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Abstract. We study mappings of the form x : Z × R → R3 which can be
seen as a limit case of purely discrete surfaces, or as a semi-discretization of
smooth surfaces. In particular we discuss circular surfaces, isothermic surfaces,
conformal mappings, and dualizability in the sense of Christoffel. We arrive at a
semidiscrete version of Koenigs nets and show that in the setting of circular sur-
faces, isothermicity is the same as dualizability. We show that minimal surfaces
constructed as a dual of a sphere have vanishing mean curvature in a certain
well-defined sense, and we also give an incidence-geometric characterization of
isothermic surfaces.
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1. Introduction

An important topic in discrete differential geometry is the study of smooth
surface parametrizations g : R2 → R3 which arise as limits of discrete mappings
(nets) of the form x : εZ2 → R3, as ε → 0. This approach was initiated by
R. Sauer, whose work is summarized in his textbook [Sau70]. For instance, the
conjugate parametrizations g characterized by the condition

{∂1g, ∂2g, ∂12g} linearly dependent

arise as limits of nets with planar faces (Q-nets). This planarity is equivalently
expressed in terms of forward differences as

{∆1x,∆2x,∆12x} linearly dependent.

A systematic treatment of the d-dimensional case, and especially of the important
concepts of consistency and integrability, is contained in the recent monograph
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2 CHRISTIAN MÜLLER AND JOHANNES WALLNER

x

x1

C

∂x1

∂x∂x∂x∂x∂x∂x∂x∂x∂x∂x∂x∂x∂x∂x∂x∂x∂x
Figure 1: A circular semidiscrete surface
x : {0, 1}×R→ R3 with corresponding pairs
of points and a circle C . Assuming developa-
bility, equal angles characterize the circular
property.

[BS09a]. One important point is that sequences of smooth surfaces (transforma-
tions of surfaces) can be seen as the limit of higher-dimensional nets where only
some discrete parameters converge to continuous ones, while others remain dis-
crete. The low-dimensional case of mappings x : Z × R → R3 has not received
attention from the viewpoint of surface transformations, but has been employed
in geometry processing [PSB+08]: Such a semidiscrete surface is conjugate, if

{∂x,∆x, ∂∆x} linearly dependent,

where ∂x is the derivative w.r.t. the continuous parameter, and

∆x = x1 − x

is the forward difference w.r.t. the discrete parameter. The notation x1 indicates
an index shift: x1(k, t) = x(k + 1, t).

Applications of such surfaces come from the following fact: The conjugacy
condition immediately implies that the surface consisting of the line segments
x(k, t)x(k + 1, t) is developable. A semidiscrete conjugate surface therefore can be
seen as a union of developable strips.

Another interesting class of surfaces which occurs in all three categories is the
circular ones: The smooth curvature line parametrizations correspond to the cir-
cular nets which are characterized by each face having a circumcircle. The semidis-
crete version is defined as follows:

Definition 1. A semidiscrete surface x is circular, if for each corresponding pair
of points x, x1 there is a circle C passing through these points and being tangent
to ∂x, ∂x1 there (see Figure 1). We consider these circles as a mapping

C : Z× R→ {circles}.

As regards mappings between surfaces, their rather rigid combinatorics prevents
semidiscrete surfaces from enjoying the rich variety of such mappings which their
smooth counterparts have. However, they are not as restricted in this matter as
their fully discrete colleagues. Parameter transforms, i.e., invertible self-mappings,
are of the kind x(k, t) 7→ x(k0 ± k, ψ(t)), for some local diffeomorphism ψ on the
real line. Another kind of mapping which plays an important role in both the
smooth and discrete categories is the topic of the next section.
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Semidiscrete mappings already occur in the transformation theory of surfaces
which was built mainly in the 19th century. In fact one could treat our semidis-
crete surfaces as transformations of curves. Assuming this viewpoint, circular
semidiscrete surfaces correspond to Ribaucour transformations.

2. Conformal mapping of semidiscrete surfaces

A mapping of smooth surfaces is conformal if tangent vectors retain their angles,
and their lengths are multiplied by a factor which depends on the point only. In
the semidiscrete case we first consider circular surfaces only, where we require
only a suitable transformation rule for lengths of derivatives, disregarding the
angle completely.

Definition 2. The mapping x(k, t) 7→ x′(k, t) of circular semidiscrete surfaces is
conformal, if there is a function ν : Z× R→ R+, ν = eu, such that

‖∂x‖ = ν ‖∂x′‖ = eu ‖∂x′‖ ,
‖∆x‖=

√
νν1 ‖∆x′‖= e

u+u1
2 ‖∆x′‖ .

