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Abstract

We offer a framework for editing and modeling of planar meshes, focusing on planar quad, and hexagonal-

dominant meshes, which are held in high demand in the field of architectural design. Our framework manipulates

these meshes by affine maps that are assigned per-face, and which naturally ensure the planarity of these faces

throughout the process, resulting in a linear subspace of compatible planar deformations for any given mesh. Our

modeling metaphors include classical handle-based editing, mesh interpolation, and shape-space exploration, all

of which allow for an intuitive way to produce new polyhedral and near-polyhedral meshes by editing.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Picture/Computational
Geometry and Object Modeling—Shape modeling, Shape editing Shape space, PQ/PHex meshes, design explo-
ration

1. Introduction

Meshes with planar faces (classically and hereby denoted
as polyhedral meshes) have recently come into prominence,
for their benefits in the field of freeform architectural
design, where they can be manufactured with relative ease.
Designers and modelers thus require tools in which they can
manipulate these planar meshes freely and intuitively, while
maintaining the planarity constraints. There are several
mesh modeling metaphors that designers would usually
utilize. A common approach is handle-driven editing, in
which vertex displacements, and a given Region-of-interest
(ROI) are supplied, and the result mesh adheres to these
constraints, while minimizing a set of fairness energies,
such as the rigidity, or similarity, of edited faces with
relation to the original mesh, fairness of curves on the
surface, et cetera. Positional constraints, and sometimes
scaling or rotational constraints can usually be incorporated
into such systems with ease. A deformation tool is most
often equipped with an interpolation tool, that allows the
designer to navigate the range of middle shapes between
two or more boundary shapes. Recently, designers have
expressed interest in the ability to explore the shapes within
the continuous range of a given initial mesh, and within
certain compatibility conditions and fairness measures,
without explicitly determining positional constraints.

(a) Original (b) As-similar-as-Possible

(c) Shape Space Tangent
Exploration

(d) Our Deformation

Figure 1: Comparison between several methods. On the up-

per right is a generalization of as-similar-as-possible defor-

mation (in the spirit of [SA07]), which produces a smooth re-

sult, but does not preserve planarity at all. On the lower left,

Planar shape space exploration by [YYPM11], which uses

tangent space vectors for handle-driven exploration, and,

thus, preserves planarity only up to first order. Our method,

on the lower right, clearly preserves planarity, while still

producing a smooth and intuitive result.
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(a) Original (b) Deformation

Figure 2: As-rigid-as-possible deformation of the Half Tun-

nel model.

(a) Original (b) deformation

Figure 3: ARAP Deformation of the Gitter model. Notice

that the pillar inverts nicely, while maintaining planarity and

mesh quality.

The majority of deformation methods in the literature
work with triangular meshes for which the planarity con-
straint is trivial, and never regarded. Unfortunately, when
dealing with general polyhedral surfaces, the planarity con-
straint is usually a third-order polynomial constraint in the
coordinate values of the vertices of a mesh; therefore, is not
trivially accommodated using any of these common tech-
niques. However, the full subspace of planarity-preserving
deformations is quite large, and contains many deformed
meshes, in which the shape of the resulting faces is not so
favorable. In this work we limit ourselves to deformations
in which there is always a single affine transformation be-
tween corresponding polyhedral faces, which is a meaning-
ful enough subspace to work with, and which allows for
intuitive and large-scale deformations, with the mere price
of linear compatibility constraints. Affine maps have the ad-
vantage of always preserving the planarity of faces exactly,
and contain most adequate desired transformations within
their range. It is important to mention that, in practice, most
meshes are only near-polyhedral, with a given tolerance for
the planarity of faces. Fortunately, except for extreme cases,
this near-planarity would be preserved as well, especially
when fairness measures are taken. Planarity of a quad face
is measured by the percentage of the distance between the
diagonals to the average diagonal length. Planarity of higher
degree faces is measured as the average of the planarity val-
ues for each four consecutive vertices. The usual reasonable
tolerance is 1%.

1.1. Our Contribution

We propose a novel editing framework, with face-based
affine maps, which equips the designer with the following
sets of tools:

• Handle-based deformation of planar meshes.
• An interpolation operator that allows for blending be-

tween different poses of the same topological mesh.
• Planar shape space exploration of the surroundings of a

given mesh, with respect to several fairness measures.

