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Abstract

Many problems in computer aided geometric design and geometry processing are stated as least–
squares optimizations. Least–squares problems are well studied and widely used but exhibit
immanent drawbacks such as high sensitivity to outliers. For this reason, we consider techniques
for the registration of point clouds and surface fitting to point sets based on the l1-norm. We
develop algorithms to solve l1–registration and l1–fitting problems and explore the emerging non–
smooth minimization problems. We describe efficient ways to solve the optimization programs
and present results for various applications.

Key words: Curve fitting, Surface fitting, Registration, l1–Approximation, Optimization, Proximal
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1. Introduction

Numerous ways of solving problems in geometry processing and computer aided ge-
ometric design involve a formulation of the target requirements as solution of an opti-
mization process. Many of these optimizations are phrased in a least–squares sense, that
is the l2–norm ‖r‖2 :=

√∑
i r

2
i of some residue r ∈ Rp to be minimized. Theoretical

backing for using least–squares methods is given by the Gauss–Markov theorem which
basically states, that if the input data to the problem fulfills some statistical properties,
e.g. zero mean, unique variance and zero covariance, the least–squares way is the best
(linear) way to go.

However, as praxis has shown, the input data does not always meet these requirements.
Real world data poses severe challenges to the least–squares approach. One particular
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Fig. 1. The l1–norm weights outliers much less than the l2–norm. Moreover, it puts more emphasis on

small residues (cf. function graph of f(x) = |x| and f(x) = x2, left). Both properties can be seen in
typical histograms of residues for l1– (center) and l2–approximations (right). These plots were computed

on discrete input data. The histograms’ two left most bins (marked in grey) are below the average

sampling density and bias the analysis. We will discuss the residual distribution in more detail in Sec. 5.

problem is outliers, which naturally occur in various ways in physical measurement pro-
cesses. Several techniques have been proposed to improve the robustness of l2–norm
optimizations and applications of these methods have found their way into geometry
processing.

We choose a different approach and go beyond least–squares. Instead of turning to
robust variants of l2–approximations we choose a norm known to be more robust by
itself, the l1–norm ‖r‖1 =

∑
i |ri| (cf. Fig. 1). l1–techniques are far less popular in CAGD

which may be due to the challenges of non–smooth optimization resulting from the
absolute values in the definition of ‖.‖1. Geometric insights allow us to explore the l1–
approach in an elegant way. In many cases, the least–squares techniques are equivalent
to a minimization of the squared distances in the setup. In the l1–norm, this results in
working with (the absolute value of) the signed distance function. We show ways to derive
new geometric approximation algorithms from this premise. Please note that distances
will still be taken in the Euclidean norm, but instead of squaring the distance values
(l2–norm) we employ the l1–norm.

1.1. Related Work

In this work we will show, how well-known problems such as the registration of two
point clouds or the reconstruction of B-spline curves or surfaces from point sets can
be stated in an l1–sense. Accordingly, our survey on related literature concentrates on
previous literature on registration and surface reconstruction techniques, improvements
to least–squares methods, and rare uses of the l1–norm.

Curve and Surface Fitting
The approximation of point clouds by B-spline curves (in the plane) or by B-spline

surfaces (in space) is a well-known problem in computer-aided design (Dierckx, 1993).
Instead of attempting a comprehensive review of related literature, we concentrate on
previous work motivating our way of tackling the problem. Inspired by active contour
methods in image processing (Blake and Isard, 1998), we iteratively minimize the abso-
lute value of the signed distance function between the point cloud and the approximating
shape (see Fig. 2). Previous related work on curve and surface fitting assigns each ele-
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ment of the point cloud the point of the closest distance to the fitting shape (Hoschek and
Lasser, 1993). In these so–called foot points, the squared distance between curve/surface
and data points is approximated. The degree of approximation distinguishes the different
methods. Following the naming conventions of (Wang et al., 2006), point-to-point meth-
ods simply minimize the distance between data points and foot points (Plass and Stone,
1983; Hoschek, 1988; Hoppe et al., 1994; Goshtasby, 2000; Weiss et al., 2002). Both, point-
to-tangent plane methods (Blake and Isard, 1998) and curvature based methods (Wang
et al., 2006) significantly improve upon convergence of the point-to-point methods.

Registration
The alignment of two or more point clouds has attracted some attention over the last

decades. The vast body of contributions may be organized with respect to the input con-
figuration of the point clouds (none vs. rough initial alignment). Additionally, constraints
on the solution space (rigid vs. non–rigid registration) may be used as classification crite-
ria. In this framework, our contribution classifies as a local, rigid method. The de–facto
standard in local, rigid least–squares registration is the Iterative Closest Point (short
ICP) method nearly simultaneously proposed by (Besl and McKay, 1992) and (Chen
and Medioni, 1992). For a pair of roughly aligned input point sets, closest point cor-
respondences are established and used to minimize the squared distance between the
two shapes. Variants of these methods are widely used nowadays, see (Rusinkiewicz and
Levoy, 2001) for a survey. Multiple point sets may be matched pair by pair (Levoy et al.,
2000; Bernardini and Rushmeier, 2002), the major drawback being accumulative errors.
Simultaneous or multi–view registration leaves this shortcoming behind by considering
all systems to be aligned at the same time and distributing alignment errors equally
(Bergevin et al., 1996; Pulli, 1999).

l1– and Robust l2–Techniques
Efforts to increase the robustness of least–squares methods are well summarized in

(Pighin and Lewis, 2007). Weighted least–squares basically break with the equal vari-
ance assumption of the Gauss-Markov theorem. Intuitively, measurements with large
errors are considered outliers and weighted weaker. Iterative Reweighted Least Squares
(Holland and Welsch, 1977) for example suggest to weight the summands of the cur-
rent error term with the reciprocal powers of the previous iteration’s residuals. (Sharf
et al., 2008) rely partially on this method in a surface reconstruction framework based on
a space-time model. Apart from weighting the residuals, least–squares have been com-
bined with RANSAC (Fischler and Bolles, 1981). This so called least median squares
method (Rousseeuw and Leroy, 1987) has been used among others for multi–view regis-
tration of range scan images (Masuda and Yokoya, 1995). Related applications of robust
statistics to curve and surface reconstructions comprise (Faber and Fisher, 2001) who
employ true geometric distances to fit implicite polynomials to point clouds.

