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Figure 1: Closeup photography of a string art image generated with our computational fabrication pipeline.

Abstract
In this paper we propose a novel method for the automatic computation and digital fabrication of artistic string images. String
art is a technique used by artists for the creation of abstracted images which are composed of straight lines of strings ten-
sioned between pins distributed on a frame. Together the strings fuse to a perceptible image. Traditionally, artists craft such
images manually in a highly sophisticated and tedious design process. To achieve this goal fully automatically we propose a
computational setup driven by a discrete optimization algorithm which takes an ordinary picture as input and converts it into
a connected graph of strings that tries to reassemble the input image best possibly. Furthermore, we propose a hardware setup
for automatic digital fabrication of these images using an industrial robot that spans the strings. Finally, we demonstrate the
applicability of our approach by generating and fabricating a set of real string art images.

1 Introduction
String art is a technique for the creation of visual artwork where
images emerge from a set of strings that are spanned between pins.
There are several artists that have experimented with the creation of
string art using a proprietary algorithmic solutions in combination
with manual crafting [Vre16] or automatic fabrication [Laa18]. In
this paper, we propose a formal treatment of the problem and an
automatic computational fabrication pipeline to generate string im-
ages that resemble a gray scale image given as input.
Our goal is to compute the string path around the given pins and
to fabricate the string images automatically using a robot. While
the pins can be placed in any pattern, we focus on a setup where
pins are distributed along a circular frame which encloses a canvas.
In addition, we would like the image to be generated by a single
string without cutting it. Please refer to Figure 2 which depicts this
process.
The main challenge of computational string art is the proper for-

mulation of an optimization problem that computes the path of the
string. There are many parameters and design choices leading to
very different optimization problems. For example, the selection of
parameters, like the number of pins and the image resolution used
in the computation, drive the scale of the problem. The image for-
mation model influences the complexity of optimization.
Considering all possible factors leads to an overly ambitious mod-
eling of the problem that is discrete, very-large scale, and non-
linear. Therefore, the best known algorithm for generating string
art proposes to relax the problem into a least squares formulation
and employ thresholding [Var17]. This leads to a reasonable base-
line solution, but there are still too many visual artifacts.
Based on a large set of experiments, we confirmed that it is reason-
able to split the problem into two parts. The complete string path
is broken down into individual string segments from one pin to an-
other. The first part of the optimization is concerned with selecting
a subset of individual string segments and the second part of the
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optimization computes a sequence of string segments. However,
we also observed that the relaxation of the string segment selection
leads to large errors and that it is better to formulate the problem as
a non-linear binary least squares problem directly. While this prob-
lem is NP-hard and cannot be solved exactly in feasible time, we
propose an iterative greedy algorithm that clearly outperforms the
relaxed version of the problem in practice.

Contributions. We propose a framework for the computation and
automatic fabrication of string images. We present an analysis of
the important parameters in the fabrication process in Section 3,
a formulation of the problem as an optimization task with various
objectives in Section 4, an iterative greedy approximation solver for
binary problems in Section 5, an improved Eulerian path extraction
algorithm in Section 6, and an automatic fabrication setup using an
industrial robotic arm in Section 7.

2 Related Work
The generation of artistically looking images has a long tradition
in the computer graphics community. There have been many ap-
proaches for the abstraction and creation of images both for digital
as well as for physical purposes. All these techniques have one in
common: there is some input example (often just an image), and
there is a computational pipeline that transforms the input into a
specific artistic style, appearance, or a physical phenomenon.

Abstractions and Conversions. There are couple of pioneer-
ing works that aim at abstraction of input photographs such that
they mimic some artistic techniques, like impressionistic images
[Hae90], pen and ink illustrations [SABS94], or general transfer of
one style of painting to other images [HJO∗01]. Elber [Elb10] pro-
posed a method for creation of abstract 3d ortho-pictures from sets
of various 2d inputs.
Also other types of abstractions have been developed, as for in-
stance generation of halftone QR codes [CCLM13] or creating per-
sonalized jigsaw puzzles from input images [LSS∗14]. Also meth-
ods for the conversion of low-resolution pixel images to vector
graphics have been proposed [KL11].

Shadows and Perspective. Another branch of works aims at the
generation of images using controlled shadow casting. One impres-
sive work proposes a system for optimization of 3d objects in or-
der to cast varying shadow images [MP09] if lit from different di-
rections. Alexa and Matusik proposed a method which generates
images by self-occlusion of a large set of small tubes of varying
length [AM11]. The idea of images cast by shadowing has been
further explored by Bermano et al. [BBAM12], who proposed a
method to create multiple self-shadowing pictures which emerge
depending on the direction the surface is lit from, and by Baran et
al. [BKB∗12], who proposed a set of layers which cast a desired
shadow if lit appropriately.
Recently, Zhao et al. [ZLW∗16] proposed an approach for the com-
putation of perforated lampshades for continuous projective images
which emerge as shadows on the walls if a lamp is lit. Another very
interesting method proposed by Schüller et al. [SPSH14] creates
so-called appearance-mimicking surfaces, where an image is dis-
tributed across different geometric objects and emerges as a relief
only if viewed from a very specific position.