We show that it is easy to obtain good results with these
maps, in the price of linear compatibility constraints. There-
fore, we can incorporate the richness of existing deformation
metaphors for our planarity constraints. This paper is built
in the following manner: In Section 2 we explain the basics
of modeling with face-based affine maps. In Section 3 we
present the handle-driven tool, in Section 4 the interpolation
algorithm, and in Section 5 we construct the planar shape
space exploration method.

1.2. Related work

Polyhedral Meshes. Polyhedral meshes rose into practi-
cal prominence only recently. The greatest emphasis was
put on planar quad (PQ) meshes. Liu et al. [LPW∗06] in-
vestigated their uses for architectural design, and presented
an optimization process to obtain them from general quad
meshes. Pottmann et al. [PLW∗07] investigated the creation
of multilayered construction with PQ meshes via the prac-
tice of mesh offsets. PQ meshes are commonly regarded
as a discretization of conjugate curve networks [BS08] on
surfaces. This is the principle behind the works of Liu et

al. [LXW∗11], and of Zadravec et al. [ZSW10], the lat-
ter creating quad-dominant networks. Special cases of PQ
meshes, such as circular and conical meshes are consid-
ered to be especially beneficial ( [BS08], [LPW∗06]), since
they are discretizations of curvature line networks, which
are also a continuous special case of conjugate curve net-
works [dC76].
Hexagonal and hexagonal-dominant meshes have been
scarcely investigated so far in a practical framework. Al-
though they possess natural offsets, having minimal vertex
degrees, and thus are paramount to the discretization of cer-
tain types of surfaces (e.g., minimal surfaces [PLW∗07] and
constant curvature surfaces [Mue11]), they are difficult to
compute [WLY∗08]. Unfortunately, the benefit of low vertex
degree is paid with the obligation to have nonconvex faces in
negative curvature regions. Pure hexagonal meshes have also
been studied in the context of parametrization [NPP+12].

Mesh Deformation: A major research venue of geometry
processing, mesh deformation is almost ubiquitously stud-
ied in the context of triangular meshes. A survey of most
recent works can be found in [BKP∗10]. We mention a few
works to which our work relates. Sorkine and Alexa [SA07]

c© 2012 The Author(s)
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try to achieve rigidity of deformation by minimizing the de-
viation of the deformation of the one ring of every vertex
from a rotation, by iterating between local steps, in which
the best fitting orthonormal transformation is found for a
given transformation, and a global step, in which the mesh
vertices try to adapt to these ideal rotations as best as pos-
sible, in the least squares sense. This approach was also
used by [LZX∗08] for mesh parametrization, incorporating
conformal deformations. Lipman et al. [LSLCO05] attached
discrete frames per vertex, deformed the meshes by updating
these frames, and reconstructed through LS as well. Chao et

al. [CPSS10] minimized the deformation differential dF of
every triangle from the orthogonal group SO(n) by Gauss-
Newton minimization, and Fröhlich and Botsch [FB11] min-
imized discrete shell energies by optimizing the change in
lengths and dihedral angles.

Deformation of polyhedral meshes: planarity-preserv-
ing deformation, or rather the creation of new polyhedral
meshes from existing ones, are rare in the literature. Direct
and simple approaches were introduced, such as mesh par-
allelism [PLW∗07], and local modifications with a projec-
tive geometric framework [Hof11], and both indicated that
they possess a limited capacity for general mesh design.
The generalization of triangular methods in a straightfor-
ward manner will not preserve planarity in general, as it is
not enforced as a condition (see Figure 1 for comparison).
Even if a single set of frames, or rather a deformation Ja-
cobian, is manipulated per face, the common least-squares
integration step usually harms the planarity, which is never
a problem for triangular meshes. The situation is even more
complex in the presence of near-polyhedral faces, with no
certain way to work with frames and induced frame coef-
ficients. Our method enforces a single affine map per face,
and thus preserves the planarity as a condition, even if rigid-
ity or conformity should be less optimal as a result. The re-
cent shape space metaphor [KMH07], which treats meshes
of a given topology as points in a higher dimensional mani-
fold, and, consequently, local deformations as tangent plane
vectors, has been applied in a recent work [YYPM11], with
a focus on planar mesh space exploration. At each point M

