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Abstract
We study the combined problem of approximating a surface by a quad mesh (or quad-dominant mesh) which on the
one hand has planar faces, and which on the other hand is aesthetically pleasing and has evenly spaced vertices.
This work is motivated by applications in freeform architecture and leads to a discussion of fields of conjugate
directions in surfaces, their singularities and indices, their optimization and their interactive modeling. The actual
meshing is performed by means of a level set method which is capable of handling combinatorial singularities,
and which can deal with planarity, smoothness, and spacing issues.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—

1. Introduction.

Among the basic problems in freeform architecture which
pertain to geometry processing is the decomposition of a
freeform shape into a quad-dominant mesh whose faces are
planar (or as planar as required by the intended manner of
realizing that quad mesh in building construction). The ge-
ometric properties of such PQ meshes and an optimization
procedure to generate them has been investigated by Liu et
al. [LPW∗06]. Pottmann et al. took this work further and
discussed the multilayer constructions associated with such
meshes [PLW∗07]. It turns out that except for trivial cases,
triangle meshes do not support offsets at constant distance
or indeed any multilayer structure of meshes where corre-
sponding faces are parallel. This again confirms the impor-
tance of quad meshes.

PQ meshes which are the basis of an architectural design
must exhibit properties different from the mere geometric
constraint of planarity of faces. A typical constraint is that
faces are not larger than available panels of a given material,
for example glass. At the same time face sizes should not
vary much or be very small either, since that would lead to
practical difficulties when realizing such a mesh as a struc-
ture. It is therefore important to incorporate the equal spac-
ing of vertices in our design procedure.

Another issue is aesthetics, which we approach by, among
others, the discrete bending energies of the polylines formed
by the edges in a mesh. As already mentioned by [LPW∗06],

(a)

(b) δPQ,n = .051

(c) δPQ,n = .011

Figure 1: Processing pipeline demonstrated for the outer
hull of the Yas Island Marina Hotel, Abu Dhabi (Asymp-
tote Architecture, originally a nonplanar quad mesh). (a) We
start by optimizing a field of conjugate directions. (b) A level
set method yields a quad mesh aligned with this field. (c) Op-
timization for planarity of faces. The color coding shows a
normalized measure of planarity (normalized diagonal dis-
tance in quadrilateral faces; maximum value after optimiza-
tion is δPQ,n = 0.011; red color is used for values ≥ 0.01).
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the segmentation of a freeform surface Φ into quadrilateral
planar faces is a discrete version of a conjugate curve net-
work in Φ: optimization of that mesh towards planarity in
general succeeds if it follows a network of conjugate curves,
and cannot be expected to succeed otherwise. A similar re-
sult is true for segmentation of a surface into single-curved
strips [PSB∗08], which can be seen as a limit case of quad-
meshing.

Contribution of the present paper. The papers mentioned
above do not discuss the question how to design a network
of conjugate curves, except to describe the degrees of free-
dom in principle, and to emphasize that only such networks
are useful for meshing whose curves intersect transversely.
The most important example of a conjugate curve network is
the network of principal curvature lines: here the intersection
angle of curves is 90 degrees and the transversality condition
is fulfilled. In this paper we take up the design of conjugate
curve networks and treat the following topics:

• The conjugacy relation between surface tangents, which
is defined by the curvatures of the surface;

• an interpretation of the conjugacy relation in projective
geometry terms which later allows us to encode a pair of
conjugate directions by means of a single vector;

• fields of conjugate directions, and theoretical results on
the elimination of singularities of such fields;

• a method based on level sets which converts direction
fields into curve networks and subsequently into quad
meshes or quad-dominant meshes.

• optimizing meshes generated in this way towards the PQ
property.

This list of topics describes a processing pipeline for sur-
faces which we wish to represent as a PQ mesh. The last item
is not a contribution of the present paper: we use a method
similar to [LPW∗06] for that.

Related Work. There are papers on quad meshing, and also
on approximating a surface by a mesh with planar faces. For
quad meshing in general we refer the reader to the literature
cited in the introduction of [LPW∗06]. Recent work which
can create near-planar faces is [BZK09], where a cross field
is aligned with dominant principal curvature lines, and sub-
sequently a quad mesh is roughly aligned with the princi-
pal curvature lines by means of a continuous-discrete opti-
mization problem. The examples given in that paper how-
ever make it clear that planarity of faces is not intended:
the principal curvature directions are taken only as guide-
lines to achieve a good meshing. Exact planarity is achieved
by [CAD04], but here smoothness is not an issue. These
methods cannot be used for our purposes without modifi-
cation.

