality farrelates
the change in the geometry descriptor to the kernel radius, and not
to the value of the geometry descriptor itself.

Another difference to the geometry descriptors derived from vol-
ume and sphere area is that here the case of zero meanheig®) (
does not lead to better robustness. This is easily explained from the
fact the perturbation inflicted on the distance field associated with
the surface essentially depends on the meajd|cdind not on the
mean of§ (see Fig. 7).

Even if we can give bounds for the effect of noise and perturba-
tions, invariants which involve the distance function are generally
less stable than those which integrate just the indicator function.

9 Computation of integral invariants

Throughout the paper we maintain the notion that the curves and

where higher order terms are not written down. These equationssurfaces under consideration are the boundary of some dabhain
show that the robustness inherent in the sphere area descriptor iShis appears to restrict discussion to closed curves and surfaces.

nominally the same as for the volume descriptor (see Section 8B).

The difference is that we use the perturbatdorof the intersection
curve instead of the surface perturbatifin Only asymptotically,
e ~ 0.

All open curves and surfaces however locally occur as part of the
boundary of some domain, so this assumption is not a real restric-
tion. Implementing the computation of integral invariants for such

‘open’ curves and surfaces does not differ in essential ways from
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Figure 7: Isolines of the distance function from a curve. Left: un- E:I
perturbed (straight) line. Right: perturbed version of curve. Appar- % |——|
ently the fact that a perturbation has zero mean does not favorably | HeAS o
influence the perturbation of the distance field. — ~1

my ain
doing the same for closed curves and surfaces, and so our discus- %l" F_
sion will be restricted to the ‘closed’ case. =

The computation of integral invariants for discrete surfaces needs Figure 8: Integral invariant computation based on an octree data
appropriate data structures for preprocessing, as well as intelligentstructure. The cubeS, Cs, Cs correspond to cases @c2b, and
ways of discretizing integrals. We approach this problem in three 2c¢3 of Algorithm 1, respectively.

different ways, each of them being suitable for certain kinds of in-

tegral invariants. These are an FFT-based method (Section 9A),

an octree based method (Section 9B), and a triangulation basedThe convolution of (56) now takes the form

method (Section 9C). We will discuss applications in Section 10.

(g+0)P) = [ 32, 60K (x— h(p — )dx

= ZJ, 9() / K(y)k(p —y — j)dy

The general form of an integral invariafit(p) as defined by (1) _ . N
can be written in convolution notation. We use the notatips for o Zj 9DE xk)(p —j) = (g % (K k))(p)-

the indicator function of the ball - B and write

9A Computing invariants with FFT

The discrete Fourier transform &f x k, which is needed here, can
be precomputed.

(x) = wx) - 1o (x) The function in the definition of the integral invariant may coin-

I.(p) = / g(x)k(p — x) = (g k)(p). (56) cide with the indicator functiot p of the domainD (in case of the
R3 volume descriptor). Knowledge of all valug$j) for integer grid
pointsj then means that the domalhis voxelized and given as an
Into this category fall the invariants,, D, Ds.,, and also the ~ ©ccupancy grid. We refer to [Gelfand et al. 2005] for more details

invariants employed in principal component analysis by [Pottmann ©n the computation of occupancy grids via scan conversion (see
et al. 2007]. An obvious way to evaluate integrai invariants would €-9- [Nooruddin and Turk 2003]). For the invariabt, the func-

be to approximate these continuous convolutions by discrete onestion ¢ is the signed distance from the surface under consideration,
and employ FFT for them. This method is also described by [Yang &nd for the invarianDs ., we use the square of that distance func-
etal. 2006]. Here we are going to show a modification of this simple tion. Distance fields can be computed in various ways; we used fast

procedure which yields a better approximation of the continuous SWEePINg (see e.g. [Danielsson 1980], [Kimmel et al. 1996], [Tsai
convolution. et al. 2003], [Zhao 2005], [Kao et al. 2005]).

When we employ FFT for computing discrete convolutions, we ac-
In our setting, functions are typically only known at grid points tually compute many more values than are necessary, because inte-
j € 73 with integer coordinateg = (j1, jo,j3), however we gral invariants are only evaluated at boundary points of the domain
‘know’ that they are smooth or have at least smooth level sets. Of D. In order to reduce computational costs, we invoke convolution
course, the continuous convolutigig can be approximated by the  not for a single bounding box ab, but for a sequence of boxes
discrete convolution defined By x g) (k) = > ;s f(i)g(k—J). which cover the boundar§D. We estimate that for box sizethe
We will not use this simple approximation, but rather define contin- cost of each convolution equats(b,r) := N(b,7)*log N (b, )
uous functions from discrete data and show to evaluate their contin-with N'(b,r) = b+ 2r. The total cost then equalS(b, r) times
uous convolution using the discrete one. Discrete convolutions arethe number of boxes, i.e., is proportionaldgb, r) /b*. Minimiz-
computed with FFT. ing this function leads to an optimal box sizetf, (r) ~ 2.28r,
which for practical purposes gets rounded up such that we apply