The l1–norm appears early in geometric optimization problems. (Weber, 1909) states
the problem of finding the optimal location of a new industrial site with minimal sum of
distances to a set of existing sites. The problem was soon traced back to Fermat in the
17th century and is known as the Fermat-Weber problem since then. (Weiszfeld, 1937)
was first to propose an iterative approach to solve the problem that was thoroughly
investigated by (Kuhn, 1973). The solution of the Fermat-Weber problem is usually
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Fig. 2. A surface fitting example. (Left) The initial setup. (Right) The unsigned distance between point
cloud (grey) and surface (blue) is iteratively minimized. The approximating surface is deformed until it

fits the point cloud.

called the l1-median or geometric median. Recently, (Lipman et al., 2007) presented a
projection operator for surface reconstruction that resembles locally the l1-median. In
this context, the terminology of signed or unsigned distance function is frequently used.
If a point set’s normal field is required to have unique orientation, the distance function
is called signed. Otherwise, it is denoted as unsigned. See the discussion in (Alliez et al.,
2007) for pointers to recent literature.

The l1–norm is used infrequently to solve matching problems. One prominent exception
is the method of sum of absolute differences in translational image registration. (Barnea
and Silverman, 1972) discretize the solution space and use the l1–norm of the difference
images as similarity measure. This method is still widely used nowadays in modern video
compression software (Richardson, 2003). References to optimization literature covering
non–smooth minimization (among others, sums of absolute values) are given in Sec. 4.

The paper is organized as follows. First, we are introducing the curve and surface fitting
problem and describe ways to solve it in the l1–norm. In the following, we consider the
registration of two point clouds by minimizing the unsigned distance function between
the shapes. Both sections will lead to non–smooth optimization problems that are solved
subsequently. We conclude with several examples.

2. Curve and Surface Fitting

In this section, we give a general formulation of the curve and surface fitting problem
which we solve subsequently in various ways with l1–approximation algorithms. Let P =
{pk ∈ Rd : k = 0, . . . , n} be an unordered set of points, called the point cloud henceforth.
Depending on the dimension of the elements of P we distinguish between the curve fitting
problem in the plane (d = 2) and the surface fitting problem in Euclidean three-space
(d = 3). It’s eligible to ask for a curve fitting in R3, however, we are not going to address
this issue in the following.

For now, let us consider the surface fitting problem, all statements below are easily
taken to the two–dimensional curve case. Given a point cloud, we say an approximating
surface x solves the surface fitting problem with respect to an arbitrary distance measure
d∗ if

d∗(x, P ) :=
n∑
k=0

d∗(x,pk) (1)
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is minimal.
Examples for d∗ include the squared distance function d∗ = d2 mentioned in the

introduction, typically resulting in least–squares problems. In this work, we are going to
consider the unsigned distance function |d(x,pk)|. The unsigned distance function is the
absolute value of the signed distance function d to x, which is defined as solution of the
Eikonal equation ‖∇d‖ = 1 with d(x) = 0. For distance minimizing purposes, the use of
the absolute value is necessary to ensure a minimum of the distance function to x.

Either distance measure we choose, minimizing Equ. (1) remains a highly non–linear
minimization problem. Non–linearity motivates an iterative approach. At each step, we
specify locations on x, in which the distance to the point cloud is described and sub-
sequently minimized. The first part, usually termed parametrization, computes for each
data point pk a sample xk on x. Most commonly, these samples are chosen to be the
points on x of shortest distance to the elements pk of P (Hoschek, 1988). We will call
these points on x the foot points henceforth. Computation of a foot point can be easily
achieved in a Newton iteration minimizing ‖x(uk, vk)−pk‖2, given that x is a parametric
surface. The second part, the approximation of the unsigned distance function in xk, will
be the topic of the remainder of this section. At this point, we may give the following
rough algorithmic plot of our solution of the surface fitting problem.
Algorithm 1 For a given point cloud P and initial approximating surface x, a general
surface fitting algorithm involves the following steps:

(i) For each element pk of P, obtain the foot point xk of the closest distance from pk
to x.

(ii) In these foot points, approximate the unsigned distance function (w.r.t. the current
surface).

(iii) Solve this non–smooth optimization problem and update the surface. If the magni-
tude of this update is above a certain threshold Tf , continue at step (i).

Fig. 2 shows an application of this algorithm in a surface fitting example.

2.1. Point Distance Minimization

Given the foot point xk to pk ∈ P , a simple way to describe the distance function d
would be the point-to-point distance between pk and xk,

|d(x,pk)| ≈ ‖pk − xk‖. (2)

For a fixed surface x, this equation is exact. But in the course of an optimization, the
approximating surface will change to better adapt to the geometry of the point cloud.
Please note, that with changing x, the foot points of pk are likely to change as well. The
literature on surface reconstruction tends towards ignoring this dependency. Accordingly,
we keep the foot points xk fixed over the course of a single iteration step.

Getting more specific about the approximating surface, we define it to be a tensor
product B-spline surface x(u, v) =

∑m
i=0Ni(u, v)di with B-spline basis functions Ni(u, v)

and control points di. The foot point of a data point pk is denoted by xk = x(uk, vk). The
unknowns of the optimization will be the displacement vectors δ = (δi)i=0,...,m of the B-
spline surface control points di. We write xδ(u, v) =

∑
iNi(u, v)(di+δi) for the unknown

new surface shape. With this notation in mind, we can rewrite above’s approximation of
the unsigned distance function and obtain the error term,
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Fig. 3. Level sets of the unsigned distance function approximations to a curve. From left to right: point—

to–point distance, point–to–tangent distance and curvature based second order distance minimization.

fP1(xδ, P ) =
n∑
k=0

‖pk − xδk‖. (3)

The argument of the norm depends linearly on the updates δ to the control points of
the fitting surface. Thus, fP1 is convex and continuous but not differentiable everywhere.
At the zeros of each of its summands, it is only C0. A minimization based on this error
term poses a non–smooth optimization problem. The level sets of this approximation are
concentric spheres centered at xk, an illustration for a planar curve is shown in Fig. 3,
left.

2.2. Tangent Distance Minimization

Going one step further, linearization of d in xk gives,

d(x,pk) ≈ d(xk) +∇d(xk)T · (pk − xk). (4)

As d is the distance to the surface, d(xk) = 0 holds. Furthermore, due to ‖∇d‖ = 1 by
definition, we set ∇d(xk) to be the unit normal nk of x in the foot point xk. All together,
this yields a new error term,

fT1(xδ, P ) =
n∑
k=0

∣∣nTk · (pk − xδk)
∣∣ , (5)

which describes the distance of pk to the tangent plane of x in xk.
As the sign of the tangent plane distance depends on which side of the tangent plane

the point pk is lying (more precisely speaking, on the orientation of nk), we sum up over
the absolute values of this approximation of the distance function. The argument of the
(convex) absolute value function is linear in δ and thus fT1 is convex as well. The absolute
value function is not differentiable for points on the tangent plane. Thus, the summands
of Equ. (5) are only C0 there and we obtain another non–smooth optimization problem.
The level sets of this approximation of d are planes parallel to the tangent plane (cf.
Fig 3, middle).