In this paper singularities of direction fields play a promi-
nent role; see [RVLL08, RVAL09] for directly related work.
The present paper is different from previous ones on mesh-
ing because the constraint of planarity of faces is very rigid,
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Figure 2: The conjugacy relation vT M w = 0 and the conics
xT M x = ±1 (Dupin indicatrices). If detM ≥ 0, only one of
these conics is real. If detM < 0, then v,w are separated by
self-conjugate vectors a,b which indicate the asymptotes.

and in our attempts at meshing a surface we have to exactly
follow the features of that surface which are relevant to pla-
narity. Many of these “second order” features would not be
called features in other circumstances.

It must be mentioned that there exist methods for gener-
ating PQ meshes which entirely circumvent the problem of
surface analysis: In order to approximate a desired shape Φ

by a dense PQ mesh we can first approximate Φ by a coarse
one, and subsequently apply several rounds of PQ optimiza-
tion and subdivision in an alternating way [LPW∗06]. But
even if optimization is done such that deviation from Φ is
penalized, the second order features of the original shape Φ

will be different from those of the mesh actually obtained
(this is clear from the later section on invariance of singular-
ities, for an illustration see Figure 11).

2. Conjugate Directions in Surfaces.

This section introduces the notion of conjugacy of surface
tangents which involves the surface’s second derivatives and
is defined as follows [dC76]: Any point p of a smooth sur-
face Φ serves as the origin of a coordinate frame whose x3
axis is orthogonal to Φ. Φ can locally be described as the
graph of a function x3 = f (x), with x =

(x1
x2

)
, and which has

the 2nd order Taylor expansion

x3 =
1
2

xT M x+ . . . , where M =
(

∂11 f ∂12 f
∂12 f ∂22 f

)
.

It is well known that the principal curvatures κ1, κ2 are the
eigenvalues of M, and the principal directions correspond to
the eigenvectors. The Gaussian curvature equals

κ1κ2 = K = det(M).

If tangent vectors v,w are represented as elements of R2,
then vT Mw evaluates the second fundamental form for them.
We define

v, w are conjugate ⇐⇒ vT M w = 0.

Obviously, if v and w are conjugate then so are any nonzero
multiples of these vectors and we can speak of conjugate
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Figure 3: Illustrating Prop. 1 for vectors vi and correspond-
ing conjugate vectors wi. If v rotates about the origin clock-
wise, then w rotates clockwise or counter-clockwise, depend-
ing on the sign of detM.

directions – a direction being the linear span of a tangent
vector.

The set of vectors conjugate to v is a 1-dimensional sub-
space except in the special case that detM = 0 and M v = 0.
We can visualize the conjugacy relation by means of the
Dupin indicatrices, which are conics with the implicit equa-
tion {x | xT M x =±1} (see Figure 2).

The following elementary fact is well known in projec-
tive geometry, where it belongs to ‘involutions on a conic’
[Cox92, § 7.5]. Consider the auxiliary circle

c : (x1−1)2 + x2
2 = 1

and for each line [v] spanned by a vector v consider its in-
tersection point [v]∩ c. Here we abuse notation and do not
count the trivial intersection point o = (0,0), so [v]∩ c is
always a single point. Then the following is true:

Prop. 1. Vectors v,w are conjugate, that is vT M w = 0 ⇐⇒
the points [v]∩ c, [w]∩ c and zM = 2

m11+m22

( m22
−m12

)
lie on a

common straight line. The point zM lies inside c, outside c,
or on c if detM > 0, or detM < 0, or detM = 0, respectively.

This is illustrated by Figure 3. The point zM may also
escape to infinity, in which case the formula above reads
zM = 1

0
( m22
−m12

)
. Apparently zM determines the matrix M up

to a scalar factor.

Data structure for the conjugacy relation. The proce-
dures described later in this paper require that we deal with
curvatures and the conjugacy relation in all points of a sur-
face Φ. This is implemented as follows: Φ is represented by
a triangle mesh (V,E,F). We store the necessary curvature
information in the faces, which are equipped with a local
coordinate system.