on the shape space, a tangent vector is a local deformation
which is orthogonal to the constraints gradients, i.e., does
not change the constraint energy E(M) = 0. Furthermore,
a second-degree osculant to the shape space at M is com-
puted, in order to achieve better contact with the shape space
while deforming. Fairness energies can be defined on this
space, and exploration of the intrinsic Hessian of these ener-
gies allows a designer to choose meshes in the surrounding
of a given origin mesh, while preserving planarity and fair-
ness. A handle-driven approach is also possible, with con-
straint energy minimization. However, planarity is only pre-
served to a second order, and the computation of the osculant
and the tangent plane are cumbersome in both memory and
space, and must be recomputed for each new origin mesh.
Our method contains only linear constraints, and thus, we

neither require the need for an osculant, nor recompute the
tangent space per origin, as it is constant throughout. See a
comparison of [YYPM11] with our method in Figure 1.

2. Modeling with Compatible Affine Maps

Given a single original polyhedral mesh P, i.e. a set of faces
F , edges E, and vertices V with initial vertex positions {pv},
we would like to obtain a new polyhedral mesh Q, with the
same connectivity, and vertex position {qv}. We assign an
affine map to every face f of the mesh, that encodes the
transformation of the vertices of a planar face in P to Q.
These Affine maps are usually represented using 3× 3 ma-
trices A f and row translation vectors t f s.t. every point on
the face f is transformed thus:

qv = pvA f + t f , v ∈ f (1)

Instead of parametrizing the deformation space with the val-
ues {A f , t f }, it is more convenient to work directly with the
matrices A f and the resulting vertex positions qv, since trans-
lations have no effect on the mesh qualities sought after,
and since this representation is easy to work with. Naturally,
not all parameter values are possible (or desired). However,
we get the following set of linear compatibility conditions,
that ensure that a parameter value is a valid deformation of
the initial mesh: for every edge ei j ∈ E, comprising vertices
pi, p j, and which is adjacent to faces f ,g, we must hold:

(pi − p j)A f = (pi − p j)Ag = qi −q j. (2)

These conditions simply ensure that affine maps transform
both sides of an edge to the same vector, and that the edge
vectors are an exact form (i.e., are integrable to actual vertex
positions in space). The entire set of viable meshes from the
original mesh is, therefore, spanned by the null space of a
compatibility matrix C:

C

(

A

q

)

= 0, (3)

representing Equation 2. This constitutes as the linear shape

space of affine-equivalent planar meshes, which we can ex-
plore with greater ease than the more general nonlinear pla-
narity shape space. Notice that, since all triangles are affine-
equivalent, all triangle meshes are trivially part of the same
linear shape space, which can easily be represented by every
vertex displacement configuration in R

3. We will return to
the shape space exploration metaphor in Section 5

3. Handle-driven shape design

Using the handle-driven metaphor, the designer first picks a
ROI on the mesh, which will be the only deformable region,
and then manipulates vertex positions inside the ROI, seek-
ing to create a new mesh, adhering to some fairness measures
as best as possible. We explore two such measures:

1. As-rigid-as-possible (ARAP) deformation, where maps
seek to be as pure rotational as possible.

c© 2012 The Author(s)
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(a) Original (b) Rigid deformation

(c) Conformal deformation

Figure 4: ARAP and ASAP Deformations of the Six model.

The difference is evident in the stretching of the arm.

(a) original (b) deformation

(c) another view

Figure 5: ASAP deformation of the Aquadom model. The

ridge is kept intact, one pillar is stretched, and the other is

inverted.

2. As-similar-as possible (ASAP), where maps seek to be
conformal maps (i.e., rotational with uniform scale).

In our handle-driven approach, we follow the local-global
map optimization method used by [SA07] and [LZX∗08].
When the ROI and vertex displacement are chosen, we alter-
nate between the following two steps, until convergence is
reached:

• For a given affine map A f , find the closest map Tf that
perfectly preserves the energy.

• For a given desired map Tf , find the closest compatible
set {A f ,qv}

We next describe how both of these steps are carried out.

(a) Original (b) ASAP deformation

Figure 6: ASAP deformation of the Yas model.