Light and Optics. Yet another set of methods aim at the genera-
tion of images from reflections or other light effects, especially by

fabricating surfaces of objects with controlled appearance and re-
flectance properties. Weyrich et al. [WPMR09] proposed a method
for the fabrication of small geometric patches whose surfaces ex-
hibit desired appearance, such that e.g., their reflection casts a spe-
cific pattern. These ideas were further extended, e.g., by Levin et
al. [LGX∗13]. Other interesting image generation methods utilize
effects caused by light transport through (semi) transparent me-
dia [PJJ∗11, YIC∗12, STTP14]. These works introduce solutions
how to create controlled caustics using inverse light transport.

Reliefs and Fabrication. Reliefs are yet another technique for
creation of abstracted physical images. They were used by artists
since ancient times, and also in the computer graphics community,
their computation from 2d [AM10] and 3d objects [WDB∗07] with
further digital fabrication using CNC milling has been proposed.
Reliefs have been also used to make existing artworks more acces-
sible by blind and visually impaired people [RMP11].
More recently, techniques for the texturing of physical reliefs or 3d
objects [PDP∗15, ZYZZ15] as well as for the generation of spatial
physical shapes from flat sheets using thermoforming have been
proposed [SPG∗16]. In both cases the problem is to map the image
appropriately to the deformed surface.

Computer and Robot Aided Arts. Utilization of robots for im-
age generation has also been already approached. For instance,
Lindemeier et al. [LPD13] intorduced a feedback loop robot-setup
which repaints given target images in with a certain abstraction.
Another setup uses drones that are automatically controlled in or-
der to paint stipples on the canvas in order to reproduce an input
image [GKAK16].
Computationally aided-painting has been also introduced. For in-
stance, Prevost et al. [PJJSH16] introduced a spray-painting system
based on motion-tracking and computer-controlled release of the
spray-valve, and Shilkrot et al. [SMPZ15] an augmented air-brush
system.
Finally, also in the HCI community, questions of the utilization of
robots for arts [SY17] have been raised.
Our method, however, does not claim to generate arts. Indeed, our
method is an automation of a known technique which generates
artistically looking results from existing input samples.

3 Fabrication Considerations

The physical setup we propose is the following: we use a (circular)
canvas of a certain diameter and distribute pins along its frame.
Then we span strings between the pins following an Eulerian path
using an industrial robot. In Section 7 we explain the details of
the fabrication process. However, in order to model the problem
formally as a computational task and at the same time to meet the
requirements for digital fabrication, we cast a set of assumptions
and requirements:

(R1): We assume that a physical string is entirely opaque. In prac-
tice, the polyester overlock thread we have used meets this as-
sumption very well. This implies that drawing the same string
multiple times results in the same outcome, hence, the question
if a particular string between two pins is drawn or not is binary
(i.e., ∈ B).

(R2): Further, we discretize the canvas with a regular grid and as-
sume that the physical string thickness t in combination with the
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Figure 2: Top: three schematic steps of the string image generation
process. The setup is a frame that surrounds a canvas. The pins are
distributed along the frame. Then strings are spanned between the
pins until they fuse to a perceptible image. Bottom: three steps of a
real string image generation process with 256 pins.

diameter of the canvas d induce its resolution Z, in particular:

Z =
1
t

d .

This means that if a string is drawn horizontally or vertically
and it passes through the middle of a pixel, it covers it entirely.
The rationale behind this assumption is that it gives us a unique
assignment of the physical domain to the computational model,
such that, in general, our model is independent of the used string
thickness or frame size. However, please note that it now influ-
ences the computational complexity of the model.
In practice we work with a canvas of d = 630 mm and a thread
with a thickness t = 0.15 mm and thus with a full grid resolution
of Z = 4,096× 4,096 pixels.

(R3): We account for the pin diameter (or width), which implies
that a connection between two pins in practice can be drawn in
four different ways, as shown in Figure 6. In our setup, a pin
has a rectangular cross section with a width of 2 mm, which
corresponds to approx. 13 pixels on the canvas. Working with
single connections would thus introduce a significant error and
moreover, also disturbing Moire patterns.

(R4): Eventually, we also take into account that the output needs to
be fabricable using one long thread, which means that the finally
generated path needs to be an Eulerian path.

In order to meet all these requirements we have developed a com-
putational fabrication model which converts an input target image
into a string artwork that is automatically fabricated by a robot.