We use the method of [FSDH07] to find a nonzero smooth
“basis” vector field b (by prescribing a value in a face and
minimizing the Dirichlet energy). It is represented as a dis-
crete 1-form and is evaluated for each face f ∈ F . By nor-
malization we get the first basis vector e1, f = b f /‖b f ‖ of
f ’s local coordinate system. The second basis vector then
equals e2, f = n f ×e1, f , where n f is the positive unit normal

vector. Such a field b exists if Φ has disk topology, which is
the case for the applications we have in mind. The matrix M f
describing the second fundamental form in f is found from
its eigen-data (principal curvatures and principal directions),
using the method of osculating jets [CP03]. We further com-
pute the point zM, f according to Prop. 1.

Remark: It is well known that principal directions are nu-
merically unstable if curvatures are almost equal, but M f is
stable in any case; zM, f is stable whenever M f 6=

(0 0
0 0

)
.

3. Fields of transverse conjugate directions
(TCD fields).

In our study of conjugate curve networks we encounter the
problem of assigning, to each point p of a surface, a pair
of conjugate directions. We could do this locally by assign-
ing two vectors to each point which must obey the side con-
dition of conjugacy, but globally this is usually not possi-
ble. Besides it is better for subsequent optimization tasks if
we find a representation which avoids side conditions alto-
gether. Our way of choosing a conjugate pair of directions
is based on the matrix M which stores curvature information
and an auxiliary matrix N which expresses our choice. Actu-
ally we work with the corresponding points zM , zN instead of
the matrices M, N. This approach is based on the following
proposition:

Prop. 2. If 2×2 matrices M, N are symmetric with detN > 0,
then there are nonzero vectors v,w which fulfill vT M w =
vT Nw = 0. They are eigenvectors of the matrix N−1M.

zM

zN

v

w

o e1

This is well known in linear al-
gebra, but is also a consequence of
Prop. 1: v,w are found by intersect-
ing the line zM zN with the circle c.
This intersection surely exists if zN
lies inside c. The line zM zN is well
defined also in case zM is at infinity.
If zM is already known, then we can
store a pair of conjugate vectors v, w simply by storing zN .

The transversality condition. With Prop. 2 we can choose
a pair of conjugate directions by choosing the point zN . In
our implementation, we have such a point zN, f for each
face. We can thus view {zN, f } f∈F as a vector field. All fu-
ture optimization problems regarding conjugate directions
are converted into problems regarding the vector field zN .
One example of how properties of conjugate directions are
expressed in terms of the vector field zN is the relation

cos^(v,w)≤ ‖zN − e1‖, (1)

whose proof is elementary and follows from the fact that
2^(v,w) occurs in the vertex e1 of the triangle [w]∩ c, e1,
[v]∩ c. The meaning of this relation is that by restricting the
point zN to a smaller disk we can ensure a minimum angle
enclosed by vectors v,w. It follows immediately that zN = e1
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selects the unique orthogonal conjugate pair, i.e., the princi-
pal directions.

We use the word transverse to indicate that two lines do
not coincide, and the degree of transversality is measured by
the angle between these lines. A field of conjugate directions
which are transverse everywhere is called a TCD field.

Singularities and indices of TCD fields. The discussion
of singularities’ properties is relevant for the basic question
whether there exist TCD fields without them. The number
and location of singularities of a TCD field is of course im-
portant if we later align a quad mesh with a TCD field: Sin-
gularities of the field will become combinatorial singularities
of the mesh.

We start with the definition of index, which is illustrated
by Figure 4. Assume that D is a simply connected domain in
a surface, and that we have a continuous assignment of direc-
tions to each point of the boundary loop ∂D. When travers-
ing ∂D in the positive sense, the direction has a total rotation
angle ρD. The index indD is then defined by

indD =
1

2π
ρD. (2)

This index is always an integer multiple of 1/2. A cross field,
which is an assignment of an orthogonal pair of directions to
each point, likewise has an index (see Figure 4) which is
an integer multiple of 1/4. For more details on indices of
such fields the reader is referred to [RVLL08,RVAL09]. For
a general field of transverse directions (such as a TCD field)
we measure the index via its field of angle bisectors which
is a cross field.