3.1. Best approximating map

For a given affine map A f , we find the closest map Tf , in
the least squares sense, which perfectly preserves the fair-
ness measure we seek. i.e., we seek Tf s.t. E(Tf ) = 0, for a

fairness measure E, and s.t. Tf = argmin
∥

∥A f −Tf

∥

∥

2
. Sup-

pose that the positive singular value decomposition of A f is

A f =UΣV T . It is then known that:

1. For the rigidity fairness measure, i.e. E(Tf ) = (T T
f Tf −

I)2, the best solution is obtained at Tf = UV T . This is
also known as the Orthogonal Procrustes Problem.

2. For the similarity measure, i.e. E(Tf ) = (T T
f Tf − D)2,

where D is scalar diagonal, the best solution is obtained at
Tf = USV T , where S is a scalar diagonal matrix as well.
The scalar value S is the average of the diagonal (and
only nonzero) values in Σ2, the 2×2 matrix of the singu-
lar values of the transformation restricted to the plane.

These are the same Tf matrices obtained by the analysis
in [LZX∗08].

3.2. Best approximating mesh

Using the prescribed affine maps Tf , computed in the former
step, we would like to find the A f which minimize the least
squares distance to the perfect affine map, under the compat-
ibility constraints C:

A f = argmin ∑
f∈F

w f

∥

∥A f −Tf

∥

∥

2
, C

(

A

q

)

= 0 (4)

The weights w f are inverse face areas (measured approx-
imately when the face is near-planar). This linear least-
squares problem with linear constraints can be represented
in a single linear system (see Appendix A for the derivation).
Positional constraints can be moved to the right side of the
equation, and their respective columns can be removed from
this linear system. Upon the choice of the ROI, and the iden-
tity of the deforming vertices, the matrix representing this
linear system remains constant and symmetric throughout

c© 2012 The Author(s)
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(a) Original (b) ASAP deformation

Figure 7: ASAP deformation of a convex hexagonal mesh.

Notice that the mesh strives for convexity, because negative

curvatures are not achievable using convex faces, and affine

maps preserve convexity.

the iterations (albeit not positive-definite in general). Thus,
we can pre-factor it with LDLT factorization [Wat91], and a
single iteration would then only cost the price of three ma-
trix multiplications (two triangular, and one diagonal).
We iterate both of these steps until max(‖Pi+1 −Pi‖) has
reached a tolerance value (set to 10−4 in all of our exper-
iments). Usually, no more than 8–9 iterations are required
for full convergence, even for large deformations. See Fig-
ures 2, 3, 4, 5, and 6 for examples. Notice that this ap-
proach is also reminiscent of the energy |d f −R|2 minimized
by [CPSS10]. As they deal with triangular meshes, d f is nat-
urally piecewise constant, whereas we uphold this constness
with the variables A f = d f .
There is, nevertheless, an interesting caveat to this approach:
when manipulating meshes with many edges to some faces,
such as hexagonal meshes (see Figures 7 and 8), and in cer-
tain classes of quad meshes, the constraint matrix may be-
come overdetermined, and would not produce a consistent
shape space for any given set of positional constraints. This
is mostly evident in closed meshes of a higher genus. An
exact analysis of the null space of the matrix C is given in
Appendix B. In these cases, there cannot be a true single ex-
act affine map transforming each face. Mathematically, the
entire system is then solved by least squares to produce an
approximate affine transformation of each face, and the con-
straints’ error will grow with severely conflicting right-hand
sides. In practice, we witnessed negligible constraint errors,
if any, mostly occurring when we specifically tried to “tear
the mesh apart”, e.g. constrain several close vertices badly.
In all the examples given, the constraint error max(‖Cx‖)
(where x is the configuration vector) was always less than
10−5, and on average below 10−8.