4 Problem Formulation

The input to our framework is an ordinary grayscale image. We
convert it into a real number representation in the range of [0,1]
and denote it further as the column vector

y ∈ [0,1]m ⊂Rm ,

where m is the number of all pixels, concatenated row-wise. The
output of the optimization algorithm is a binary array, where each
entry corresponds to an edge which could be drawn on the canvas.
Activated bins reflect edges which need to be drawn. We denote the
output as the column vector

x ∈ Bn ,

where n is the number of all possible edges. It has the dimension-
ality of

n = 4
(

p
2

)
,

where p is the number of pins on the frame of the canvas. Please
note that Bn is an extended space of edges which includes all four
possibilities to connect two pins as required by (R3) as depicted in
Figure 6.
In the following, the goal of our efforts is to determine the best
way to define a mapping F from the space of edges to the space of
pixels, i.e.,

F : Bn→ [0,1]m with x 7→ F(x) ,

and to determine the values of the elements of the vector x such that
it delivers the best approximation of the input image. Best means
here to reach the highest possible visual quality of the fabricated re-
sult which needs to be—of course—judged qualitatively. However,
in order to quantify this problem to treat it computationally, we cast
it as an optimization task of the form:

min
x
‖F(x)− y‖ s.t. x ∈ Bn

under a certain norm ‖·‖.
4.1 Linear Least Squares
Using least squares is the simplest baseline approach [Var17]. The
goal is to determine the values of the vector x such that the squared
l2-norm (further denoted as ‖·‖2

2) between the input image and the
approximated image is minimized in the least squares sense. In the
simplest case, we could cast the problem as an ordinary linear least
squares problem of the form:

min
x
‖Ax− y‖2

2 with A : Rn→Rm , (1)

where A is a linear mapping from the space of edges to the space of
pixels. The rows of the matrix A correspond to pixels and columns
to edges and in the simplest case it contains ones in all entries Aij if
a pixel i is (partially) covered by an edge j and zero elsewhere. The
coverage of the pixels can be determined by drawing the edge lines
on the canvas separately using a discrete line drawing algorithm
(e.g., Bresenham [Bre65]). An output image can be then created as
a linear combination of the strings as z = Ax.
In practice, in order to increase the accuracy, we construct the ma-
trix by rendering each edge with an anti-aliasing algorithm (e.g.,
Wu et al. [WXWX91]) and use the resulting grayscale values as
each pixel’s contribution, such that Aij ∈ [0,1].
If n < m, the problem is overdetermined and it results in a positive
definite quadratic function with a unique solution, which can be
found very efficiently. We used a sparse iterative conjugate gradient
based solver (e.g., LSQR [PS82]]) which needs less then 5 seconds
for m = 262,144 and n = 130,560 on a standard PC. Figure 3b
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(a) input (target) (b) Eq. 1
RMS = 0.056

(c) Eq. 1 rounded
RMS = 0.421

(d) Eq. 3
RMS = 0.169

(e) Eq. 3 rounded
RMS = 0.374

(f) Eq. 4
RMS = 0.463

(g) Eq. 5
RMS = 0.279

(h) Eq. 7 (GUROBI)
RMS = 0.232, L1 = 3.4e+4

(i) Eq. 7 (ours)
RMS = 0.221, L1 = 3.1e+4

(j) Eq. 8 (ours)
RMS = 0.154

Figure 3: Comparison of the output images given by different objective functions we have tested in this paper. The first image is the target.
Each result is given as its reconstructed image and the difference image to the target. First row of results are the linear least squares
approaches (3b-3e). Second row are binary approaches. Please note that even if results 3b and 3d provide very good reconstructions, they
violate fabrication constraints and cannot be physically produced.

depicts the result and an error image. Unfortunately, the minimizer
x is real-valued and can contain large (> 1) as well as negative
values, which would mean that an edge can be (partially) subtracted
from the canvas. Indeed, the decision if an edge should be drawn or
not is binary, thus, this solution violates requirement (R1).
A simple remedy would be rounding to the nearest integer with an
operator like

R : Rn→Bn with u 7→ R(u) = round
(

u−min(u)
max(u−min(u))

)
,

such that the final image is given by

z = C(AR(x)),

with the clamping function

C : R+
m→ [0,1]m with u 7→ C(u) = min (1,u) . (2)

Please note that since all entries of A are nonnegative, the result
AR(x) is also nonnegative, thus we need only to clamp at the upper
bound of the range. This procedure is, however, very inaccurate
and does not provide satisfactory results, as evident in Figure 3c.
Also the baseline approach of [Var17] proposed a similar operation,
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under the assumption of a non-opaque string and thus quantizing
the result to a (small) integer value. However, their results have not
been fabricated.
More importantly, this solution does not take the resolution con-
straints (R2) into account, which states that the output image reso-
lution is induced by the physical thickness of the thread.
We could address it by upsampling the input y to the necessary
resolution using an upscaling (w.l.o.g. a linear) operator U : Rm→
Rsm, and obtain

min
x

∥∥Ãx−Uy
∥∥2

2 with Ã : Rn→Rsm , (3)

where the matrix Ã maps the output array x to a supersampled im-
age space of real values Rsm. The scaling factor s equals the num-
ber of used superpixels per input pixel. The resolution is chosen
in such a way that a superpixel fulfills the fabrication requirement
(R2). Please refer to Figure 3d for the resulting image.
However, also in this case the output is not binary and hence still
violates (R1). Applying the rounding operator R again delivers very
inaccurate results, as depicted in Figure 3e.
Obviously, a crucial disadvantage of the least squares approaches
is their non-binary output. One solution which could help would be
constraining the problem to x ∈ R0,+ or even better to x ∈ [0,1],
however, our efforts to solve it with MATLAB failed due to memory
limitations.
For this reason, we further focused on a solution with a hard con-
straint that enforces x to strictly be ∈ Bn, which in fact is an NP-
hard problem. While there exist approaches to relax it and address
it more efficiently [QS08, CZ07], they are currently still limited in
the size of the problem they can deal with. In particular, in our
current setup, we require a number of 130,560 edges and 40962

pixels, which is a too large number for MILES [CZ07] that only
works with dense matrices.