0 1
2 − 1

2

1 1
4

Figure 4: The index of a field of transverse directions. The
field is shown only along the boundary loop ∂D of the do-
main under consideration; inside D we show integral curves.
We give the index indD which corresponds to a total rotation
angle 2π indD.

Def. 1. The index indp of a TCD field which is continuous
around p (with the possible exception of p itself) is the index
w.r.t. any small loop around that point. If it is nonzero, the
field has a singularity at p.

Figure 5: ‘Flying carpet’ surface, Louvre, Paris. We illus-
trate the degrees of freedom which the conjugate direction
fields enjoy. In the negatively curved areas (K < 0) we show
the sectors where elements of such a TCD field are confined
in. In areas where K approaches zero from below, one sec-
tor becomes thin and the corresponding member of a TCD
field has not much freedom to move. In the positively curved
areas (K > 0), where TCD fields can rotate freely, we draw
the major and minor principal direction as an example of a
TCD field. Singularities of index 1/2 and −1/2 are marked
by small yellow resp. red balls.

For an illustration of a TCD field and its indices, see Fig-
ure 5. It is well known that the index is well defined and
additive when dissecting a domain into pieces:

indD = ∑p∈D indp . (3)

The field of principal curvature directions does not exhibit
arbitrary indices. Only multiples of 1/2 occur. This fact can
be generalized:

Prop. 3. A TCD field constructed by means of an auxiliary
vector field zN as described above always is the union of two
separate direction fields; consequently all indices are inte-
ger multiples of 1/2 (this especially applies to the principal
direction field which corresponds to zN = const. = o).

Proof: Discontinuities of the field occur for zM = zN , other-
wise N−1M is no multiple of the identity matrix and has two
different real eigenvalues. Since detN > 0 we may w.l.o.g.
assume that N =

(1 n12
n12 n22

)
. This makes N uniquely and con-

tinuously dependent on the point zN . The directions which
constitute the TCD field are defined by the eigenvectors of
N−1M and can therefore be distinguished by belonging to
the greater and the smaller eigenvalue. �

Remark: Our way of handling fields of conjugate directions
prohibits the indices ±1/4,±3/4, . . . and so not all possible
such fields are treated. Restriction to integer multiples of 1/2
however has the effect that the total number of singularities
is reduced, which is a major goal anyway.

On the invariance of indices. The main results of this sub-
section are negative in character: they say that in many situ-
ations singularities are entailed by the geometry of the sur-
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(a) (b) δPQ,n = .052 (c) δPQ,n = .012

Figure 6: Detail of the great court roof, British Museum, originally a triangle mesh design by Foster and Partners. (a) Design
of a TCD field. In areas of nonpositive curvature the possible directions are indicated by sectors. (b) One half of integral curves
of this field, found by means of our level set method. A quad mesh derived from these level sets is indicated by color coding the
planarity measure δPQ,n. (c) mesh already optimized for planarity of faces.

face under consideration and cannot be removed. The first
result concerns areas of negative Gaussian curvature, where
the movement of conjugate directions is constrained by the
asymptotic directions (see Figure 5):

Prop. 4. In areas with K < 0 all TCD fields have the same
indices and location of singularities.

Proof: If K < 0, conjugate directions [v], [w] are separated
by the self-conjugate asymptotic directions [a], [b] (see Fig-
ure 2). Thus both [v], [w] can possibly move only in their
own respective sector which is bounded by [a], [b]. It fol-
lows that for a loop inside the K < 0 area, the total rotation
angle of the field equals the total rotation angle of either [a]
or [b], which is independent of the field. �

Figure 2, right, and Figure 3, right imply that along the
parabolic curves (which separate the positively curved areas
from the negatively curve ones) there is even less freedom:

Prop. 5. In all surface points where K = 0, one of two con-
jugate directions always equals the principal curvature di-
rection corresponding to zero curvature.

Prop. 6. In areas where K ≤ 0, all indices of TCD fields are
integer multiples of 1/2 (regardless of their way of construc-
tion via zN or otherwise).