Example 1. It turns out that any Möbius transform µ induces a conformal map-
ping between surfaces: First observe that µ maps circles to circles, so for circular
x, also x′ = µ ◦ x is circular. Further we have the property that there exists a
positive function ρ such that ‖µ(a) − µ(b)‖2 = ρ(a)ρ(b)‖a − b‖2, for all a, b ∈ R3

(see for instance [SSP08]). By differentiation we get ‖daµ(v)‖2 = ρ(a)2‖v‖2, where
v is a tangent vector attached to a. It follows that Def. 2 is fulfilled with ν = ρ◦x:

‖∆x′‖2 = (ρ ◦ x1)(ρ ◦ x)‖∆x‖2, ‖∂x′‖2 = (ρ ◦ x)2‖∂x‖2.

It turns out that infinitesimally, Möbius transforms and conformal mappings are
the same:

Lemma 3. The mapping x(k, t) 7→ x′(k, t) of circular semidiscrete surfaces is
conformal, if and only if each pair of corresponding circles C (k, t), C ′(k, t) is
mapped via a Möbius transformation. I.e., there is µ : Z×R→ Möb such that for
each (k, t),

(1) (C , x, x1, ∂x, ∂x1)
µ,dµ7−→ (C ′, x′, x′1, ∂x

′, ∂x′1).

Proof. There is a Möbius transform µ : C → C ′ such that (x, x1, ∂x) 7→ (x′, x′1,
∂x′). This is an infinitesimal or limit version of the well known property that a Mö-
bius transformation on a circle is uniquely determined by the image of three points.

Using the terminology of Def. 2, factors ν = ‖∂x′‖
‖∂x‖ and

√
νν1 = ‖∆x′‖

‖∆x‖ determine

the factor ν1 =
‖∂x′

1‖
‖∂x1‖ , so the length of ∂x′1 is already determined by the mapping

of x, x1, ∂x. By Example 1, the same applies to the Möbius transform µ: We

have ν1 = ‖dµ(∂x1)‖
‖∂x1‖ , which implies ∂x′1 = ±dµ(∂x1). Since the two tangent vectors

∂x, ∂x1 have opposite orientation on the circle C , and the same holds true for C ′,
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we have finally shown that ∂x′1 = dµ(∂x1). The converse (Möbius =⇒ conformal)
is obvious and follows directly from Example 1. �

3. Duality

Both the smooth and discrete categories exhibit the feature of Christoffel duality,
which relates spheres with minimal surfaces. In the discrete category, the analytic
property of possessing such a dual is equivalent to the incidence-geometric property
of being a Koenigs net [BS09b]. We wish to find out how this theorem manifests
itself in the semidiscrete category.

In the class of circular surfaces, the following equivalences emerge: The natural
definition of Christoffel dual leads us to a class of dualizable surfaces. They coincide
with those conformal to trivial surfaces (the isothermic surfaces), and they further
turn out to be characterized by a semidiscrete version of an incidence-geometric
condition which in the discrete case characterizes Koenigs (dualizable) nets. We
start with the definition of duality:

Definition 4. Conjugate semidiscrete surfaces x, x∗ are dual to each other, if
there is a function ν : Z× R→ R+ such that

(2) ∂x∗ = − 1

ν2
∂x, ∆x∗ =

1

νν1

∆x.

Duality obviously is an equivalence relation. The following is a semidiscrete
analogue of the original defining equation of Koenigs nets:

Lemma 5. A conjugate semidiscrete surface x possesses a dual if and only if there
is ν : Z× R→ R+ such that

(3) ∆∂x =
ν1

ν
∂x− ν

ν1

∂x1 + ∂ log(νν1)∆x.

Proof. The proof consists of expanding the ‘Schwarz’ compatibility condition
∆(∂x∗) = ∂(∆x∗) referring to the expressions for ∆x∗, ∂x∗ given by (2):

∆∂x∗ =
1

ν2
∂x− 1

ν2
1

∂x1, ∂∆x∗ =
1

νν1

∂∆x− ν1∂ν + ν∂ν1

(νν1)2
∆x.

�

Lemma 6. Consider the plane spanned by vectors ∂x, ∂x1,∆x. If x is dualizable,
then the vectors ∂x, ∂x1 lie to the same side of the straight line spanned by ∆x.