4.2 Binary Non-Linear Least Squares

At this point we conclude that in order to meet the requirement
(R1), we need to solve a binary optimization problem and to meet
requirements (R2) and (R3), the solution needs to scale to a very
large number of variables. Hence, we propose to solve with an it-
erative greedy solver described in detail in Section 5. Using this
solver we can cast the problem as

min
x
‖C(Ax)− y‖2

2 s.t. x ∈ Bn , (4)

in order to solve it at the lower resolution or, to meet criterion
(R2) as

min
x

∥∥C
(

Ãx
)
−Uy

∥∥2
2 s.t. x ∈ Bn . (5)

In both cases C is a clamping operator as defined in Eq. 2 with
appropriately chosen dimensionality m or sm. It brings pixel values
back to the range [0,1] and is the actual non-linear component of
the objective. Please note that clamping at this stage does not falsify
our computation because, since the string is opaque, putting one or
more layers over one other always results in a value ≥ 1. Thus,
clamping to 1 does not change the result.
Figures 3f and 3g show the results of optimization using the objec-
tives in Equations 4 and 5 respectively.

(b)(a) (c)

Figure 4: Lines sampled directly on the grid lack in range. Whether
sampled in lower resolution (a) or in high resolution (b), each pixel
is either black or white. Our solution (c) is to sample lines in su-
perresolution and to filter them down to introduce more range per
pixel in the lower resolution (cf. Sec. 4.4).

4.3 Binary Integer Programming

Finally, a third possible way would be the usage of binary inte-
ger programming, to account for the fabrication requirement (R1)-
(R3). In particular, we could solve the problem:

min
x

∥∥Ãx−Uy
∥∥

1 s.t. x ∈ Bn ,

with ‖·‖1 being the sum of absolute differences between pixel val-
ues (L1-norm). Although it is also an NP-hard problem, there exist
mature algorithms which can approximate a solution within both
reasonable time and error bound. We have formulated this task and
tried to solve it using a state-of-the-art integer programming library
(GUROBI [Gur16]), however, it turns out that it is too large to be
solved using commodity hardware. Nonetheless, we still managed
to solve a relaxed version of the problem as further explained in
Section 4.5

4.4 Range Problem

The investigation of the results so far allows to conclude, that if the
problem is solved for a binary minimizer x, we obtain results which
are characterized by very strong contrast and either dark or white
regions (Fig. 3c, 3e, 3f, 3g). This is not the case with the real-valued
least squares results in Fig 3b and 3d.
The reason for that is that the output image lacks an expressive
range per pixel. In other words, since each pixel is a linear combi-
nation of the edge contributions (which are in the case of the Bre-
senham algorithm also binary), and it is crossed by many edges, it
reaches almost always values ≥ 1.
Whether we compute the norm in low (Eq. 4) or in high (Eq. 5)
resolution, we encounter a variant of this problem. This is depicted
schematically in Figure 4a and 4b for each resolution respectively.
The effect is also visible in Figure 3, where in low resolution
(Fig.3f) the edges are too thick and too many of them are drawn.
While in high resolution the edges are thinner, they are drawn in
order to account for darker or lighter regions but gray areas in be-
tween cannot be expressed due to the lack of range (Fig.3g). Addi-
tionally, we should notice that the computation in high resolution
is very expensive and the generation of the result in Figure 3g took
14.7 hours.
Our solution to this issue is to render the resulting strings in such a
way that they exhibit enough range in order to simulate the resulting
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string images. Thus, we cast is as the following problem:

min
x

∥∥DC
(

Ãx
)
− y

∥∥2
2 s.t. x ∈ Bn , (6)

where the function

D : [0,1]sm→ [0,1]m with u 7→ D(u) = Bu

is a downsampling operator that filters the image back to the target
resolution. In our method, we use a box-filter which can be repre-
sented as a linear map B, however, higher order filters could also
be used.
The rationale is to draw the edges in the high resolution (and hence
also to meet requirement (R2)), but to compute the norm at the
lower resolution and at the same time to increase the range of each
pixel by the number of super pixels used (in our case s = 8× 8,
cf. Figure 4c). Using this method we can extend the expressiveness
of the output image during the optimization and improve the visual
results significantly as shown in Figure 3j. Additionally, since we
perform the evaluation of the objective in the low-resolution space,
we reduce the computational burden significantly if compared to
Eq. 5, where the result in Figure 3j took 2.3 hours.