Proof: Prop. 4 and Prop. 5 say that the indices of a TCD
field coincide with the indices of the principal direction field.
The statement now follows from Prop. 3. �

TCD fields have more freedom in the positively curved
areas of a surface. It turns out, however, that the number of
singularities present is in some cases bounded from below:

Prop. 7. Assume that D is a connected component of the
K > 0 area in the surface which does not touch the surface’s
boundary and which has no flat point with κ1 = κ2 = 0 on
∂D. Then the total index indD is the same for all TCD fields.
Only if indD = 0 we may have a TCD field without singular-
ities in D.

Proof: On ∂D one principal curvature vanishes. The corre-
sponding principal curvature direction is part of any pair of
conjugate directions (see Figure 2, right). It follows that the

total rotation angle of the TCD field equals the angle of the
principal field. �

Remark: In our implementation all elements of a TCD field
(zM ,zN , . . . ) are associated with the faces of a mesh. Decid-
ing whether a face represents a singularity requires to com-
pute the total rotation angle of the field along a path around
f , for which we use a 1-neighbourhood. Because of Prop. 3
each of the two directions v, w in the TCD field must result
in the same rotation angle. In fact we use a locally defined
auxiliary vector bisecting v, w for computing the rotation
angle.

4. Design and optimization of TCD fields.

The guiding principle behind the optimization of a field of
conjugate directions is that we represent this field by a sim-
ple object, namely the vector field zN . We express all desired
properties of the TCD field in terms of the vector field. For
the handling of vector fields we employ 1-forms as proposed
by [FSDH07].

We set up a target functional whose minimization is to en-
sure desirable properties of a TCD field, such as smoothness,
transversality, absence of singularities in general, singulari-
ties in prescribed places, and prescribed values of the TCD
field in some places.

Setup of global optimization. Smoothness of the TCD field
is measured by smallness of the Dirichlet energy of the vec-
tor field zN which is is computed according to [FSDH07].
We take that energy as the base of a target functional for op-
timization. For transversality we penalize small angles be-
tween v and w which according to (1) can be done by adding

λtrans ∑ f∈F φ(‖zN, f − e1, f ‖), φ(t) = t4

to the target functional, where φ can be any function which
grows quickly as we approach 1. If in a face f we wish to
place a singularity we can simply enforce zM, f = zN, f . In
case that in a certain area we wish to discourage formation
of singularities, we prevent zM = zN by adding to the target
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(a) (b) (c)
Figure 7: Local corrections to the TCD
field shown in (a). (b) We move a singu-
larity to a new desired position (shown
by the location of the red ball). (c) Lo-
cal deformation of field to achieve de-
sired direction of 1 conjugate direction
(white). The green area indicates the ex-
tent of the sub-mesh involved.

functional the term

∑
f∈F

λreg, f ψ(‖zN, f − zM, f ‖), ψ(t) =
{ (t−1)4, if t < 1,

0 else.

Prop. 2 shows us how to encode, in terms of zN, f , the con-
dition that the conjugate vectors v f ,w f assume prescribed
values: We must penalize deviation of zN, f from the straight
line = ([v f ]∩c f )∨([w f ]∩c f ) (using the notation of the fig-
ure close to Prop. 2). If required, we add the square of this
distance to the target functional.

Implementation. Optimization is done by a nonlinear con-
jugate gradient method [NW99]. We used the Fletcher-
Reeves way of updating descent directions, but this choice
is not critical. The necessary first derivatives are computed
numerically. To initialize optimization we first reset to zero
all coefficients of the 1-form representing the vector field
zN , and next optimize for ∑ f∈F ‖zN, f − e1, f ‖2 →min. This
achieves zN ≈ e1 (the corresponding TCD field is as close
to principal as possible). The vector field zN constructed in
this way is used as a starting point for minimizing the target
functional assembled above.

Local correction: Moving singularities. The moving of a
singularity of a TCD field from a current position f0 to a
nearby new position f1 can be efficiently and interactively
performed without resorting to global optimization. With the
smooth function

σ(t) =


1 if t ∈ [0,r1],
1
2 + 1

2 cos(π t−r1
r2−r1

) if t ∈ [r1,r2],
0 if t ∈ [r2,∞),

(4)

we perform a smooth correction to the vector field zN and
replace it by

znew
N, f = zN, f −β f (zN, f1 − zM, f1), where

β f = σ(dist( f , f0)).