3.3. Bending Energies

Botsch et al. [FB11] seek to minimize both the discrete
stretch energy (the change in edge lengths), and the discrete
bending energy (the change in dihedral angles). However,
our face-based energy only pertains to the former, as each
face is studied separately, up to integrability. In order to min-
imize the bending energy in our linear setting, we introduce a
regularization in the form of the minimization of the Dirich-

let energy of the affine maps, when treated as a matrix field
over triangles:

Ed(A) = ∑w f g(A f −Ag)
2
, (5)

for each two adjacent faces f ,g. The minimizers of this en-
ergy are affine maps which are harmonic with respect to the
2-form Laplacian [DKT05], when the weights w f g are the

values of the inverse Hodge star: w f g =
‖e f g‖

‖e∗f g‖
, e∗f g being the

dual edge to e f g. This regulization is a common practice in
linear deformation methods. For instance, if we regard the
affine maps as changes to frame systems, this energy can
perhaps be viewed as a way to minimize the difference be-
tween transformed frames, with relation to their original val-
ues [LSLCO05]. Thus, when given a perfect map Tf , we now
minimize the following energy:

A f = argmin ∑
f∈F

w f

∥

∥A f −Tf

∥

∥

2
+λ∑w f g(A f −Ag)

2
,

C

(

A

q

)

= 0

(6)

Lower values of λ will favor face shape, and higher values
will favor equal transformations for all faces. We typically
use λ =1–3 in our experiments.

3.4. Planarity of Curves

The affine framework can easily accommodate a constraint
in which certain curves should remain planar throughout
(such as floor, or ceiling, curves). If the plane in question
is given, it is a simple extra linear condition. In the general
case, an affine map can be attached to each such curve, as if it
is a single planar polygon, like a face of the mesh. Of course,
this curve would then be subjected to this single affine map,
which might be prohibitive. See Figure 9 for planar-curve
constrained deformations.

4. Interpolation

A modeling framework usually requires the ability to study
the middle shapes between an original mesh and its defor-
mation. Since our compatibility space is linear, any linear
combination of the sort A f (t) = tI f + (1− t)A f , t ∈ [0,1]
would produce a compatible polyhedral mesh. However,
these meshes are not geometrically reasonable. We there-
fore follow the interpolation method of [ACL00], in the
following manner: We take the polar decomposition of ev-
ery A f = Q f R f , and set our desired middle matrix to be
Tf = ((1− t)I+ tQ f )R f (t). If R f is represented by the axis-
angle pair (v̂,α), then R f (t) is the partial rotation matrix rep-
resented by the pair (v̂, tα). We then proceed to solve one
linear system, as in Section 3.3, with the desired matrices
Tf . Notice that in general, large rotations cannot be interpo-
lated satisfactorily using this method, (as noted by [FB11],
for example), since it always takes the shortest rotation. This

c© 2012 The Author(s)
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(a) Lilium Tower Mesh

(b) Deformation

(c) Trinoid mesh

(d) Deformation

Figure 8: ASAP Deformations of hybrid-hexagonal meshes.

To the Lilium tower mesh, deformation seems to planarize

some of the hexes, which is actually an effect of stretching the

hex along the approximate hex plane, increasing diagonal

length without increasing diagonal distance.

(a) Original (b) Deformation (c) Another view

Figure 9: Deformation of the Vase model, maintaining the

planarity of the base and the opening curves.

can be alleviated somewhat by using higher λ values. How-
ever, this interpolation is quite efficient, since we need to
factor the energy and constraint matrices only once. See Fig-
ures 10 and 11 for interpolation results, and the accompa-
nying video. We can also successfully achieve extrapolation

of meshes, beyond the boundaries of 0 and 1.

5. Shape Space Exploration

We next adhere to the metaphor of the shape space. Our am-
bient space is the entire set of matrices and vertex positions
{A f ,qv}. Our Compatible shape space is that of these sets
which reside in the null space of the constraint matrix C.
Fortunately, the null space is linear, and, therefore, our space
has no curvature, unlike the planar shape space described
in [YYPM11]. We thus acquire the full capacity of their ex-
ploration process, without the need for expensive computa-
tion of a second-order osculant.
Picking the origin, where all A f are identities, we
parametrize the null space of C, which also serves as the tan-
gent space of the origin, with null base vectors [e1,e2, ...en].
It is worth noticing that, once we obtain these base vectors,
we can directly alter their linear combinations for vertex dis-
placements, regardless of the affine maps, and vice versa.
As detailed in [YYPM11], we seek to minimize fairness en-
ergies defined in the entire ambient space, by the restric-
tion of their gradients and Hessians to our shape hyperpla-

nar space. If a point on the shape space is parametrized as
x = x0 +∑

n
i=0 eiui (we slightly abuse notation here, and use

ei to denote only its vertex position members), then the sec-
ond order approximation of a function on this plane is:

F(x) = F(x0)+
n

∑
i=0

(∇F
T · ei)ui +

1

2
U

T
H

I
FU

H
I
F = [e1,e2, ...en]

T
H f [e1,e2, ...en]

(7)

Where U are the coefficients {ui}, and HF is the Hessian of
F . For brevity, we explore the similarity and the Dirichlet
energies, presented in section 3, which we have referred to
before, although the full fairness energy range of [YYPM11]
is available to us.

c© 2012 The Author(s)
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(a) Original (b) t = 0.35 (c) t = 0.75 (d) t = 1 (e) t =−0.5 (f) t = 1.3

Figure 10: Deformation (t = 1), interpolation, and extrapolation. The planarity is naturally kept, and the results produce a

smooth transition.

(a) Original

(b) t = 0.5

(c) t = 1

(d) t =−0.2

Figure 11: Interpolation and extrapolation of the Gitter

model. The extrapolation provides an natural extension to

the movement in the pillars.

5.1. Subspace Exploration

After choosing a mixture of fairness energies: F(x) =

∑i λiFi(x), we proceed by exploring directions on the shape
hyperplanar space with extremal second derivatives. By
looking at several low eigenfunctions of the intrinsic Hes-
sian HI

F at the origin, we are able to explore the surroundings
of the the origin, by navigating upon these eigenfunctions.
In fact, because of the linearity of space, and its promise
of compatibility, the user is not very limited to navigation
in a confined boundary, as made essential in [YYPM11].
However, the second order approximation of fairness ener-
gies deteriorates when we travel far from the origin. Fortu-
nately, since the base we computed is constant throughout
the space, it is easy to recompute the intrinsic Hessian, and
its lowest eigenfunctions, from any given new point. We al-
low for navigation in the two-dimensional plane spanned by
two low eigenvectors of the Hessian. See Figure 12 and 13
for examples. One should note that while navigation is set
in a linear space, and subject to fairness energies, the near-
planarity can be compromised by certain large-scale affine
maps. This can also be regularized with proper energies. The
disadvantage to the shape-space approach is that we require
the exact null space of the matrix C, which might be trivial
for several classes of meshes (see Appendix B for an ex-
act analysis), but which is adequetly rich for typical archi-
tectural quad and hexagonal-dominant meshes. Fortunately,
Approximate affine maps, which can be interpreted as work-
ing with the smallest singular values of C, are quite well-
behaved in handle-driven exploration. We therefore conjec-
ture that using the corresponding basis vectors would enrich
the shape space with minimal harm. In this work, we only
utilize exact null-space basis vectors.

Normal fibration space. It is worth noting, that an affine
map has nine variables, whereas our degree of freedom is
six. The extra degrees of freedom comprise the action of the
affine map on the normal to an original face, which does
not alter the result. That is a three dimensional fiber space

for every mesh point on the shape space. Handle-driven ex-
ploration and interpolation disregard this problem, since the
energies regulate the normal behavior automatically. In the
shape-space approach, one should note that nontrivial eigen-
functions might result in walking on normal fibers. However,

c© 2012 The Author(s)
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this is more a matter of redundancy, as these eigenfunctions
simply inflate the null space of compatibility, and one can
always find proper eigenfunctions to explore.

6. Discussion and Future Work

Implementation Details: Our computation code (the sparse
LDLT factorization and linear solving) was written in MAT-
LAB, and exported to C++. The handle-driven approach is
essentially real-time, but the shape space approach require
pre-computation of the null space of a matrix, and eigenval-
ues extraction of the dense Hessian. This typically required
several minutes for 1–2k meshes on an i7 CPU machine with
4Gb memory. However, once extracted per mesh, the explo-
ration is real-time as well.