Proof. Vector product of (3) with ∆x yields (1+ ν
ν1

) ∂x1×∆x = (1+ ν1
ν
) ∂x×∆x.

This implies the following quotient of parallel vectors which we need later:

(4) (∂x1 ×∆x) : (∂x×∆x) = ν1 : ν.

Since ν, ν1 > 0, ∂x and ∂x1 lie to one side of ∆x. �

Corollary 7. For dualizable surfaces, all developable ruled surface strips bounded
by curves x, x1 are free from singularities.
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Proof. It is well known [PW01] that the singularities of the strip occur in the
point r given by

(5) r = x+ α∆x, with α = − ∂x×∆x

∆∂x×∆x
=

(
1− ∂x1 ×∆x

∂x×∆x

)−1

.

By Lemma 6, α 6∈ (0, 1) and r lies outside the segment xx1. �

Proposition 8. The dual of a conjugate surface is unique up to translation and
scaling. In particular the function ν required by Definition 4 is unique up to mul-
tiplication with a constant, if it exists.

Proof. Assume that both ν and ν̃ fulfill (3). Subtracting these two equations
from each other yields

(6) 0 = (ν1ν̃ − ν̃1ν)(ν1ν̃1∂x+ νν̃∂x1) + νν1ν̃ν̃1

(∂ν
ν

+
∂ν1

ν1

− ∂ν̃

ν̃
− ∂ν̃1

ν̃1

)
∆x.

Lemma 6 implies linear independence of {ν1ν̃1∂x+ νν̃∂x1,∆x}, so

ν1

ν
− ν̃1

ν̃
= 0 and ∂ log

νν1

ν̃ν̃1

= 0.

The first equation means that ∆(ν/ν̃) = 0. We differentiate it and observe ν/ν1 =
ν̃/ν̃1 again, which yields

0 =
∂ν1

ν
− ν1∂ν

ν2
− ∂ν̃1

ν̃
+
ν̃1∂ν̃

ν̃2
=
ν1

ν
∂ log

ν1ν̃

νν̃1

.

Comparison of the two vanishing ∂ log terms shows that ∂ log(ν/ν̃) = 0. In total
we have now shown that the quotient ν/ν̃ is constant. �

4. Isothermic surfaces

In the smooth category, the notion ‘isothermic surface’ refers to a principal
curvature line parametrization which is conformal. Equivalently we may require
that any curvature line parametrization can be made conformal by a parameter
transform of the special kind (u, v) 7→ (ψ1(u), ψ2(v)). Our definition of isothermic
semidiscrete surfaces is guided by this property.

Definition 9. A circular semidiscrete surface x is isothermic, if some mapping
x(k, t) 7→ (β1(k), β2(t)) is conformal.

Corollary 10. For circular semidiscrete surfaces isothermicity is equivalent with
the existence of scalar functions ν, σ, τ with

(7) ‖∆x‖2 = σνν1, ‖∂x‖2 = τν2 where ∂σ = 0, ∆τ = 0

(i.e., σ, τ depend on the discrete and the continuous variable only).

Proof. By definition of conformality, there exists ν : Z × R → R+ with ‖∂x‖ =
ν|∂β2| and ‖∆x‖ =

√
νν1|∆β1|. Let τ = (∂β2)

2 and σ = (∆β1)
2. The converse is

analogous: we define β1 =
∑√

σ and β2 =
∫ √

τ . �
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We proceed to show that among circular surfaces, isothermicity and dualizability
are equivalent.

Theorem 11. For circular surfaces, dualizability and isothermicity are equivalent.
The natural mapping of x to its dual x∗ is a conformal mapping.

Proof. We start by assuming dualizability of x and the existence of a suitable
function ν. It is obvious that the mapping x(k, t) 7→ x∗(k, t) fulfills the definition
of conformal mapping. We let

σ =
‖∆x‖2

νν1

and τ =
‖∂x‖2

ν2

and show ∂σ = 0, ∆τ = 0. This implies isothermicity, by Cor. 10.
From the circular property (see Figure 1) we see that there is a mirror reflection

which transforms the circle C into itself and which exchanges the points and
vectors

x←→ x1, [∂x]0 ←→ [∂x1]0 , where [v]0 =
v

‖v‖
.

From this symmetry we conclude the following elementary geometric relation be-
tween normalized derivatives in points x and x1:

(8) 〈[∂x]0 + [∂x1]0 ,∆x〉 = 0.