This computation is two-dimensional; in each face we use
the appropriate local coordinate system. Assuming that the
face f1 is close to f0 so that β f1 = 1, we then have

znew
N, f1 = zN, f1 − (zN, f1 − zM, f1) = zM, f1 .

Because we have now achieved zM, f1 = znew
N, f1

, the singularity
of the TCD field has moved to its desired new location f1.

Figure 7a,b illustrates this procedure which is intended to be
worked with interactively.

Local optimization. We should point out that optimization
can be localized by simply applying it to part of the mesh,
using functions like (4) to blend a locally modified vector
field with the original one (see Figure 7c for an example).

5. Meshing via level sets.

In order to set up a quad-dominant mesh whose edges are
aligned with a TCD field, it is very convenient to first find
functions defined on the surface Φ, whose level sets are
aligned with that TCD field. It is also possible to incorporate
our wish for an even spacing of vertices into this level set
formulation. It is not difficult to set up this level set method
in a simply connected area where the TCD field is regular:
at singularities some additional considerations will be nec-
essary.

A quad mesh whose edges are aligned with the level sets
of functions g,h which are defined in the given surface Φ is
easily found by choosing values wi for the function g and w′j
for the function h, and placing a vertex vi j such that

g(vi j) = wi, h(vi j) = w′j.

It is natural to choose wi = i · ∆w, and w′j = j · ∆w′ (i.e.,
equally spaced samples). It remains to choose the functions
g and h.

Optimization Setup. If we are given a conjugate direction
field without singularities, then we can globally represent
this field using two nonzero vector fields v, w. The unknown
functions g,h are considered to be piecewise-linear on the
mesh, so they are determined by their values in the vertices.
Their gradient vector fields are piecewise-constant. In the
following we assume that Φ is simply connected. We op-
timize the values of g such that

∑ f∈F area( f )‖R f v f − (∇g) f ‖2 →min, (5)

where R f is the rotation about 90 degrees in the face f . A
similar formula applies to the function h and the vector field
w. An exact solution of (5) which then has ∇g = Rv exists
if and only if the vector fields {R f v f } f∈F and {R f w f } f∈F
are integrable. Only in this case will the level sets of g resp. h
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(a) δPQ,n = .113 (b) δPQ,n = .015 (c) δPQ,n = .015 (d)

Figure 8: Great court roof, British Museum, originally a triangle mesh design by Foster and Partners. The quad mesh in (a)
is found by our level set method from the principal directions, which exhibit four singularities, each of index −1/2. Color
coding shows the degree of planarity of each face. (b) optimization for the PQ property, and (c) optimization for the conical
property [LPW∗06]. (d) shows the mesh of (c). The fact that all these meshes are pretty much the same proves that initializing
the first mesh from principal directions is near-optimal.

align exactly with the vector fields v, w. Note that the length
of vectors v f , w f influences the integrability. We use these
lengths on purpose, because they allow us to control the dis-
tance of successive level sets [g = wi] and [g = wi+1]: this
distance approximately equals

(wi+1−wi)/‖∇g‖.

Thus we can incorporate the very important property of
equal spacing of vertices in our method by setting the vec-
tors v f , w f to unit length. The minimization problem (5)
only involves the gradient of g and thus determines g only
up to a constant: we have to fix one value of g.

Implementation. Since Equ. (5) is quadratic, optimization
amounts to solving a linear equation system for the values
of g at the vertices. Below we encounter further functionals
to minimize which are no longer quadratic (Equations (8),
(7) and (6)). We employ Gauss-Newton for their optimiza-
tion. All required first order derivatives are computed ex-
actly. The linear systems to be solved in each iteration step
are sparse, because all contributions to the functionals are lo-
cal. We can therefore employ sparse Cholesky factorization
using CHOLMOD [CDHR08].

Remark: The fact that the length of vectors enters (5) may
lead to a bad alignment of level sets with the given conjugate
directions. If we do not care about equal spacing at all, we
replace (5) by

∑
f∈F

area( f )
area(Φ)

〈
v f ,

∇g f

‖∇g f ‖

〉2
→min . (6)

We minimize this nonlinear functional by a Gauss-Newton
Method, using a solution of (5) for initialization.