Considering a deforming fitting surface, an approximation based on the tangent plane
involves more information about the surface geometry and promises better results than
a simple point-to-point measure. However, in areas of significant curvature, the tangent
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plane is still a poor approximation of the surface. The following section tries to overcome
this drawback.

2.3. Second Order Distance Minimization

In the following discussion of a second order approximant of the signed distance func-
tion we are going to address the planar curve case first. Following that, we will generalize
the two–dimensional results to surfaces in three dimensions. A quadratic approximation
of the squared distance function has been presented in (Pottmann and Hofer, 2003) and
we follow a similar approach here.

Consider the local Frenet frame F spanned by the tangent tk = ẋ(uk) and the normal
nk in a point xk of a C2-curve x (cf. Fig. 3, right). As above, we assume that xk is the foot
point of the shortest distance from the curve to a data point pk and we write points y in
this local coordinate system in the form (y0, y1) where y0 denotes the coordinate value
with respect to the tangent and y1 that in direction of the normal. In this context, the
center of the osculating circle K with radius % = 1/κ has coordinates (0, %). Furthermore,
xk = (0, 0) and pk = (0, d) hold, where d is the signed distance from pk to xk (see Fig. 3,
right). For now, we choose a local orientation of the curve such that % < 0.
Lemma 1 Let x be a C2-curve in R2 and d, %, y = (y0, y1) as defined above. Then,

d(x,y) ≈ dc(y) =
1

2(d− %)
y2

0 + y1

is a second order approximation of the signed distance to x.
Proof: A proof is achieved in two steps. First, we show that it is sufficient to consider

the distance to the osculating circle. Second, we derive above expression for dc. The first
step is done with a result about the geometry of offset curves: For any offset curve x+

to x the center of curvature for a point x+
k ∈ x+ on nk coincides with the center of the

osculating circle K. Therefore, the distance functions to x and to K agree up to second
order. For the second part of the proof, we observe that the distance for any point y to
K is given by

d(K,y) =
√
y2

0 + (y1 − %)2 − |%|.

For % < 0 locally, d < % < 0 is impossible (otherwise, the center of K would not be the
center of curvature). Thus, second order Taylor approximation of d(K,y) gives above
formula.2

The coordinate in direction of the tangent enters above approximant squared. However,
the coordinate in direction of the normal contributes its sign. This is what we expect
for a signed distance function approximant where the sign of the distance depends on
the orientation of the normal. As the factor 1

2(d−%) is always greater than zero, the level
sets of dc are concave parabolas (see Fig. 3, right). For the special cases d = %, d = ∞,
% = −∞, dc reduces to the point-to-tangent distance given by y1.

Let x now be a C2-surface with unit normal vector nk in the foot point xk. We choose
nk as third coordinate axes in a right-handed coordinate systems F . The remaining two
directions of F are given by k0 and k1, the two principal directions to the principal
curvatures κ0 and κ1. In umbilical points, we choose any two orthogonal tangential
directions such that F is right-handed.
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Lemma 2 For a C2-surface x, %i = 1/κi the principal curvature radii and d the signed
distance from pk to its foot point xk on x,

d(x,y) ≈ ds(y) =
1

2(d− %0)
y2

0 +
1

2(d− %1)
y2

1 + y2,

yields a second order approximant of the signed distance function to x.
Proof: As for the planar curve case, we begin by showing that it is enough to compute

the distance to a second order approximation of x in xk. As the theory on the curvature
of offset surfaces provides, the signed distance to x is, up to second order, identical to the
distance to tori Ti, obtained by either rotating the first principal curvature circle around
the axis of the second one or vice versa. Which torus we finally choose doesn’t matter
and two different ways may complete this proof. First, we could compute a second order
Taylor approximation of a point’s distance to Ti, which, however, involves some effort. Or,
we obtain the derivatives for the Taylor approximation according to the argumentation
of (Pottmann and Hofer, 2003), who reduce the computation of the partial derivatives
to the planar curve case.2

Similar to the planar curve case, the tangential coordinates of a point y appear squared
in ds. The coordinate in normal direction is signed. As the factors of the squares in ds
are greater than zero, the level sets of ds are elliptic paraboloids.

So far, all computations for a second order approximant happened in a local Frenet
frame F . For using above results, we need to convert to a global coordinate system, which
can be done according to

y0,k = (pk − xδk)T · k0
k, y1,k = (pk − xδk)T · k1

k, y2,k = (pk − xδk)T · nk.

With this conversion in mind, we can finally write down the error term for surface fitting
based on a second order approximation of the signed distance function,

fS1(xδ, P ) =
n∑
k=0

| 1
2(dk − %0

k)
[(pk − xδk)T · k0

k]2+

1
2(dk − %1

k)
[(pk − xδk)T · k1

k]2 + (pk − xδk)T · nk|. (6)

We already pointed out, in the computation of ds, that this approximant may become
negative. Thus, in order to achieve a minimum of fS1, we need to take the absolute value
of the single summands. We end up with a non–smooth and non-convex optimization
problem.

2.4. Relation to Least–Squares Approximations

The concepts that lead to the above three different approximations of the unsigned
distance function are naturally related to similar efforts in the computation of approxi-
mants of the squared distance function. The idea of point-to-point distance minimization
was the basis to some of the first solutions of the fitting problem (Hoschek, 1988). Due
to its simplicity, this method has been popular ever since. The point-to-tangent distance
technique was proposed by (Blake and Isard, 1998) as an improvement to the slow con-
vergence of the point-to-point method. Finally, curvature based curve fitting has been
studied by (Wang et al., 2006).
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Fig. 4. Local, rigid registration of two point clouds: starting from the initial setup (left), the final

alignment (right) is obtained as solution of a non–smooth minimization problem.

3. Registration

Another prominent example of least–squares methods in geometry processing is reg-
istration. The acquisition of coordinate samples on an object’s surface (e.g. by 3D laser
scanning) may produce data from different view points, necessary to capture the whole
of the object. The alignment of these data sets, given in different coordinate systems, in
a single global coordinate system is probably the best known application of registration.

When it comes to registration, we distinguish between several types: global registration
aligns the data roughly. For this purpose, most of the existing literature identifies sets of
features on the data that are matched subsequently. Local registration on the other hand
assumes that some global alignment has already happened and improves the positioning
of the data to a final spatial position. While we call the registration of two data sets a
pairwise registration, simultaneous or multi–view registration considers the alignment of
several scans at the same time. Please note that some authors refer to this latter task
also as global registration.

In this section we are going to examine, in how far the idea of l1–norm distance
minimization may be applied to the local registration problem. In the course of discussion
we will first address pairwise alignments. We consider the alignment of three-dimensional
point clouds only. All results can easily be adapted to the planar case.