We consider Equation (3) which characterizes dualizability, and multiply it with
[∂x]0 + [∂x1]0. Using the angle γ = cos ^(∂x, ∂x1) which is different from π, this
yields in succession(〈∂x, ∂x1〉

‖∂x1‖
+ ‖∂x‖

)
(ν2

1 + νν1) =
(〈∂x, ∂x1〉
‖∂x‖

+ ‖∂x1‖
)
(ν2 + νν1)

⇐⇒ ‖∂x‖(1 + cos γ)ν1(ν1 + ν) = ‖∂x1‖(1 + cos γ)ν(ν + ν1)

⇐⇒ ‖∂x‖
ν

=
‖∂x1‖
ν1

⇐⇒ ∆τ = 0.(9)

We employ Equations (8) and (9) to compute

〈∆∂x,∆x〉 = 〈‖∂x1‖ [∂x1]0 ,∆x〉 − 〈‖∂x‖ [∂x]0 ,∆x〉

=
ν1

ν
‖∂x‖〈[∂x1]0 ,∆x〉 −

ν

ν1

‖∂x1‖〈[∂x]0 ,∆x〉

= −ν1

ν
‖∂x‖〈[∂x]0 ,∆x〉+

ν

ν1

‖∂x1‖〈[∂x1]0 ,∆x〉 = 〈 ν
ν1

∂x1 −
ν1

ν
∂x,∆x〉.

We multiply (3) with ∆x and plug in the expression above. We get

0 = 2〈∆∂x,∆x〉 −
(∂ν
ν

+
∂ν1

ν1

)
‖∆x‖2.

This equals νν1∂σ by construction, so we have ∂σ = 0 and the proof of “dualiz-
ability =⇒ isothermicity” is complete.
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To show the converse, we assume that x is isothermic. We are going to show
that the function ν required by Definition 4 is the one of (7). We use the functions
σ, τ introduced in Cor. 10 and rewrite the derivatives of the dual x∗ in the form

(10) ∂x∗ = − 1

ν2
∂x = −τ ∂x

‖∂x‖2
, ∆x∗ =

1

νν1

∆x = σ
∆x

‖∆x‖2

and check consistency. Using (8),

∂∆x∗ =
σ

‖∆x‖4
(
‖∆x‖2∂∆x− 2〈∆x, ∂∆x〉∆x

)
=

σ

‖∆x‖4
(
‖∆x‖2∂∆x− 2∆x〈∆x, ∂x〉(−‖∂x1‖

‖∂x‖
− 1)

)
.

The reflection mentioned above not only implies (8), but also causes ∆x to be
parallel to the difference of normalized tangent vectors:

∆x = λ∆ [∂x]0 , with λ = − ‖∆x‖
2〈[∂x]0 , [∆x]0〉

.

We substitute one occurrence of ∆x in our expression for ∂∆x∗ and get

∂∆x∗ =
σ

‖∆x‖2
(
∆∂x−∆ [∂x]0 (‖∂x1‖+ ‖∂x‖)

)
=

σ

‖∆x‖2
(‖∂x1‖ [∂x]0 − ‖∂x‖ [∂x1]0)

(7)
=
∂x

ν2
− ∂x1

ν2
1

= ∆∂x∗.

Here we have used the expressions of (7). This establishes the integrability con-
dition and thus existence of x∗. The surface x∗ is circular because corresponding
vectors ∂x, ∂x∗ are parallel, and so are ∆x,∆x∗. �

Remark 12. The formulae in this proof are similar of those concerning the Ribau-
cour transform found e.g. in [BS09a, p. 18]. We refrain from a systematic discus-
sion.

5. Semidiscrete minimal surfaces

In imitation of the respective well known property of smooth minimal surfaces
we define:

Definition 13. If x : Z× R → S2 is a semidiscrete isothermic surface inscribed
in the unit sphere, then its Christoffel dual x∗ is called a minimal surface.

An example is shown by Figure 2. It turns out that the semidiscrete analogue
of the discrete curvature theory of [BPW10] yields vanishing mean curvature for
the semidiscrete minimal surfaces defined here: If we consider

a dt :=
1

2
det(∂x+ ∂x1,∆x) dt
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as the area of of the infinitesimal face x(k, t), x1(k, t), x1(k, t + dt), x(k, t + dt),
then the mixed area of that face and the corresponding face in x∗ has to be

Adt =
1

4

(
det(∂x+ ∂x1,∆x

∗) + det(∂x∗ + ∂x∗1,∆x)
)
dt.

Here the determinant is to be taken w.r.t. some consistently oriented normal vector.
According to [BPW10], the mean curvature of x w.r.t. the Gauss image x∗ has to
defined by letting

H = −A/a.