One way to define a continuous functigfx) from discrete data  FF T {0 @box whose size is a power of two.

g(j) is to interpolate between the grid points by letting
9B An octree based method for computing invariants

g(x) = Z g9(§) K (x —j), where (57) An advantage of the FFT method is its simplicity. Disadvantages
] are that even with an optimized box size we still compute many
K(x) = b(z1)b(z2)b(x3), b(§) = max(0,1 — [£]). values which do not interest us, and most importantly, that we can



evaluate integral invariants only at grid points. This section de-
scribes a data structure which yields a new way of evaluating inte-
gral invariants for the actual surface points.

1. Initialize C; with the root cube; lef = 0.
2. For the cube’;, perform the following computations:
2a. IfC; is outsidep + r B, do nothing.

We decompose an appropriate bounding box of the given surface 2b. Else ifC; C (p + rB), increasel by the value
into a hierarchical collection (an octree) of cubes, such that the fcv gi, which is precomputed.

functiong(z) of Equation (1) is sufficiently well approximated by 2c. Else:

a quadratic functiofy; in each leaf cube. This approach works well (a) If C; is a leaf cube, increasé by the value
if the functionw in Equ. (1) is constant. An example of such a de- T

. By Ji-
composition, with the purpose of computing the volume descriptor, (8) E?SIQ(I()';+6”B2>. for all 8 child cubes af;.

is illustrated by Fig. 8. 3. I contains the result.

Given a decomposition of space into culdgswe write the integral

of Equation (1) as follows: Algorithm 1. Computingl,.(p) based on the octree decomposition illus-
trated by Fi 8.
M, =Cnp+rB) = rafed by Fgure
I.(p) = / +y / . . -
(p) ZizC&(pH-B)( Cig) Zl M, #0, ( M;_pg) 9D Computational efficiency

C; Z (p+rB)

It is the aim of our data structure to eliminate integrals of the sec- Computation times for the bunny and dragon models from the Stan-
ond kind and adaptively decompose space such that the majority offord collection are indicated in the table.below. .Here ‘preprocgss-
computations is for integrals of the first type. This is because their ing’ for volume integrals means computing a grid structure which

values can be precomputed. Integrals of the second kind are com-Stores the characteristic function. For invariants computed by sur-

puted via the previously obtained approximatighsn each leaf face integration, a triangulation of the sphere with 13592 triangles
cubeC;. has been employed. The run times shown are for a 2 GHz PC with

] ) 2 GB RAM. For the volume integrals we have used the method of
We now describe the three main parts of our method: octree con-gg, for the surface integrals the method of 9C.

struction, preprocessing, and computation of integral invariants. We
focus on the cases= 1p (sol,(p) is the volume descriptor) and
the squared distance function. model ‘ bunny dragon

In the casey = 1p, we construct the octree using a scan conver- #t_rlar_lgles 69451 104568

sion method if9D is given as a triangle mesh (cf. [Nooruddin and  91d sizé forlp | 170 x 168 x 146 194 x 156 x 124
Turk 2003; Ju 2004]), and the method of [Frisken et al. 2000] if it preprocessing 4.6s 44s

is a point cloud. The functiop; which approximates the indicator comput!ngVT 3.85 3.75

function 1 in each cube is chosen as a constant, which indicates computingSA. | 9.7's 196s

to which extent the cubé€’; lies insideD. As cubes which con-
tain the boundary) D are very small anyway, this is a reasonable
simplification.

As to thesquared distance integrathe preprocessing stage the dis-
tance field is computed (we used fast sweeping), takes longer than
For computing integral invariants based on the squared distance, wefor the volume descriptor. In the case of the bunny (cf. the table
haveg(x) = dist(x,dD)?. In our examples, the values gfx) above), this preprocessing step needed 10s.

have been obtained by fast sweeping (cf. [Tsai et al. 2003; Zhao
2005; Kao et al. 2005]). Then we use the procedure of [Mitra et al.
2004] to determine the decomposition of space into cdljesuch

that within each leaf cub€’;, the squared distance is approximated
by quadratic functiong; .