Let X = {xi ∈ R3 : i = 0, . . . ,m} and Y = {yi ∈ R3 : i = 0, . . . , n} be two three
dimensional point clouds. We call X the fixed or target system to which the moving
system Y shall be registered. In our considerations, registration will ask for that rigid
body motion α that minimizes some distance measure d∗ between X and Y ,

d∗(X,α(Y )) :=
n∑
i=0

d∗(X,α(yi)). (7)

Again we choose d∗ to be the unsigned distance function |d|. Non-rigid registration is not
the scope of this work.
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Minimization of Equ. (7) poses a non–linear optimization problem. We are going to
solve it iteratively. Motivated by the framework of (Besl and McKay, 1992) and (Chen
and Medioni, 1992), we assign each element of the moving system a corresponding point in
the fixed system. For our purposes, the closest point relation will serve as correspondence.
In the closest neighbor in the fixed system, we approximate the signed distance between
the two shapes and minimize it.
Algorithm 2 A general registration algorithm to align two shapes X and Y locally in-
volves the following steps:

(i) For each element yi of the moving point cloud Y , compute the foot point xi of the
shortest distance between yi and X.

(ii) In these foot points {xi}, compute an approximation of d.
(iii) Obtain α by minimizing this non–smooth optimization problem and update the po-

sition of Y . If the distance between the two point clouds is above a certain threshold
Tr, continue at step (i).

Besides a description of ways to approximate d, which will take most of the remainder
of this section, we require a method to describe the unknown rigid body motion α.
Basically, any affine motion Ay+b, A ∈ R3×3 and b ∈ R3, can be identified as a point in
a 12-dimensional affine space R12. This affine space includes the rigid body motions (A
orthogonal) as a 6–dimensional manifold M6. We could let the entries of A and b enter
the optimization as unknowns, constrained to meet the rigid body motion requirements.
However, we prefer to linearize the motion α,

α(y) ≈m(y) = y + v(y),

and we solve the registration problem for v (Pottmann et al., 2004). The linear velocity
vector field v of α is of the form

v(y) = c̄ + c× y,

with c̄, c ∈ R3 (Pottmann and Wallner, 2001). Hence, our minimization problem will be
of dimension 6,

min
(c̄,c)

n∑
i=0

|d(X,yi + c̄ + c× yi)|

with c̄, c as unknowns. Note that m(y) = y + v(y) is an affine but not a Euclidean
motion. We can either project the affine motion m(y) onto M6 (Pottmann and Wallner,
2001) or solve the rigid registration problem with known correspondences

min
α
d2(m(Y ), α(Y ))

as proposed in (Botsch et al., 2006). As we expect only small displacements in our local
registration, we apply the first method.

At this point, we have accomplished the theoretical framework for our solution of the
registration problem. What remains to be done is the description and discussion of ap-
proximations of the signed distance function. From an abstract point of view, the fitting
problem and the registration problem show some similarities. Considering the fitting
problem, we set up pairs of corresponding points (each data point gets a foot point as-
signed) and we describe the distance for such a pair in terms of the unknown displacement
of the fitting surface. For registration, we establish correspondences between the elements
of the data sets X and Y and approximate distances between these closest points, un-
known with respect to the linear velocity vector field of some α ∈M6. Therefore, it will
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come as no surprise that the basic ideas of the following approximations are related to
the curve and surface fitting error terms.

3.1. Point Distance minimization

Let us start by considering two corresponding points, a moving point m(yi) = yi +
v(yi) and xi, the closest point of yi in X. Without taking any further geometric in-
formation about the neighborhoods of either xi or yi into account, we approximate the
unsigned distance function by

|d(X,α(yi))| ≈ ‖xi −m(yi)‖.

Based upon this term, we define an approximate unsigned distance between X and Y as
sum over all these point-to-point distances,

rP1(X,α(Y )) =
n∑
i=0

‖xi −m(yi)‖.

Comparing this error term to the point distance minimization error term of Sec. 2.1, we
see the close resemblance between the two solutions. This similarity also holds for the
analytic characteristics of rP1- It is C0 at the zeros of the terms xi −m(yi), that are
linear w.r.t. the unknowns (c̄, c). An optimization relying on this error term will pose a
non–smooth optimization problem.

3.2. Tangent Distance Minimization

Instead of minimizing the distance between m(yi) and xi we could derive a local
approximation of X around xi and minimize the unsigned distance from m(yi) to this
local approximation. A simple way to describe the target point cloud in a neighborhood
of xi would be the tangent plane of X in xi. Tangent planes for discrete point sets are a
well surveyed topic (see e.g. (Mitra and Nguyen, 2003)) and we obtain them by fitting a
plane to the points in a fixed radius neighborhood around xi. For yi ∈ Y , let xi be the
closest point in X and ni an estimated normal in xi. Then,

|d(X,α(yi))| ≈ |nTi · (xi −m(yi))|,

approximates the signed distance from moving yi to X by a distance–to–tangent plane
measure. Similar to the fitting error term fT1, the above approximation can be seen as
a linear approximation of the unsigned distance function. As the distance to a plane is
signed (the sign depends on the—for our purposes arbitrary—orientation of the normal),
we take its absolute value. By summing up, we obtain another approximation of the
unsigned distance between X and Y ,

rT1(X,α(Y )) =
n∑
i=0

∣∣nTi · (xi −m(yi))
∣∣ .

As already pointed out for the related error term in surface fitting, the absolute value
function is not differentiable at the zero of its argument; as a result we will face a non–
smooth convex optimization problem.
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3.3. Second Order Distance Minimization

Our discussion of the fitting problem has shown that we can do better in describing
the surface around xi. This was achieved by including curvature information. For point
sets, numerous methods for estimating curvature exist. We choose to fit a surface to a
neighborhood of xi (Yang and Lee, 1999). For such a local surface patch, we compute
a curvature based approximant of the signed distance function according to Lemma
2. Summing up the single second order distance approximations yields, with the same
notation as in Sec. 2.3,

rS1(X,α(Y )) =
n∑
i=0

| 1
2(di − %0

i )
[(xi −m(yi))T · k0

i ]
2+

1
2(di − %1

i )
[(xi −m(yi))T · k1

i ]
2 + (xi −m(yi))T · ni|, (8)

as approximation of the distance between target and moving system. This objective states
a non–smooth and non–convex optimization problem.

3.4. Relation to Least–Squares Approximations

All three distance approximations above do not only relate closely to the fitting error
terms of Sec. 2. Their basic ideas are well-known in registration literature, however in
least–squares contexts. The first contributions to the registration problem exhibit the
first two approaches presented here. (Besl and McKay, 1992) proposed a point–to–point
registration while (Chen and Medioni, 1992) discuss a point–to–tangent plane approach
in their work. Second order approximation of the squared distance function and the use
of spatial kinematics for registration were introduced by (Pottmann et al., 2004).