Quad meshes from a TCD field with singularities. In case
the given TCD field exhibits singularities, we can not glob-
ally represent it by two nonzero vector fields. This can be
remedied conceptually by lifting the TCD field to a suitable
branched covering Φ

′ of the given surface Φ, as described
in [KNP07]. In our implementation this amounts to introduc-
ing cuts which run from singularities to the surface bound-
ary. Functions g,h whose level sets are to be aligned with

vector fields now exhibit jumps across cuts; and these jumps
must be defined in a way which makes level sets continuous.

This is implemented as follows: A cut is represented as
an edge polyline C in the triangle mesh. Consider first a cut
which emanates from a singularity of index±1/2. Using the
notation gleft(v) and gright(v) for the two function values of a
vertex v ∈ C , we must have

gleft(v) = αC −gright(v), where αC = iC ·∆w

for all vertices v ∈ C and some integer iC . For the source
vertex v0, the two function values coincide, which implies

g(v0) = αC /2.

Further cuts may be necessary to make the surface simply
connected (e.g. for the model of Figure 8). Here we have

gleft(v) = αC +gright(v), where αC = iC ·∆w

for all vertices v ∈ C and some integer iC . A similar equa-
tion applies to the function h and the step size ∆w′. These
conditions guarantee continuity of level sets across cuts.

Remark: Higher order singularities of index ±k/2 can be
seen as the limit of k singularities of index ±1/2, with k
cuts emanating from the singularity which run parallel. Here
we have the relation gleft(v) = αC + (−1)kgright(v), but the
singular source vertex of the cut is, in theory, associated with
k function values. Our examples have only k = 1.

The optimization problems (5) and (6) are modified as fol-
lows: Vertices which take part in a cut have two function
values related by the linear jump conditions given above.
We introduce the constants αC as new variables and first
optimize without restricting the values which the constants
αC can assume. In a subsequent step we are rounding the
constants αC which belong to cuts emanating from a singu-
larity to the nearest even integer multiple of the appropriate
step sizes ∆w or ∆w′ in order to achieve an all-quad meshing
where level sets pass through the singularities. If we round
to the nearest odd integer multiple we get only vertex 4 ver-
tices but extraordinary faces instead. We likewise round the
constants αC associated with the remaining cuts. Now opti-
mization is repeated, where all values achieved by rounding
are kept constant.
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(a) δPQ,n = .045 (b) δPQ,n = .029 (c) δPQ,n = .020 (d)

Figure 9: A design study for the courtyard roof of Neumünster monastery, originally a triangle mesh design by RFR which
follows a surface exhibiting a slight tangent discontinuity. One family of mesh polylines consists of planar sections of the
surface. We show optimization towards planarity with different side conditions. (a) before optimization. (b) optimization taking
into account deviation from the reference surface and deviation of boundaries (c) optimizing without regard to boundary. (d)
the mesh of (b) overlaid on the original surface.

Quad meshes without TCD fields. In special cases it is
possible to prescribe one family of level sets explicitly. For
instance, Figure 9 shows a shape Φ covering a rectangular
courtyard where we prescribe that the level sets of g are pla-
nar sections of Φ. We could also formulate this condition in
terms of TCD fields (by requiring that one of the two con-
jugate directions is parallel to a fixed plane), but here we
can avoid TCD fields entirely. We consider the function g
as given, and compute the function h as a minimizer of the
following functional, such that the level sets of g,h have con-
jugate tangents:

∑
f∈F

area( f )
area(Φ)

((
R
∇g
‖∇g‖

)T

f
·M f ·

(
R
∇h
‖∇h‖

)
f

)2

. (7)

Here we have abused notation and assumed that all
involved vectors are represented in the local coordi-
nate frame associated with the face f which was dis-
cussed in Section 2. We augment this target functional
by λeven area(Φ)∑ f∈F ‖(∇h) f ‖2 in order to achieve equal
spacing of level sets. The latter functional is quadratic and
minimizers are easily found if the values of h at two selected
vertices are fixed. We use such a minimizer to initialize min-
imization of (7).