When computing the mean curvature of x∗ with respect to x as a Gauss image,
we take an appropriately modified a∗ for the denominator. We get the following
result:

Proposition 14. If x and x∗ is a dual pair of isothermic surfaces, where x is
considered as the Gauss image of x∗, then the mean curvature of x∗ vanishes.

Proof. We verify that the infinitesimal mixed area A as defined above vanishes.
We first express the norms of vectors in terms of the functions ν, σ, τ of (7):

‖∆x∗‖2 =
σ

νν1

, ‖∂x∗‖2 =
τ

ν2
.

We employ the angle γ = ^(∆x, ∂x) = π − ^(∆x, ∂x1) and get

4A = sin γ
(
− (τν2 σ

νν1

)1/2 − (τν2
1

σ

νν1

)1/2 + (
τ

ν2
σνν1)

1/2 + (
τ

ν2
1

σνν1)
1/2

)
= 0.

Here we have used that τ1 = τ . �

Figure 2: Left: A semidiscrete isothermic surface x inscribed in the unit sphere. Right:
its Christoffel dual x∗, which is a semidiscrete minimal surface.



SEMI-DISCRETE ISOTHERMIC SURFACES 9

6. Incidence-geometric characterizations of Koenigs surfaces

In the category of discrete ‘conjugate’ nets x : Z2 → R3 with planar faces, dual-
izability is characterized by the condition that the intersection points of diagonals

h = (x ∨ x12) ∩ (x1 ∨ x2).

itself constitute a conjugate net [BS09b]. The notation employed here is that the
index i indicates a shift in the i-th integer parameter of the discrete surface in
question.

The following semidiscrete version is due to H. Pottmann: We visualize a
semidiscrete surface as the limit of a discrete surface whose elementary quadrilater-
als become thinner and thinner — see Figure 3. The intersection of infinitesimally
neighbouring rulings is known: It is the regression point(

x ∨ x1

)
∩

(
(x+ dt ∂x) ∨ (x+ dt ∂x1)

)
= r,

where r is given by Equation (5) (see Figure 4). The intersection point of the diag-
onals then converges to a point h such that x, x1, h, r form a harmonic quadruple.
This leads to the following definition of a semidiscrete Koenigs net:

For a conjugate semidiscrete surface x consider the regression points r and the
surface h : Z× R→ R3 defined by the cross-ratio condition

(11) cr(x, x1, h, r) = −1.

Then x is said to be Koenigs ⇐⇒ h is conjugate. This condition does not make
sense if x maps into a plane. In order to incorporate this case also, we give a
slightly different definition:

Definition 15. The conjugate semidiscrete surface x has property H ⇐⇒ the
tangents

x+ R∂x, h+ R∂h, h1 + R∂h1,

Figure 3: Behaviour
of intersection points as
quadrilaterals degenerate.
Points r, d approach lim-
its r′, d′ such that x, x1,
d, r constitute a harmonic
quadruple. In this visu-
alization of a semidiscrete
surface x′ as limit of a dis-
crete surface x, the point r
converges to the regression
point of the ruling x′ ∨ x′1. x

x2

x1

x12

ddddddddddddddddd

r

x′ d′ x′1 r′
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x

x1
x12x12x12x12x12x12x12x12x12x12x12x12x12x12x12x12x12

x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2

r

x

∂x
∂x1∂x1∂x1∂x1∂x1∂x1∂x1∂x1∂x1∂x1∂x1∂x1∂x1∂x1∂x1∂x1∂x1

∆x∆x∆x∆x∆x∆x∆x∆x∆x∆x∆x∆x∆x∆x∆x∆x∆x

r
x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1

Figure 4: Left: A conju-
gate net x : Z × {0, 1} →
R3 with regression points r.
Right: A semidiscrete con-
jugate surface x : {0, 1} ×
R → R3 with regression
curve r.

lie in a pencil (i.e., intersect or are parallel). Here h is defined by (11) as the
harmonic conjugate of the regression curves.

Theorem 16. Every dualizable (conjugate semidiscrete) surface x has property H.

Proof. The regression curve of Equation (5) has the form r = x + α∆x. Since
cr(0, 1, α, α

2α−1
) = −1, the harmonic conjugate h is given by x + α

2α−1
∆x. The

surface x is dualizable, so we may use (4) when computing α:

(12) r = x+
ν

ν − ν1

∆x, h = x+
ν

ν + ν1

∆x.