4.5 Comparison to L1-norm
Using the extended range introduced above, we were able to solve
the problem with the L1 norm using an adapted binary integer pro-
gram for the following objective function:

min
x

∥∥DÃx− y
∥∥

1 s.t. x ∈ Bn . (7)

We could reach a solution since now the codomain is the lower
resolution with a significantly smaller dimensionality.
In order to solve it with GUROBI [Gur16], we have developed a
hierarchical multiresolution approach that works only with a sub-
set of possible edges at each resolution. In detail, we compute an
image pyramid of our 512× 512 input image down to a resolution
of 32× 32 pixels. Then we solve Equation 7 repeatedly, starting at
the lowest resolution (32× 32) with all 130,560 edges in the ma-
trix Ã. In each iteration we increase the resolution of the image by
taking the image on the next upper level of the pyramid, while at
the same time we reduce the number of available edges (= num-
ber of columns of Ã). To obtain a coherence across the levels of
the pyramid, we use the outcome of each iteration to determine the
columns of Ã for the next iteration.
We argue that the non-zero entries of x of each iteration provide
a good guess of the optimum, so we always use the corresponding
columns in Ã for the next iteration. Since a restriction to just the
edges corresponding to x would heavily limit the variety of possible
outcomes of the solver, we additionally add edges to Ã up to a
maximum quota. We empirically identified a decrease of this quota
as a scaled and shifted e−x function to allow meaningful runtimes
with noticeable quality increase of the result in each iteration. The
result is depicted in Figure 3h.
In order to compare it, we have also solved the same objective using
our greedy optimization solver and depict the results in Figure 3i.

4.6 Importance Mapping
In order to introduce additional control over the results we use a
real-valued importance map of the form

W : [0,1]m→ [0,1]m ,

(a) input (b) without W (c) with W (d) W

Figure 5: An example of the usage of the importance map W as
defined in Eq. 8 in Section 4.7.

which allows to enhance the importance of particular regions of the
target image manually. It allows to downgrade the importance of
particular pixels, for instance the background noise or other less
expressive features. This map can be controlled by the user and its
effects can be observed in Figure 5.

4.7 Summary
Now, we encapsulate the mapping from edges to pixels as

F(x) = DC
(

Ãx
)

and state our final binary non-linear least squares optimization task:

min
x
‖WF(x)−Wy‖2

2 s.t. x ∈ Bn . (8)

5 Optimization Algorithm
In the following we describe our greedy optimization algorithm
used for solving of Eq. 6 and 8.

while true do
j = argmini ‖WF(x± ei)−Wy‖2

f̃ =
∥∥∥WF

(
x± ej

)
−Wy

∥∥∥2

if f̃ < f then
x = x± ej

f = f̃
else

break
end

end
Algorithm 1: Our algorithm computes a subset of all possi-
ble strings which are used together to reassemble the input im-
age. Please note that this code summarizes the edge addition
(x + ei) and edge removal (x− ei) operations of the algorithm
as described in Section 5. Note that the vector ei refers to the
i-th column of the identity matrix.

We start the process with an empty canvas and therefore initialize
the output vector x = 0 and the residual f = ‖Wy‖2

2. Then we suc-
cessively add edges to the canvas, one at a time, and update the
vector x accordingly. To keep track of the progress, after each up-
date of the vector x we compute the current reconstruction result
and the corresponding norm according to Equation 8. In each iter-
ation we pick the edge that allows the biggest norm reduction, and
we stop when further addition would cause an increase of the error.
We outline our approach in Algorithm 1.
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Figure 6: Different connections of two pins: (a) pin center to pin
center, (b) four different strings, and (c) enumeration of strings used
by our algorithm (cf. Section 6).

The big disadvantage of a greedy approach as we use it is that a
decision at an early stage can later turn out to be a bad choice. In
our case, an addition of one edge might bring the biggest benefit
when it is chosen, but can then prevent a better solution later on.
Thus, we try to further improve the results by an iterative removal
of edges. In particular, if the initial addition stage terminates, we
sequentially remove those edges that allow to improve the norm.
If it is not possible anymore, we start to add edges again, pick one
edge at a time, and continue as long as the norm can be improved.
We alternate those two stages until it is not possible to further im-
prove the norm, neither by removal nor by addition, in which case
the algorithm terminates.

6 Eulerian Graph Extraction

As stated in Section 3, requirement (R4), the string representation
of the input image needs to be fabricated from a single piece of a
thread. This is only the case if the corresponding graph consisting
of the computed edges is Eulerian or at least semi-Eulerian.

6.1 Eulerian Graph

In the first case, each pin would have an even valence and would
therefore be connected to an even number of edges. The graph
would then, by definition, contain an Eulerian cycle—the first and
last pin would coincide and could be chosen arbitrarily. In the sec-
ond case, there would be two dedicated pins with odd valence act-
ing as the start and end node. These properties, however, would
only work according to our expectation when we consider connec-
tions between the pin centers (cf. Figure 6a).
Since we aim at an automated fabrication in which we can attach
the thread to the pins by simply moving it clockwise or counter-
clockwise around the pins (and not sticking it to the pin centers),
we distinguish between 4 different possibilities to connect two pins
and therefore consider 4 edges for each pair of pins in our algorithm
(cf. Figure 6b). One implication of this is that an even valence of
the pins is not anymore a sufficient condition to make it fabricable.
The problem is that not only the valence, but also the type of the
connections is of importance. This issue is shown as a toy example
in Figure 7.
Pin B acts as the start and end node of an Euler cycle, where we
denote the connection points of the first and last edge at the pin B
with S and E respectively. Although pin A exhibits an even number
of connected edges, it is not possible to fabricate the toy example 7a
because there is no simple way to mount the thread at pin A such
that it is connected to the pins B and C in the demonstrated manner.
In contrast, in the example 7b, pin A also has an even valence but