Based on the systematic similarity between least–squares approaches and our work,
an extension from pairwise to multi–view registration is straightforward. In rounding up
our discussion of signed distance registration, consider multiple given systems Xi. We
choose X0 as fixed system and describe with

vi0(x) = c̄i + ci × x,

the motion of the i-th system towards X0. As before, c̄i and ci are the unknowns of our
optimization problem. We can express the relative velocity between two moving systems
Xj and Xk with,

vjk = vj0 − vk0.

Let x ∈ Xj be the closest point of y ∈ Xk, k 6= j. Considering Xj temporarily fixed, we
describe the distance between x and y + vjk(y) with any of the three methods above.
Summation over all distance approximations yields the non–smooth objective function
of the multi–view registration problem which bears c̄i and ci as solution.

4. Optimization

We have seen how unsigned distance fitting and registration problems lead to non–
smooth optimization problems. In this section, we briefly sketch the solution of such
minimizations and discuss three non–smooth optimization methods.

12



Fig. 5. l1–fitting is not sensitive to outliers (top). A standard least–squares fitting is biased (bottom, left),

whereas a robust variant shows better results (bottom, right). However, the robust version’s parameter
setup is not straightforward. We also show the control polygons (grey) of the approximating cubic

B-spline curves.

To ease the following discussion, we change to a different notation for our problems’
objective functions. Please note, that we are going to leave the previous meanings of the
variables behind. By reviewing the results of Sec. 2 and Sec. 3 we see that we basically
face three types of functions to minimize. For x ∈ Rn as unknown, the point-to-point
distance error terms for both fitting and registration give the first type of objective
functions,

∑
i ‖Aix+bi‖. The tangent distance terms belong to the second class of target

functions,
∑
i |bTi ·x+ci|. Finally sums of the form

∑
i |xTAix+bTi ·x+ci| originate from

fittings and registrations based on the third class of objectives, namely the second order
signed distance approximations. As we have already stated in the previous sections, the
first two types are convex while the third is not.

4.1. Proximal Bundle Method

In smooth optimization theory, the objective function is differentiable at least once
and information about the first or higher order derivatives enter the optimization pro-
cess. In the case of a non–smooth optimization problem, the objective function is not
differentiable everywhere and an adapted idea of gradients is introduced. Non–smooth
optimization algorithms such as the proximal bundle method (Kiwiel, 1990) build upon
this concept.

For now, let f denote the convex non–smooth objective function of the minimization
problem minx∈Rn f . We call s ∈ Rn a sub-gradient of f in x, if

f(z) ≥ f(x) + sT · (z− x), ∀z ∈ Rn.

The set of all sub–gradients in a point x is called the sub–differential ∂f(x) of f in x. In
any point x where f is differentiable, ∂f(x) comprises only a single vector, namely the
gradient ∇f(x). It is common to derive a general theory of convex derivatives with help

13



‖ arg ‖ ‖Ax + b‖ |bT · x + c| |xTAx + 2bT · x + c| | arg |

arg = 0 {s ∈ Rn : ‖Az + b‖ ≥ sTA−1(Az + b), ∀z ∈ Rn} conv{±b} conv{±2(Ax + b)} arg = 0

arg 6= 0 AT (Ax + b)/‖Ax + b‖ −b (−2)(Ax + b) arg < 0

b 2(Ax + b) arg > 0

Table 1

Sub–differentials ∂f(x) for the objectives of curve/surface fitting and registration. convS denotes the set
of convex combinations of elements of S.

of ∂f(x), see e.g. (Rockafellar, 1972). Table 1 summarizes the sub-gradients of the three
types of objective functions introduced above.

In a point x, each sub-gradient s supports a hyperplane h = {z ∈ Rn : f(x) + sT · (z−
x)}, a linear and lower bound approximation to f in x. Proximal bundle methods make
iteratively extensive use of these linearization. Assuming that x0 is an arbitrary starting
point, typical iterations for these algorithms are of the form,

xk+1 = arg min f̂(x) +
1

2tk
‖x− xk‖2. (9)

Here, f̂ denotes a linear approximation of f (the cutting plane model) that aggregates
knowledge from a bundle of previous sub–gradients and corresponding hyperplanes, re-
spectively. The second term controls the maximal allowed step–width (proximity) in an
iteration, as the minimum of f̂ may be unbounded. The approximate objective function
of Equ. (9) yields a quadratic optimization problem with linear constraints that (or its
dual) can be solved with methods of smooth optimization theory (Nocedal and Wright,
1999).

The challenges in realizations of proximal bundle methods are found to be rules to
maintain and update the bundle of sub–gradients defining f̂ and the proximity parameter
tk. It can be shown that these methods give for convex f an ε–optimal global minimizer
x∗, this means that f(x∗) ≤ f(z) + ε, ∀z ∈ Rn, and user–defined ε (Kiwiel, 1990). For
non–convex problems, we can expect to find a local minimum close to x0.

4.2. Linear Programs and Second-Order Cone Programming

For the two convex objectives we can get more specific. Instead of applying a general
but approximative solver such as the proximal bundle method, our goal will be to turn
the non–smooth problems into smooth optimization problems. This will happen at cost
of an increase of dimension and the inclusion of constraints.

Let us first consider the tangent distance minimization term. There exists a well-
known reformulation of sums over absolute values of a scalar–valued linear function (see
e.g. (Boyd and Vandenberghe, 2004)), that is

min
x

m∑
i=0

|bTi · x + ci| ⇐⇒ min
z=(x,y)

m∑
i=0

yi

subject to − yi ≤ bTi · x + ci ≤ yi, ∀i = 0, . . . ,m

(10)

where y = (yi) ∈ Rm+1 are new auxiliary variables that, added to x ∈ Rn, increase the
dimension of the optimization problem to n + m + 1. What we get in return is a linear
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Fig. 6. Top row, from left to right: l1–fitting with error terms fP1, fT1 and fS1. The bottom row shows

the least–squares counterparts. The initial approximating curve is depicted bottom left as dashed curve.
The results are of comparable quality. The point–to–point methods show less tangential displacements

of control points (grey polygon).

program, that can be solved with a variety of algorithms, e.g. the well-known Simplex
method or Interior–Point methods (Nocedal and Wright, 1999).

It is obvious to apply above conversion to the remaining two types of objective func-
tions. For the first problem, the norm of a vector–valued linear function, we obtain

min
x

m∑
i=0

‖Aix + bi‖ ⇐⇒ min
z=(x,y)

m∑
i=0

yi

subject to ‖Aix + bi‖ ≤ yi, ∀i = 0, . . . ,m.

(11)

Please note, that norms are by definition always positive and we can omit the lower
bound. We see, that we still get a linear objective function. However, the constraints are
not linear but quadratic and the theory of linear programs does not apply.