6. Optimization of quad meshes for planarity.

The quad-dominant meshes which are the result of the proce-
dures described above are subject to further optimization in
order to make their faces planar. Since we took the available
curvature information into account when we created those
meshes in the first place, we are already close to exact pla-
narity. For this optimization we set up the functional

fPQ +λfair ffair +λprox fprox +λ
∂
prox f ∂

prox. (8)

The definition of the single contributions to (8) uses the nota-
tion diag f for the distance between diagonals of the quadri-
lateral face f , V∂ for the set of boundary vertices, π and π̃ for
the closest-point projections onto Φ and ∂Φ, respectively; τp
for the tangent plane in p, and finally Tp for the tangent of

the boundary curve ∂Φ in the point p. We define as follows:

fPQ = ∑ f∈F (diag f )
2, fprox = ∑v∈V\V∂

‖v− τπ(v)‖
2,

f ∂
prox = ∑v∈V∂

‖v−Tπ̃(v)‖
2.

Further, we measure fairness by comparing second differ-
ences “∆

2
uvw” of every triple u,v,w of consecutive vertices

with the respective original value before optimization:

ffair = ∑
triples (uvw)

‖∆
2
uvw−∆

2,orig
uvw ‖2.

Details of optimization of (8) are summarized by Figure 10.
The computation time refers to a dual core 2.4GHz Mac-
Book Pro. The quality of results is indicated by the proxim-
ity measures

δprox = max
v∈V\V∂

‖v− τπ(v)‖, δ
∂
prox = max

v∈V∂

‖v−Tπ̃(v)‖,

the planarity measure δPQ = max f∈F diag f , and the nor-
malized planarity measure δPQ,n, which is the maximum of
diag f divided by the mean length of diagonals in the face f .

Model # Var. # Iter. sec δPQ δPQ,n δprox δ
∂
prox

Figure 1 5373 32 18.1 .0003 .011 .0003 .0003
Figure 6 1302 16 3.0 .0007 .012 .0003 .0008
Figure 8 3462 39 15.1 .0003 .01 .0003 .0001
Figure 9 1539 13 2.7 .0013 .029 .0004 .0006

Figure 10: Details of PQ optimization. Bounding box diam-
eter of all objects equals 1.

7. Discussion and limitations.

Testing our methods on datasets which originate in real-
world freeform architectural designs such as demonstrated
by the figures in this paper showed satisfactory results. One
can see that optimization towards planarity reduces the nor-
malized planarity measure δPQ,n only by a factor five or so,
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Figure 11: Quad meshing the
Opus project by Zaha Hadid ar-
chitects using subdivision and
PQ optimization. This works bet-
ter than our analytic method be-
cause of large almost-flat areas
where conjugacy is numerically
unstable and misleading (image
from the survey paper [PSW08]).

confirming that alignment of mesh and TCD field is a good
initialization for the final round of optimization.

We should mention that the many changes between posi-
tive and negative curvature in shapes like Figure 5 forces PQ
meshes to basically follow the principal curvature lines with
almost no degrees of freedom left to achieve even spacing
of vertices. This is not a a limitation of the method, but a
limitation of the design. In fact the analytic method of the
present paper is useful to detect such features of a design.

There are instances where our method is not optimal: for
an example and a reason see Figure 11. An even simpler
example where our method fails completely is a cube which
is made smooth by rounding edges and corners. This is due
to the lack of principal directions in most of this surface.

Perhaps the most severe restriction of our method is that
we handle only TCD fields whose indices are integer mul-
tiples of 1/2. In the positively curved areas of a surface
there exist other TCD fields whose indices are only integer
multiples of 1/4. Especially when meshing convex corners,
fields with index 1/4 are natural, and we again identify the
rounded cube as a failure case of our method.

However, the paper’s method is not meant for such situ-
ations. It is meant to deal with the so-called “second order”
features in surfaces which appear smooth and rounded to the
eye, without the eye being able to detect the obstructions to
meshing with planar quads. With the absence of first order
features such as present in a rounded cube, the need for sin-
gularities with index 1/4 disappears and the goal of as few
singularities as possible dominates.

It is possible to combine different methods in a pragmatic
way, for instance by using the paper’s method to find a mesh
for those parts of a surface where principal curvature in-
formation exists, and using this information to redo mesh-
ing by the subdivision approach – knowing already where
to put extraordinary vertices, and knowing that in the flat

and near-spherical parts, mesh combinatorics is irrelevant for
planarity.
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