A C

B
S E

(a)

A C

B
S E

(b)

Figure 7: An even valence at every pin is not a sufficient condition
to make a result fabricable. (a) While pin A has even valence, the
thread can not be easily mounted to follow the given edges. (b) The
result can easily be produced by moving the thread around the pins.

the thread can easily be moved clockwise around A to produce the
desired result.

6.2 Edge Enumeration
To get a better track of different connection types between two pins,
we enumerate them as shown in Figure 6c. The enumeration num-
bers are defined w.r.t. a reference pin. In the figure, red numbers
refer to the lower pin and the blue numbers to the upper pin. The
following explanation refers to the lower pin. Further, we assume
a clockwise movement of the string around the pin. We enumerate
the inbound outer tangent with 1, the outbound outer tangent with
2, the diagonal inbound tangent with 3 and the diagonal outbound
tangent with 4. Note that w.r.t. the upper pin the enumerations of
the edges 1 and 2 are swapped while the numbers 3 and 4 stay
unchanged. Due to their similar role as inbound edges in case of
a clockwise movement, we group the edges 1 and 3 to one group
(denoted as 1-3) and due to their role as outbound edges we group
the edges 2 and 4 to another group (denoted as 2-4). In case of a
counter-clockwise movement of the thread, only the directions but
not the groups would change. The edges in group 1-3 would then
act as outbound edges while the edges in group 2-4 would act as
inbound edges.
Finally, we deduce the key criteria of a fabricable graph: At each
pin the sum of edges of group 1-3 must equal the sum of group 2-4,
thereby allowing an easy mounting of the thread by entering the
pin on an edge of one group and leaving it on an edge of the other
group. Compared to the traditional definition of an Eulerian graph,
we consider our graph only Eulerian if all pins have an equality
of the two mentioned edge groups (1-3, 2-4), which allows an ar-
bitrary choice of the start node. The thread would then reach and
leave each pin equally often and the start node also represents the
end node.
A valid semi-Eulerian graph in our notion implies equality of the
edge groups at all but two pins where the absolute difference be-
tween the sums equals 1. This means that one of these two pins is
left once more by the thread than it is reached (start node) and one
pin is reached once more by the thread than it is left (end node).

6.3 Auxiliary Edges
The first step towards a fabricable string art image is therefore an
analysis of the graph given by the computed edges. Since the result
will generally not meet the mentioned requirements, we add auxil-
iary edges to get a graph that meets the mentioned requirement of
equilibrium of numbers of edges from each group at each pin. We
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Figure 8: The hardware setup for digital fabrication using a KUKA industrial robot and custom tools for winding (cf. Section 7.1).

compute these auxiliary edges by ordering the set of pins which are
not in equilibrium in descending order w.r.t. to the number of edges
which are needed to reach an equilibrium stage. Then we identify
pairs that need the same number of edges and connect them with
suitable auxiliary edges. Note that two pins with an equal number
of missing edges can always be brought into equilibrium, no matter
on which side the edges are missing. This is possible through the
use of all four connection types. Note that we can let two pins with
offset of 1 untouched. These pins would then be the start and end
of an Eulerian path.
To avoid visible artifacts, the auxiliary edges which were added are
not drawn across the image but outside of the domain. The two cor-
responding pins of each auxiliary edge are therefore not connected
by a straight line but by an arch around the frame which does not
influence the image quality at all. Note that this strategy can also be
managed during the fabrication with the robot by moving the tool
tip on an arch outside the frame accordingly (cf. Sec. 7).

6.4 Path Identification

We use Hierholzer’s algorithm [HW73] to compute a path in the
graph that we augment with the auxiliary edges. The algorithm of
Hierholzer finds an Eulerian cycle (or an Eulerian path in a semi-
Eulerian graph) by the computation of sub-cycles. Since we require
a path through the graph on which we enter each pin using an edge
of one group (1-3, or 2-4) and leaving it using an edge of the other
group, we have to adapt Hierholzer’s algorithm to meet our require-
ments. In detail, we have to change the edge choice when a pin is
reached. While computing the sub-cycles in the algorithm, we have
to constrain that when a pin is entered on an edge of one group,
we are only allowed to reach a neighbor pin using an edge of the
other group. With this small adaption of the algorithm we receive
a path through the graph that we can easily fabricate by a simple
movement of the thread around the pins.

7 Fabrication

7.1 Hardware Setup

Industrial Robot. We used a high precision 6-axis articulated
arm type industrial robot with a reach of 2033 mm and a payload
of 60 kg, a KUKA R60HA, to automatically fabricate our samples.
The robot was equipped with some standard tools holders, drills
and end mills, a custom made winding tool, custom fixtures to hold
the winding frame, a mechanism to adjust the string tension and a
digital IP extension to trigger a digital camera (cf. Fig 8).

