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[1] Singular configurations of SGP

The geometry of a Stewart Gough Platform

is given by the six base anchor points

Mi := (Ai, Bi, Ci)
T in the fixed space Σ0

and by the six platform anchor points

mi := (ai, bi, ci)
T in the moving space Σ.

Theorem Merlet [1992]

A SGP is singular iff the carrier lines Li of
the six legs belong to a linear line complex. Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ

MiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMi

mimimimimimimimimimimimimimimimimi

LiLiLiLiLiLiLiLiLiLiLiLiLiLiLiLiLi
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[1] Analytical condition

Plücker coordinates of Li can be written as (li, l̂i) := (R·mi + t − KMi,Mi×li)

with R := (rij) =




e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 + e0e3) 2(e1e3 − e0e2)
2(e1e2 − e0e3) e2

0 − e2
1 + e2

2 − e2
3 2(e2e3 + e0e1)

2(e1e3 + e0e2) 2(e2e3 − e0e1) e2
0 − e2

1 − e2
2 + e2

3



 ,

t := (cosϕt1 − sinϕt2, sin ϕt1 + cosϕt2, t3)
T and K := e2

0 + e2
1 + e2

2 + e2
3.

Remark: The group SO3 is parametrized by Euler Parameters (e0, e1, e2, e3).

Li belong to a linear line complex ⇐⇒ Q := det(Q) = 0 with Q :=




l1 bl1

. . . . . .

l6 bl6




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[2] Preliminary considerations

Definition SGP with Cylindrical Singularity Surface
The manipulators singularity set is for any orientation of the platform a cylindrical
surface with rulings parallel to a given fixed direction p in the space of translations.

The set of SGPs with a cylindrical singularity

surface contains the set of architecture singular

SGPs. These two sets are distinct due to:

Example [see Figure]

• m1 = m2, m3 = m4, m5 = m6

• M1M2 ‖ M3M4 ‖ M5M6 ‖ p

• M1, . . . ,M6 can be coplanar
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[2] Preliminary considerations

This manipulator is only in a singular configuration iff the three planes

[M1,M2,m1], [M3,M4,m3] and [M5,M6,m5] have a common intersection line.

The singularity surface is a quadratic cylinder.

Is this the only SGP with this property?

We distinguish between planar and non-planar

SGPs because the structure of architecturally

singular SGPs depends on the planarity of the

platform and the base; cf. Karger [2003,2008].

In this paper we only deal with planar SGPs.
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m1 m2

Projection direction is p.
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[3] The Main Theorem

Main Theorem
The set of planar parallel manipulators with no four anchor points on a line which
possess a cylindrical singularity surface with rulings parallel to a given fixed direction
p for any orientation of the platform equals the set of planar architecture singular
manipulators (with no four anchor points on a line).

Idea of the proof

• We choose an Cartesian frame with one axis ti ‖ p.

• Then Q := det(Q) = 0 must be independent of ti for all e0, . . . , e3, tj, tk.

• The analytical proof is based on the resulting equations.
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[4] Preparatory work for the proof

[A] Choose of Cartesian frames in the fixed space and the moving space

• As we consider only SGPs with planar platform we set ci = 0 for i = 1, . . . , 6.

• We set up the planar base in a more general position as

C1 = 0, Ci = [C2(B3Ai − A3Bi) + A2C3Bi] /(A2B3) for i = 4, 5, 6.

• Lemma of Karger [2003]

For planar parallel manipulators with no four points on a line we can assume

A1 = B1 = B2 = a1 = b1 = b2 = 0 and

A2B3B4B5a2(a4 − a3)coll(3, 4, 5) 6= 0 with

coll(i, j, k) := ai(bj − bk) + aj(bk − bi) + ak(bi − bj).
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[4] Preparatory work for the proof

[B] Algebraic characterization of the subset of architecture singular SGPs

We perform the same elementary row operations with the matrix Q as described

by Karger [2003]. Then the last row of Q is of the form

(r11K1 + r12A2K2, r21K1 + r22A2K2, r31K1 + r32A2K2, r21C2K3 + r22C2K4,

r31A2K3 + r32A2K4 − r11C2K3 − r12C2K4,−r21A2K3 − r22A2K4)D
−1

with D := A2B3B4B5coll(3, 4, 5) and rij the entries of the rotary matrix R.

Theorem of Karger [2003]

K1 = K2 = K3 = K4 = 0 are the four conditions which are satisfied iff a planar
parallel manipulator with no four points on a line is architecturally singular.
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[5] Sketch of the proof

I) Base is not parallel to p

(i) Base is orthogonal to p
(ii) Base is not orthogonal to p

II) Base is parallel to p

(i) M1M2 is parallel to p
(ii) M1M2 is not parallel to p

(a) M1M2 is orthogonal to p

(b) M1M2 is not orthogonal to p
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I) Base is not parallel to p

(i) Base is orthogonal to p (C2 = C3 = 0)

The proof of this case is hidden in the proof of the Theorem of Karger [2003].

Karger sets t1 = t2 = 0 and eliminates t3 from Q. He proves in four steps

(a), . . . , (d) that the resulting equations can only vanish for K1 = . . . = K4 = 0.

(ii) Base is not orthogonal to p
We start such as Karger by setting t1 = t2 = 0. Now Q can be written as

Q = A2
2(r11r22 − r12r21)Q3t

3
3 + A2B3Q2t

2
3 + Q1t3 + Q0.