The cost of computation of integral invariantsratiifferent scales
with the FFT method is not proportional to the cost of computing
once, but roughly proportional to the cost of+ 1 FFTs. E.g.
[Huang et al. 2006] computed integral invariants for 8 different radii
for the parts of of Fig. 10. This computation needed approximately
After the octree has been constructed, we compute the integrals ofl minute for 400 000 vertices on a 1.4 GHz PC with 512 MB RAM.
the functiong over each leaf cub€’;, using the approximation,

and then propagate these values to obtain the integrals of the func
tion g over the remaining cubes. The computatiod ,dfp) runs as

sketched in Algorithm 1. We think that integral invariants may be useful for every kind of

The different types of cubes are illustrated by Figure 8. The most computation or algorithm which makes use of shape characteristics,
costly operation obviously is to integrate the functignover the especially curvatures. Usually the computation of such geometric
domainC; N (p 4+ rB) in 2ca. This is made easier by the fact  properties via integral invariants is rather more robust with respect
that the functiongj; are actually quadratic. When computing the to perturbations and noise than other methods. For certain integral

10 Applications

volume invariant, such that this integral equals the volumé€'afi invariants this experimental result, for which we refer to [Yang et al.
(p + rB) N D, the boundary oD can be replaced by its tangent  2006], is confirmed by the theoretical investigations of the present
plane ifC; is small. paper.

A second property of integral invariants which make them valuable
for applications is that they allow to compute at a certain seale
which for the current paper is identified with the kernel ball radius.

For the computation of invariants defined by an area integral over rhg nature of computation is such that surface features smaller than
the sphere, we employ triangulations of the sphere, and take care of. ;. considered as noise and will be smoothed out.

the boundary of the spherical patch we are integrating on. This
method is described by [Yang et al. 2006] and [Pottmann et al. There are several publications which deal with applications and
2007], so we do not give details here. comparison of methods, so we will not go into details here (one

9C Computing surface integrals



Figure 9: Feature extraction on multiple scales according to [Yang
et al. 2006]. Integral invariants for several different kernel radii are
used to identify features. Darker regions are classified as features
on all scales, lighter shaded regions correspond to features extractec
at only one or two scales. At left: ravines; at right: ridges. The
integral invariants used for this figure afg(ziz;) (i, j = 1,2,3), Figure 10: Reassembling a broken brick. The top figure shows
whose properties are not discussed in the present paper. all 6 pieces, 5 of them already put together. The figures below
shows piece No. 6, with the values of an estimated mean curva-
ture derived from the volume descriptor (at left), and an estimated
of these is [Yang et al. 2006]). Figure 9 illustrates feature detection difference between principal curvatures, derived from the squared
at multiple scales: ravines and ridges are detected by computingdistance descriptor. These shape characteristics are employed in
curvatures; and that curvature computation is done by evaluating order to distinguish fracture surfaces from the smoother surface of
integral invariants defined by a certain kernel ball of radiuBea- the original object, and then to establish correspondences between
tures which persist for several valuesrofire considered to be de-  fracture surfaces for the purpose of automatic reassembling. This
tected with higher confidence than those which are only detected figure was taken from [Huang et al. 2006].
for a small number of kernel ball radii.

Another application of integral invariants in general is the compu- _ _ o ) _ ) _
tation of the network of principal curvature lines in a robust way by Regarding computational efficiency, all invariants described in the
[Liu et al. 2006]. present paper generate running times of the same magnitude.

A third and important application of integral invariants is the com- we expect further applications where integral invariants can greatly
putation of shape characteristics for the purpose of kinematic reg- improve robustness of algorithms. We would like to mention one
istration and establishing correspondences between surfaces. Suclrea of future research which seems promising, nastedpe sig-
surfaces can be partially overlapping scan data of the same modehatures They have been initiated by [Manay et al. 2004]. The sig-
—the task is then to merge these scans together in order to create dature of a planar curveis defined as set of pointd (p), I' (p)),
dataset of the entire object (cf. [Gelfand et al. 2005]). Another in- wherep € ¢, I is a certain integral invariant and is its derivative
stance where the kinematic registration problem occurs in the auto-yith respect to arc length. In order to enhance robustness, we might
matic reassembling of fragments of broken objects by [Huang et al. want to avoid a derivative, but instead employ another integral in-
2006]. For this ‘3D puzzle’ problem (see Fig. 10), each fragmentis variantI,. I, could be of the same type dsonly computed with
represented as a geometric model, e.g., as a triangle mesh, but it isespect to a different kernel ball radius. Ideally, the signature should
unknown a priori how the pieces fit together. The paper by [Huang characterize the shape within some tolerance up to rigid body mo-
et al. 2006] describes a rather involved procedure which recognizestions (or other transformations). We are not aware of any result in

fracture surfaces and finds correspondences between them in orthjs direction. Clearly, all these investigations should eventually be
der to reestablish the lost connectivity of the original 3D volume. performed for 3D objects.

This method relies heavily on the availability of independent and

robustly computable geometry descriptors. A significant number

of the descriptors involved are integral invariants described in the Acknowledgements
present paper, namely.(p) andD-_-(p), for a sequence of differ-
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