Equation (3), which reads (νν1 +ν2)∂x1−ν∂ν1∆x = (νν1 +ν2
1)∂x+ν1∂ν∆x holds.

We use this in our computation of the derivative ∂h:

∂h = ∂x+
ν1∂ν − ν∂ν1

(ν + ν1)2
∆x+

ν

ν + ν1

(∂x1 − ∂x)(13)

=
1

(ν + ν1)2

(
(νν1 + ν2

1)∂x+ (ν1∂ν − ν∂ν1)∆x+ (ν2 + νν1)∂x1

)
(3)
=

2ν1

(ν + ν1)2

(
(ν + ν1)∂x+ ∂ν∆x

)
.

The tangents of x and h intersect in the common point

(x+ R∂x) ∩ (h+ R∂h) = x− ν

∂ν
∂x,

since that expression also equals h − ν(ν+ν1)
2ν1∂ν

∂h. The important fact here is that
the intersection point of tangents does not involve x1 but only x. The parameter
transform x(k, t) → x(−k, t) causes the changes ν(k, t) → ν(−k, t) and h(k, t) →
h(−1 − k, t), so tangents of h1, x intersect in the same point x − ν

∂ν
∂x. This

establishes property H. �

Theorem 17. Any circular surface with property H can be re-parametrized to
become dualizable (i.e., isothermic).

Proof. We assume that tangents of the curves x, h, h1 intersect in a common
point x+ λ∂x. We are going to show isothermicity. For that purpose we define

ν = ‖∂x‖.
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The surface x is circular, and so the angle condition (8) implies that the mirror
reflection defined by ∆x 7→ −∆x exchanges ν1∂ with ν∂x1 (these two vectors have
equal length by construction). We use this information to simplify the expression
for ∂h given by (13):

ν∂x1 + ν1∂x = 2ν1∂x− 2〈ν1∂x, [∆x]0〉 [∆x]0

=⇒ ∂h =
ν1∂ν − ν∂ν1

(ν + ν1)2
∆x+

1

ν + ν1

(ν∂x1 + ν1∂x) = a∆x+
2ν1

ν + ν1

∂x.(14)

By property H and the definition of λ, vectors ∂h and x+λ∂x−h are proportional.
This immediately implies the ratios

(15) a∆x : (x− h) =
2ν1

ν + ν1

: λ

We insert the known expression for a and get the expression for λ given below.
Re-indexing yields an analogous expression for λ1, where x1 + λ1∂x1 is the point
where tangents to x1, h, h1 meet:

2

λ
=
∂ν1

ν1

− ∂ν

ν
+

2(ν + ν1)〈ν1∂x,∆x〉
νν1‖∆x‖2

,

2

λ1

=
∂ν

ν
− ∂ν1

ν1

− 2(ν + ν1)〈ν∂x1,∆x〉
νν1‖∆x‖2

.

The mirror reflection employed above yields equality of the scalar products which
occur in these two formulas. By taking differences we obtain

(16)
1

λ
− 1

λ1

=
∂ν1

ν1

− ∂ν

ν
i.e., −∆

1

λ
= ∆∂ log ν.

A parameter transform x′ = x ◦ ψ with ψ(k, t) = (k, ψ2(t)) changes ν, λ via ν ′ =
∂ψ2(ν ◦ ψ) and λ′ = 1

∂ψ2
(λ ◦ ψ). It follows that (λν) ◦ ψ = λ′ν ′. Select k = k0 and

choose ψ2(t) as solution of an ordinary differential equation:

∂
1

ν ′
=

1

(λν) ◦ ψ
=⇒ − ∂ν ′

(ν ′)2
=

1

ν ′λ′
=⇒ 1

λ′
= −∂ log ν ′ for k = k0.

By (16), this parameter transformation yields 1/λ′ = −∂ log ν ′ for all values of k.
We drop the prime and denote the transformed surface by x. By back-substitution
of 1/λ = ∂ν/ν in the proportion (15) we get the value of a:

a =
2ν1∂ν

(ν + ν1)2
.

The two expressions for ∂h, namely the one given by (13) and the other one
involving a in (14), yield

ν1∂ν − ν∂ν1

(ν + ν1)2
∆x+

ν∂x1 + ν1∂x

ν + ν1

=
2ν1∂ν

(ν + ν1)2
∆x+

2ν1

ν + ν1

∂x
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This easily expands to (3). The surface x is therefore dualizable, and by Theo-
rem 11 it is isothermic. �
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