Instead, this kind of problem is a second order cone programming problem. In cone
programming, a linear function is minimized over the intersection of an affine set and a
Cartesian product of cone constraints. For our needs, the unit second–order cone,

C0 = {(x, t) : x ∈ Rp, t ∈ R, ‖x‖ ≤ t},

is well suitable. C0 plays an important role in wide fields of second-order cone program-
ming.

Intersection of the standard cone with hyperplanes yields conic sections; this indicates
why second-order cone programming (short SOCP) is suitable for linear programs with
convex quadratic constraints. Note as well that by choosing Rp+ as cone, we can ex-
press any standard linear program as cone programming problem. Cone programming is
therefore some kind of generalization of linear programming.
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Fig. 7. For l1–fitting (left), the point–to–tangent error terms performs best. The point–to–point error

term is slowest while the non–convex curvature based error term performs moderate. For least–squares
based fitting algorithms, the curvature based error term is convex and performs best (right).

By applying an affine mapping to C0 we obtain as general form of a SOCP problem

min
z

gT · z

subject to ‖Aiz + bi‖ ≤ cTi · z + di, ∀i = 0, . . . ,m.

Equ. (11) matches this structure without further modification. For the solution of SOCP
problems, primal–dual interior–point methods are widely employed. A detailed descrip-
tion of these algorithms is out of scope of this work and we remain with references to the
literature (Nesterov and Nemirovskii, 1994; Lobo et al., 1998; Alizadeh and Goldfarb,
2003).

For the third, non-convex problem a similar conversion into a SOCP problem does not
work as the lower bound quadratic constraints are non–convex. We have to remain with
the proximal bundle method for finding a minimum. As final note in this discussion of
solvers for non–smooth minimization problems we want to mention that it is straight-
forward to add further linear constraints to either the proximal bundle method, linear
programs or SOCP problems.

5. Results and Discussion

This section presents several applications of the above optimization problems. Accord-
ing to the layout of the discussion, we are going to show results for curve and surface
fitting first. Examples for the registration of point clouds will follow subsequently. In the
first part on point cloud approximations, we will focus on curve fitting results. Planar
examples let us compare the quality of different approximations much easier.

In Sec. 2, we have derived three different objectives to fit a B-spline curve or surface to
a point cloud. Optimization based solely on these terms yields mathematically correct—
though visually not pleasing—solutions. Typically, we observe strong oscillations. In order
to tackle this issue, a weighted regularization or smoothing term is added to the fitting
objective,

min
δ
f(xδ, P ) + λ · s(xδ).

We call λ the smoothing weight and will give details on its choice in Table 2. In l2–
approximation, a discretized version of a measure for the bending energy,
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Example 1 2 3 4 5

n 300 300 75 + 3 300 500/1000 + 4

dim 2× 20 2× 12 2× 13 2× 18 3× 2× 11/3× 19× 19

it all 20 all 20 all 40 all 20 10/10/20

T (s) 2.08/1.7/34.15 1.43/61.75 0.2/0.2/1.61 1.8/1.8 5.28

0.01/0.03/1.06 1.15/1.85 209.67 (l1)/19.86 (l2)

λ 1/0.1/0.1 1/1 10−4/*/0.1 10−4/10−4 10−3

10−3/10−4/10−4 0.04/0.04 10−4 (l1)/10−3 (l2)

Table 2

Configuration parameters and running times for all curve and surface fitting examples (slashes “/”
separating different methods, as described in the text). For point clouds with n elements, an optimization

problem of dimension dim was solved in it iterations, taking T seconds. The smoothing weight was

initialized to λ and halved at each of the first 10 iterations. Smoothing weight λ = ∗ for the robust
least–squares method in Example 3 was set manually twice during optimization.

s2(xδ) =
∫
x

‖ẍδ‖2

is widely used, cf. (Wang et al., 2006). In our l1–optimization framework, we refrain from
using the squared norm of the second derivatives and base our regularization on the
un–squared norm instead,

s1(xδ) =
∫
x

‖ẍδ‖.

An approximative computation of this term with, for example, the trapezoidal rule inte-
grates straightforward into our non–smooth optimization framework.

Besides the smoothing weights, Table 2 and Table 3 list further characteristics of the
presented examples. All code was written in C++ and run on a Intel Core2 Duo CPU
T7700 2.4 GHz computer. As general non–smooth solver we employed a relaxed proximal
bundle method (Huebner and Tichatschke, 2008; Huebner, 2009). For the minimization of
linear programs we used the GNU Linear Programming Kit GLPK (GNU Project, 2009)
and CVXOPT to solve second order cone programs (Boyd and Vandenberghe, 2004; Dahl
and Vandenberghe, 2009). All these solvers are freely available under the terms of the
GNU General Public License (GPL).

Example 1 The first example employs all three fitting terms to approximate a point
cloud with a cubic B-spline curve. The results are visualized and compared to the l2–
approximations in Fig. 6. The convergence speed of either method is depicted in Fig. 7.
For the convergence plots of the l1–methods, the approximation error at each iteration
step is described by the mean absolute error,

1
n+ 1

n∑
k=0

‖pk − xk‖.

For the l2–fittings, the root mean squared error√√√√ 1
n+ 1

n∑
k=0

‖pk − xk‖2.

is computed after each iteration step.
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Fig. 8. The non–smooth objectives of point–to–point (left) and point–to–tangent (right) approximation

can be solved exactly. The latter method’s tangential displacement for control points lets the curve fit
the point cloud much faster than the point–to–point objective. The initial curve (dashed, grey) is shown

in the left figure.
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Fig. 9. Both the point–to–point (left) and point–to–tangent plane (right) minimizations may be turned

into smooth though constrained optimization problems. These may be solved exactly. An exact solution
yields better convergence but requires more computational time.

For the l1–approximations, the tangent distance minimization method performs best. It
outperforms the curvature based method, a non-convex optimization problem with local
minima. This first round of l1–examples was obtained by employing the general proximal
bundle method. Comparison to the l2–methods shows similar convergence behavior. The
point–to–point methods are slowest in either scenario. The final approximations show
that some control points lack tangential displacement. For this example as well as for all
the remaining examples, the fitting problem was initialized manually.

Example 2 In Sec. 4 we have seen that both the point–to–point and the point–to–
tangent objectives can be converted from an unconstrained non–smooth optimization
problem into a constrained smooth minimization. Opposed to the approximative general
solver for non–smooth systems, the constrained smooth programs may be minimized
exactly (and thus converge faster at global scope). Fig. 9 confirms our expectations.
The improved convergence comes at the price of longer per iteration running times (cf.
Table 2). While the increase in computational cost for solving the linear program is
moderate (by a factor of 1.6), the point–to–point error term’s second order cone program
is expensive to minimize. The convergence plot for the constrained smooth point–to–
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Fig. 10. One-sided point cloud approximations simplify the smooth point–to–tangent optimization.

point optimization shows a kink where the approximating curve started to adapt to the
point cloud’s upper left bulge. The point–to–tangent approximation fits the point set’s
shape much faster (cf. Fig. 8).