Frame Preparation. The fabrication process starts with the
preparation of the frame and pins. For convenience we used alu-
minum bicycle rims as the base frame to hold the pins in place. The
rim was mounted on a precisely defined piston on the machine ta-
ble in a custom fixture, for each pin a hole was drilled at the center
at an angle of about 10 degrees, the spikes (2x2x35mm) were then
pressed into these holes.

Number of Pins. In an experimental setup, we have determined
that a circular canvas of the diameter of d = 630 mm (approx.
26") the number of pins p = 256 is adequate and increasing this
number improves the result only negligibly. This results in total in
n = 4× 32,640 = 130,560 possible edges. Please refer to supple-
mental material for the details on the experiment.

String Winding. To wind the string the drilling tool was replaced
by a custom made tool mounted in a tool holder. The string exits
this tool at the center point of the 2.5 mm nozzle at the center of
the tool axis (therefore the main spindle did not have to be locked
but was allowed to rotate freely during the fabrication process).
The string tension was adjusted by running the string trough the
modified thread tension regulator of a knitting machine. The thread
used is thin polyester thread fabricated by Amann, type Seracor.

Fabrication Process. The large number of relatively short mo-
tions and necessary path accuracy between the pins slows down the
fabrication process. To fully utilize the maximum speed available
we only used linear path interpolation where absolutely necessary
and point-to-point moves wherever possible. We also adjusted the
allowed path deviation during different phases of the winding pro-
cess and we carefully set the end effector orientation to make sure
that the slow axis (A5 and A6) are not limiting the speed of the
faster axis (A1, A2, A3). With these optimizations and given a pre-
pared frame, the automated fabrication process is capable of pro-
ducing a typical sample (5000 windings, 2500 m of string) in about
2 hours.

7.2 Robot Programming

A KUKA industrial robot as we use it for the fabrication of
our results provides a programming interface via the proprietary
KUKA Robot Language (KRL), which contains standard com-
mands PTP, LIN, and CIRC to control a point-to-point, a linear,
and a circular movement of the robot tool tip respectively.
While a linear movement is guaranteed to describe a straight line, a
point-to-point command moves the tool tip to the required position
as fast as possible, thereby describing a (for the programmer) unde-
fined curve. Since we could not identify any problems when using a
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(a) original (b) our result (c) our make (d) from [Vre16]

Figure 9: Comparison of our result generated with Eq. 8, our make,
and a result taken from the web-page of Petros Vrellis.

(a) 5122, original (b) 5122, t=2.8h
RMS= 0.154

(c) 2562, t=9.5h
RMS= 0.136

(d) 1282 ,
t=12.6h

RMS= 0.129

Figure 10: Comparison of the results computed with our solver and
Eq. 8 with varying input resolution.

PTP command to move the tool tip from one pin to another, we use
it throughout our source code for performance reasons. To move
the tool tip around the pins, we use CIRC commands depending
on the output of our algorithm in clockwise or counter-clockwise
direction. We also use CIRC commands for the auxiliary edges to
move the thread around the frame.

8 Implementation
Our whole pipeline is implemented in MATLAB. Due to the heavy
size of the matrix Ã (40962 × 130,560 with 615,320,477 non-
zeros, therefore 4.58 GB in double precision), we precompute it
once as a sparse matrix and store the non-empty indexes and values
given by the find function into binary files on the hard disc. For
efficiency reasons, we avoid the use of usually slow for loops and
instead make use of large index vectors to reference the pixels of
all edges at once. This gives us a good performance in the update of
the vectors in which we store the forecast of the l2 norms for the ad-
dition and removal of each edge. These vectors have to be updated
after each iteration of our greedy algorithm. To further improve the
performance, during each update we only refer to the pixels of each
edge which are influenced. To sum up the changes for all edges at
once we make use of the MATLAB function accumarray.

9 Results and Discussion
Outputs. Using our optimization method and Eq. 8 we have com-
puted a number of string art images, which are shown in Figures 12
and 13. Table 1 shows the number of edges and the total running
times for the computation of the particular outputs. Table 2 shows
the timings of the comparisons shown in Figure 3.
Additionally, we have fabricated the results shown in Fig. 13 using
our fabrication setup as described in Section 7. The fabrication time
was about 2.4 hours for Ada Lovelace, 3.4 hours for Einstein, and
4.3 hours for the cat. For the Ada we used 2,679 meters of thread,
for Einstein 2,980 meters, and for the cat, which is most complex,
we used 5,985 meters.

(a) original (b) c = 0.9,
RMS= 0.137

(c) c = 0.7,
RMS= 0.114

(d) c = 0.5,
RMS= 0.097,

Figure 11: Comparison of the results computed with our solver
and Eq. 8 with scaling of the input image range by the factor c.
Top: target, bottom: the resulting output.