Discussion: We have shown several sets of tools for
the design and editing of polyhedral, and near-polyhedral,
meshes. The handle-driven tool is more light-weight, and
suitable for large deformations and interpolation needs.
However, as currently presented, it is limited to energies
which can be put in terms of desirable affine maps per face,
or form linear constraints. Of course, other intricate energies
can be used, in a full scale optimization, with these linear
constraints, but that is out of the scope of our paper. Our sec-
ond approach removes the constraints by parametrizing the
shape hyperplanar space, and thus allows for more freedom
of expression, with all types of fairness energies involved,
and also including the possibility of handle-driven approach
by its own (as an unconstrained optimization process). How-
ever, this parametrization comes at a price of O(n2) memory
and space complexity, which serves as an improvement from
the method of [YYPM11], but might nevertheless be cum-
bersome for large meshes. The lightweight handle-driven ap-
proach also carries the price of sparse matrix factorization,
and several repeated iterations, but its complexities are still
far lesser than the ones the shape space approach introduces.
We believe that the combination of these approaches pro-
vides a good set to work with; The user might manipulate a
coarse mesh with the full extent of the shape space explo-
ration, further subdivide it, and might then continue with the
more lightweight handle-driven approach.
Using affine maps in a linear space also has some lim-
itations. As we do not have the full scale of polyhedral
deformations, we cannot totally guarantee properties other
than planarity; for instance, concyclity, which, for some ap-
plications, needs to be exact. However, no other existing
method can guarantee above second-order osculation with
other properties, without resorting to full-blown constrained
optimization, and our results are adequate in comparison.
Another interesting limitation is the adherence to a specific
mesh topology, which is an obiquitous problem for explicit
deformation and shape-space algorithms. When mesh ele-
ments become too strained, the need to remesh restarts the
computation. A shape space which is either insensitive of
the meshing, or easy to re-adjust, for instance by connectiv-

ity editing [PZK+11], is still an open problem. As we have
discussed before, it would be interesting to see if proper-
ties like concyclity, or conicality, can be totally accommo-
dated using other types of linear spaces as well. Also, we
would like to extend the method to include other types of sur-
faces, which have planarity constraints, such as Functional
Webs [DPW11], and for conformal/rigid parametrization of
polyhedral surfaces, such as the one presented in [LZX∗08]
for triangular meshes.
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Figure 12: Shape space exploration of several quad meshes. Originals are on the left column. Notice the Train Station model
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Appendix A: Linear Least Squares with Linear

Constraints

given a linear least squares energy E(x) = ‖Ax−b‖2, with
linear equality constraints Cx = d, a solution can be found
with Lagrange multipliers λ by solving the following linear
system:

(

AT A CT

C 0

)(

x

λ

)

=

(

AT b

d

)

(8)

If the constraints are overdetermined, or not consistent,
The solution will fit the constraints in a least square manner.

Appendix B: The Dimension of the Null Space

We consider each Euclidean dimension separately, since
both the constraints and the affine maps are separable. Thus,
we have three variables of A per face, and one variable per
vertex for q, which amount for 3|F|+ |V | variables. Suppose
that a face comprises n edges, we then have n− 1 compat-
ibility conditions, since the condition on the last edge is a
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trivial sum of the rest. In order to avoid counting the normal
fibration space (see Section 5.1), we introduce one “phan-
tom” condition per face, that transforms the normal to this
face arbitrarily. We then arrive at n conditions per face, and
|H| conditions in total, where H is the group of halfedges.
It is evident that in triangle meshes, where |H| = 3|F|, we
have |V | degrees of freedom, which reproduces the ability to
move vertices arbitrarily within the trivial affine-equivalent
space. Suppose that B is the group of boundary edges, we
therefore obtain:

#var = 3|F|+ |V |,#const = |H|= 2|E|− |B| (9)

In a pure quad mesh, where |H| = 4|F|, the null space

dimension is χ +
|B|
2 , where χ is the Euler characteristic.

Therefore, closed quad meshes with no boundary rarely have
exact nontrivial null spaces, although this might pose a sig-
nificant problem only for the exact affine shape-space explo-
ration process. However, architectural meshes usually have
several meaningful boundaries (such as the ones presented
in this paper), and, therefore, enjoy an adequate exact shape-
space, as shown in the examples. Pure hexagonal meshes
have an even more strict null space, but hexagonal-dominant
meshes enjoy a greater possibility, because they combine
low-degree faces. Notice that the said degrees of freedom
are a lower bound, in a sense, as the constraints can become
more dependent. For instance, the trivial space of uniformly-
affine motions is always in the null space, and some symme-
tries may result in more dependancy as well.

Figure 13: Shape space exploration of general polyhedral

meshes - the upper is quads and triangles, and the lower is

hexagonal-triangular (Lilium model)
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