Example 3 Our main motivation to study curve and surface fitting in the l1–norm has
been the sensitivity of the l2–norm to outliers. In Fig. 5, three outliers were added to the
target point cloud. The l1–norm approximation is not affected visibly by the additional
noise in the data. However, the l2–fitting is biased significantly. We tested a modified,
more robust l2–error term on the same data set. After some initial unweighted iterations,
each point’s error term gets weighted by the inverse square of the point’s distance to the
curve at the beginning of the iteration (Holland and Welsch, 1977),

min
δ

n∑
i=0

1
‖xk − pk‖2

f(xδ,pk) + λ · s2(xδ).

As the final fitting indicates, this modified version is more robust w.r.t. outliers. However,
we found that the optimization gets unstable once the weights are added. In particular,
the smoothing weight requires adaption to maintain the balance between the new fitting
errors and the current regularization impact. Changing the smoothing weight turned out
to be a troublesome task.

Example 4 In Sec. 4 we noted that additional linear side conditions may be added
to the optimization problem. For curve fitting, one–sided approximations are of certain
interest (Flöry, 2009). A closed curve x is said to approximate the outer boundary of a
point cloud P , if it minimizes the distance to P and if P lies in the interior of x. The
latter requirement yields linear constraints, one for each data point pk ∈ P . Let xk be
the foot point of pk on the approximating curve x and nk the outward oriented normal
of x in xk. Then,

nTk · (pk − xδk) ≤ 0, ∀k = 0, . . . , n

constrains the fitting to approximate an outer boundary of the target point cloud. Inner
boundary reconstructions are obtained by changing the sign of the normal.

Comparing the outer boundary linear constraints to the constraints of the smooth
point–to–tangent optimization in Equ. (10), we see that the constraints differ only in the
lower bounds. Hence, the one–sided fitting constraints combine well with the point–to–
tangent plane error term in its smooth formulation. It replaces half the variable bounds
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Fig. 11. Surface fitting in the l1–norm (left) is more robust than least–squares methods (right). The

outliers (depicted in yellow) bias the l2–result.

Example 6 7 8 9

m, n 10k, 10k 100, 100 + 3/29k, 27k 10k, 10k 1k, 1k

it all 20 30/10 all 40 all 10

T (s) 53.65/6.87/48.49 0.54 (l1) / ε (l2) 13.18 (l1) 1.45 (l1 constr.)

all ε 9.88 (l1) / ε (l2) ε (l2) 3.97 (l1 unconstr.)

0.38 (l2 constr.)

Table 3
Configuration parameters and running times for the registration examples. A moving point cloud with

n elements was aligned to a target system counting m points. The optimization lasted it iterations and

took T seconds. A running time of ε indicates that the computational cost was below 0.01 seconds.

by constant bounds and thus simplifies the linear program. An examination of the com-
putational costs for the result of Fig. 10 revealed slightly shorter running times.

Example 5 So far, we have only presented results for curve fitting. All variants of
the fitting algorithm discussed above may be applied to surface approximation without
any modification. Fig. 2 shows a reconstruction example with a B-spline surface closed
in one parameter direction. Fig. 11 visualizes the robustness of l1–fittings with respect
to outliers.

Example 6 We continue our result review with registration examples (cf. Table 3).
At first, we examine registration with all three error terms in either the l1 or the l2–
norm. We refrain from presenting the whole three times two matrix of results but give a
representative final alignment for an l1 point–to–tangent plane optimization (cf. Fig. 4).
The convergence plots of Fig. 12 indicate that the point–to–point minimizations perform
worst. For both the l1– and l2–registrations, the curvature based term outperforms the
tangential term slightly. While this is to be expected for the least–squares approach,
the non–convex curvature based l1–optimization problem may get stuck in local minima.
Regarding the computational cost, unconstrained l2–registration requires a 6×6 system of
linear equations to be solved. Hence, we regard the computational effort negligible. This
does not hold for the non–smooth objectives which require some effort to be solved with
a proximal bundle method. Please note that the point–to–point as well as the point–to–
tangent plane error term may be turned into a constrained smooth optimization problem
just as outlined above.

Example 7 For curve and surface fitting we have seen, that the robustness of l1–
optimization improves the results in the presence of outliers significantly. For registration,
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Fig. 12. For registration in the l1–norm (left) and the l2–norm (right), the point–to-point error term

performs worst. The curvature based technique is slightly faster than the point–to–tangent plane alter-
native. This must not be expected for the l1–registration as it solves non–convex optimization problems

subsequently.

we want to repeat those experiments. In Fig. 13, we compare the performance of a planar
l1–registration to that of a least–squares alignment. The moving point cloud comprises
three significant outliers. Apart from those, the problem would be a zero residual prob-
lem. In Fig. 14, we show a robust non–smooth registration opposed to a least–squares
alignment. The data of this spatial example was obtained with a stereo and active il-
lumination based 3D scanner, capable of acquiring 17 frames per second (Weise et al.,
2007). The high frame rate reduces the quality of the coordinate samples and outliers
are very common. We triangulated the data for better visualization. Both tests confirm
the robustness of the l1–methods.

Example 8 This robustness of l1–optimization is due to a lesser weighting of samples
with large residues. This is best seen in Fig. 1 (right) in a comparison of the absolute value
function f(x) = c0|x| and a parabola f(x) = c1x

2. From the graphs we can immediately
deduce another property. The l1–norm considers small residues stronger than the l2–
norm. These two properties are confirmed by histograms of a l1– and a l2–registration in
Fig. 1 (center and right). The discrete nature of the aligned shapes renders the histogram
unreliable for residues smaller than half the average sampling density. For this reason,
the corresponding bins are greyed out.

Example 9 General registration yields final alignments with target and moving
point cloud penetrating each other. This is to be expected as the distance between the
two shapes is minimized. For several applications however, it is of interest to achieve
penetration–free alignments (Huang et al., 2006). This can be accomplished in a very
similar fashion to one–sided fitting by constraining the solution space. Consider a closed
target shape. Then, a penetration–free alignment is achieved by constraining the regis-
tration to either the interior or exterior of the target point cloud. Let xi be the closest
point of a moving sample yi and ni the normal in xi. With this notation,

nTi · (m(yi)− xi) ≥ 0, ∀i = 0, . . . , n

constrains the alignment to that side of the target shape the normals are pointing to. We
think of open target shapes as artificially closed to apply above definition.

We see that these constraints are linear in the displacement’s velocity vector field and
may be added to any discussed non–smooth optimization solver. Again, in the case of

21



Fig. 13. The moving point cloud (blue) includes three outliers. The l1–registration (top) is more robust

than the l2–registration (bottom). The initial position of the moving point cloud is shown in grey w.r.t.

the target point cloud of the least–squares alignment.