Comparisons. For our benchmarks and comparisons we have
used a cutout of the image of the picture Penitent Magdalene by
El Greco. This motive has also been used by the artist Petros Verl-
lis [Vre16] for his outputs, and we show a comparison in Figure 9.
Moreover, we compared the results of our solver to the
GUROBI multiresolution solver using the same objective function
(Eq. 7). Figures 3i and 3h show the visual outcomes respectively.
Interestingly, regarding the running times (cf. Table 2), it turns out
that our solver outperforms the multiresolution GUROBI solver by
an order of magnitude and provides even better results in terms of
both the minimized L1 norm and the l2 norm.

Input Resolution. In Figure 10 we compare the results of our al-
gorithm with varying resolution of the input image. Since we work
with a constant output resolution in order to suffice fabrication re-
quirement (R2), reducing the input resolution results in increasing
the subsampling window, which again results in increasing of the
range of each pixel that is evaluated. In practice, as it can be envi-
sioned in Figure 10, reduction of the input resolution does not in-
fluence the quality of the results considerably, however, it leads to
longer computation times. The rationale is that a bigger range leads
to a bigger design space per pixel, or in other words to more pos-
sibilities, which boils down in longer execution times of the solver,
which tries to explore this space.
In practice we have determined empirically that a input resolution
of 5122 pixels, which results in 82 subsampling windows and thus
in a range of 64 gray values, delivers best results in most cases.

Image Preprocessing. An additional question is about an appro-
priate preprocessing of the input images. From the experiments we
have performed we concluded that results are better if inputs do
not exhibit too big variations in the range and if the images are in
general darker. Thus, an essential issue of the string imagery is the
actual range of the images. In Section 4.4 we introduce a method to
extend the range during optimization. On the other side, we could
also compress the range and lower the intensity of the input image
in order to shift the optimization problem into a more appropriate
design space region.
We implemented it in a rather straightforward manner just by scal-
ing the input image down by a constant factor c∈ (0,1), i.e., ȳ = cy
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name W n t [s]
Ada Lovelace yes 6575 6998.289
Alan Turing no 20559 14922.560
Albert Einstein no 13026 9432.940
Albert Einstein (with tongue) no 8324 6721.494
Cat no 14850 15812.312
Gaussian Blob no 507 2178.496
Magdalene no 10493 9992.371
Marie Curie yes 6785 6354.935

Table 1: Timings of some results presented in Figures 12 and 13.

and could obtain better results for images with large variations in
the range, as shown in Figure 11.

Discussion. From the experiments we have performed and docu-
mented in Section 4, we extract the following insights:
First of all, we need enough range per pixel in order to express the
grayscale nuances which make the string images look much more
realistic. Thus, we trade resolution for range by utilizing supersam-
pling and downfiltering. In fact, the number of superpixels gives us
approximately the number of achievable graylevels.
Second, in general, we do not need a very high resolution input,
since the degree of detail that can be approximated with a string
image is limited. Using 5122 sized input
Third, the input should not exhibit too large range variations and
especially very light regions. Darker and smoother images can be
better approximated by string images.
Finally, we need to say that non-binary least squares do not suffer
the range problem since the minimizer can take real values and ac-
count for enough grayscale range by adding fractional parts of the
edges to particular pixels. This is, however, not possible to fabricate
with our setup.

Limitations. A major limitation comes from the current setup
with pins only placed on the boundary of a circular frame. This
limits the space of images that can be faithfully represented. Plac-
ing pins in the interior of the artwork or jointly optimizing for pins
and strings should provide additional degrees of freedom and im-
prove the quality of the output. Our current computation should be
able to adapt to different fixed pin placement setups without ma-
jor changes, but the joint optimization of pin placement and string
selection would require new algorithmic components.
One final limitation to mention is the fact that our solver does not
necessarily converges to a global minimum. In fact, it can still get
stuck in a local minimum; our efforts were however, to find a min-
imum which still results in a string image of good visual quality.

10 Conclusions
In this paper, we proposed a novel method for the automatic com-
putation and digital fabrication of artistic string images. We analyze
the problem and derive a problem formulation as a non-linear bi-
nary least squares problem. We propose a hardware setup for the
automatic digital fabrication of these images using an industrial
robot that spans strings between pins. We also propose a greedy
algorithm to compute an approximate solution to the optimization
problem and demonstrate that the quality of our solution signifi-
cantly outperforms other approaches. Finally, we demonstrate the

name RMS t [s]
Fig. 3(b) Eq. 1 0.056 3.82
Fig. 3(d) Eq. 3 0.169 92.81
Fig. 3(f) Eq. 4 0.463 4,084.88
Fig. 3(g) Eq. 5 0.279 51,271.36
Fig. 3(h) Eq. 7 (GUROBI) 0.232 7765.43
Fig. 3(i) Eq. 7 (ours) 0.221 539.47
Fig. 3(j) Eq. 8 (ours) 0.154 9,992.37

Table 2: Timings and errors of the samples shown in Figure 3.

applicability of our methods by generating and fabricating a set of
real string art results.
In future work, we would like to extend our setup to experiment
with more general pin placement, to generate 2.5d string art. Fur-
ther, we would like to experiment with strings of different colors
and more transparent strings. We are also interested to investigate
the fabrication of customized shading systems using a similar pro-
cess.
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