Fig. 14. The l1–registration aligns the two input point clouds well (left). By contrast, the least–squares

registration result is tilted (right). Both point clouds are noisy and include numerous outliers.

the point–to–tangent plane error term, integration of these constraints simplifies the op-
timization problem. Opposed to the one–sided curve and surface fitting examples, the
decrease in computation time is more significant for registration. This is due to the high
number of constraints that gets simplified (one constraint per data point). Typically, a
penetration–free registration took half the time of an unconstrained registration in the
l1–norm. Please note that the corresponding least–squares registration is an optimization
problem with quadratic objective and linear constraints that requires some computational
effort as well. In Fig. 15, we show results of an unconstrained and a penetration–free align-
ment. Again, the point clouds have been converted to triangular meshes after registration
for better visualization.
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Fig. 15. Unconstrained registration (left) yields a final alignment with mutual penetration of target and
moving point cloud. The inclusion of linear constraints—eventually simplifying the smooth variant of

the point–to–tangent plane l1–registration—achieves a penetration–free alignment (right).

6. Conclusions and Future Work

In the present work, we have derived approximations of the unsigned distance function
to B-spline surfaces and point clouds. We use these approximations to solve the geomet-
ric matching problems of B-spline surface reconstruction from point clouds and local,
rigid registration of point sets. Therefore, we employ an optimization framework to solve
the emerging non–linear non–smooth problems in an iterative way. Previous work on fit-
ting and registration relies mostly on least–squares methods. In contrast, minimizing the
unsigned distance function yields more robust but non–smooth optimization problems.
Comparison to l2–methods reveals that our techniques performs better in the presence of
outliers. The moderate increase in computational effort relieves us from administrating
additional parameters, that robust l2–methods typically introduce to the computation.
Special applications such as one–sided fitting or penetration-free registration even sim-
plify the optimization problems.

We see several directions for future work. It will be interesting to see how l1–mini-
mization adapts to other research fields of CAGD and geometry processing. There are
numerous algorithms based on least–squares methods that may benefit from the robust-
ness inherent to the l1–norm. Moreover, a thorough theoretical investigation of conver-
gence characteristics for the minimization of the point–to–point, point–to–tangent plane
and curvature based error terms is of particular interest.
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Flöry, S., 2009. Fitting curves and surfaces to point clouds in the presence of obstacles.
Computer Aided Geometric Design 26, 192–202.

GNU Project, 2009. Gnu Linear Programming Kit, Version 4.37.
URL http://www.gnu.org/software/glpk/

Goshtasby, A. A., 2000. Grouping and parameterizing irregularly spaced points for curve
fitting. ACM Trans. Graphics 19 (3), 185–203.

Holland, P., Welsch, R., 1977. Robust regression using iteratively reweighted least
squares. Comm. in Statistics A6, 813–827.

Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer,
J., Stuetzle, W., 1994. Piecewise smooth surface reconstruction. In: Proc. SIGGRAPH
’94. pp. 295–302.

Hoschek, J., 1988. Intrinsic parametrization for approximation. Computer Aided Geo-
metric Design 5 (1), 27–31.

Hoschek, J., Lasser, D., 1993. Fundamentals of Computer Aided Geometric Design. AK
Peters.

Huang, Q.-X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H., 2006. Reassembling frac-
tured objects by geometric matching. ACM Trans. Graphics 25 (3), 569–578, Proc.
SIGGRAPH 2006.

Huebner, E., 2009. Bundle method, version 1.2.
URL http://www.mathematik.uni-trier.de/∼huebner/software.html

Huebner, E., Tichatschke, R., 2008. Relaxed proximal point algorithms for variational
inequalities with multi-valued operators. Optim. Meth. Softw. 23 (6), 847–877.

Kiwiel, K. C., 1990. Proximity control in bundle methods for convex nondifferentiable
minimization. Math. Program. 46, 105–122.

24



Kuhn, H. W., 1973. A note on Fermat’s problem. Math. Program. 4, 98–107.
Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M.,

Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D., 2000. The digital michelangelo
project: 3D scanning of large statues. In: Proc. SIGGRAPH 2000. pp. 131–144.

Lipman, Y., Cohen-Or, D., Levin, D., Tal-Ezer, H., 2007. Parameterization-free projec-
tion for geometry reconstruction. ACM Trans. Graph. 26 (3), 22.

Lobo, M. S., Vandenberghe, L., Boyd, S., Lebret, H., 1998. Applications of second-order
cone programming. Linear Algebra and its Applications 284 (1-3), 193–228.

Masuda, T., Yokoya, N., 1995. A robust method for registration and segmentation of
multiple range images. Comput. Vis. Image Underst. 61 (3), 295–307.

Mitra, N. J., Nguyen, A., 2003. Estimating surface normals in noisy point cloud data.
In: Proc. SCG ’03. pp. 322–328.

Nesterov, Y., Nemirovskii, A., 1994. Interior-Point Polynomial Algorithms in Convex
Programming. Vol. 13 of SIAM Studies in Applied Mathematics. SIAM.

Nocedal, J., Wright, S. J., 1999. Numerical Optimization. Springer.
Pighin, F., Lewis, J. P., 2007. Practical least-squares for computer graphics. In: SIG-

GRAPH ’07 Courses. ACM, pp. 1–57.
Plass, M., Stone, M., 1983. Curve-fitting with piecewise parametric cubics. In: Proc.

SIGGRAPH ’83. pp. 229–239.
Pottmann, H., Hofer, M., 2003. Geometry of the squared distance function to curves and

surfaces. In: Visualization and Mathematics III. Springer, pp. 223–244.
Pottmann, H., Leopoldseder, S., Hofer, M., 2004. Registration without ICP. Computer

Vision and Image Understanding 95 (1), 54–71.
Pottmann, H., Wallner, J., 2001. Computational Line Geometry. Springer.
Pulli, K., 1999. Multiview registration for large data sets. In: 3DIM. pp. 160–168.
Richardson, I. E., 2003. H.264 and MPEG-4 Video Compression: Video Coding for Next

Generation Multimedia. Wiley.
Rockafellar, R., 1972. Convex Analysis. Princeton University Press.
Rousseeuw, P. J., Leroy, A. M., 1987. Robust regression and outlier detection. Wiley.
Rusinkiewicz, S., Levoy, M., 2001. Efficient variants of the icp algorithm. In: 3DIM. pp.

145–152.
Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., Sheffer, A., Amenta, N., Cohen-Or,

D., 2008. Space-time surface reconstruction using incompressible flow. ACM Trans.
Graph. 27 (5), 1–10.

Wang, W., Pottmann, H., Liu, Y., 2006. Fitting B-spline curves to point clouds by squared
distance minimization. ACM Trans. Graphics 25 (2), 214–238.
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