With the coefficients Q1, Q2, Q3 the steps (a) and (b) can be done one by one.

The steps (c) and (d) are different and therefore given in Nawratil [2008,A].
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II) Base is parallel to p (C2 = C3 = 0)

We eliminate t1 from Q. We denote the coefficients of ti1t
j
2t

k
3 from Q by Qijk.

(i) M1M2 is parallel to p (ϕ = 0)

From Q101 we can factor out K and from Q100 we can even factor out K2.

Finally, we denote the coefficient of ea
0e

b
1e

c
2e

d
3 of Qijk by P ijk

abcd and compute:

P 101
4110 − P 101

1401 − P 101
1041 + P 101

0114 = K1B3B4B5coll(3, 4, 5) =⇒ K1 = 0

P 101
0222 + P 101

2022 − P 101
2202 − P 101

2220 = K2A2B3B4B5coll(3, 4, 5) =⇒ K2 = 0

P 100
3120 − P 100

2031 − P 100
1302 + P 100

0213 = K3a2B3B4B5coll(3, 4, 5) =⇒ K3 = 0

P 100
3210 − P 100

2301 − P 100
1032 + P 100

0123 = K4a2B3B4B5coll(3, 4, 5) =⇒ K4 = 0

Remark: This is the shortest possible analytical proof of the Theorem of Karger.
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II) Base is parallel to p (C2 = C3 = 0)

(ii) M1M2 is not parallel to p

(a) M1M2 is orthogonal to p (ϕ = π/2)

From Qijk (i > 0) we can factor out K. From Q100 we can even factor out K2.

We factor out (e0e1 − e2e3) of Q2jk and compute the following 15 polynomials:

P1[18] := P
111
2200 P2[42] := P

201
1010 P3[12] := P

110
3300 P4[42] := P

200
2020 P5[72] := P

200
2110

P6[36] := P
100
3210 − P

100
2301 − P

100
1032 + P

100
0123 P7[42] := P

101
4110 − P

101
1401 − P

101
1041 + P

101
0114

P8[30] := P
101
4200 + P

101
2400 + P

101
0042 + P

101
0024 P9[30] := P

101
4200 + P

101
2400 − P

101
0042 − P

101
0024

P10[18] := P
111
2110 − P

111
1201 P11[42] := P

101
3111 + P

101
1311 P12[36] := P

110
3210 − P

110
2301

P13[24] := P
110
3120 − P

110
2031 P14[12] := P

100
3300 + P

100
0033 P15[24] := P

100
2121 − P

100
1212
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(ii) M1M2 is not parallel to p

(b) M1M2 is not orthogonal to p (sinϕ cosϕ 6= 0)

In this case we compute the following 20 polynomials:

P1[12] := P
100
3300 + P

100
0033 P2[36] := P

100
3030 − P

100
0303 P3[78] := P

101
0402 − P

101
2040

P4[66] := P
101
4020 − P

101
2040 P5[30] := P

101
4200 + P

101
0042 P6[66] := P

101
4020 + P

101
0402

P7[36] := P
101
4200 − P

101
0024 P8[42] := P

101
0042 − P

101
0024 P9[18] := P

102
3100 + P

102
1300

P10[18] := P
102
2011 − P

102
1120 P11[108] := P

101
3111 − P

101
1311 P12[102] := P

101
4110 − P

101
1401

P13[24] := P
100
3210 − P

100
0123 − P

100
2301 + P

100
1032 P14[42] := P

100
3210 + P

100
0123 + P

100
2301 + P

100
1032

P15[48] := P
100
3210 + P

100
0123 − P

100
2301 − P

100
1032 P16[36] := P

100
3120 − P

100
0213 − P

100
2031 + P

100
1302

P17[66] := P
101
4110 + P

101
1401 + P

101
1041 + P

101
0114 P18[54] := P

101
4110 − P

101
1401 + P

101
1041 − P

101
0114

P19[48] := P
101
3201 − P

101
2310 − P

101
0132 + P

101
1023 P20[150] := P

101
3201 + P

101
2310 − P

101
0132 − P

101
1023
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ad (ii) (a, b) In both cases we proceed as given in Nawratil [2008,B]

• K2 = 0: All 15 resp. 20 polynomials can only vanish for architecture singular

manipulators, i.e. K1 = K3 = K4 = 0 =⇒ K2 6= 0

• K2 6= 0: All coefficients of t1 can only vanish for the following two solutions:

S1 : Ai = Bi cotϕ, Aj = Bj cotϕ, Ak = A2 + Bk cotϕ,

bk = 0, a2 = ak, ai = K1bi/(K2A2), aj = K1bj/(K2A2),

K3 = 0 and K4 = 0 (⋆)

S2 : Ai = A2 + Bi cotϕ, Aj = A2 + Bj cotϕ, Ak = Bk cotϕ,

ai = a2 + biK3/K4, aj = a2 + bjK3/K4, ak = bk = 0,

A2K2 + K4 = 0 and K1 + K3 = 0 (⋆⋆)

for i, j, k ∈ {3, 4, 5} and i 6= j 6= k 6= i without contradicting

A2B3B4B5a2(a4 − a3)coll(3, 4, 5) 6= 0.
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The close of the proof

We show that both solutions Si imply contradictions for the choice of M6 and m6:

If we set A2 = 1 and replace Ki in (⋆) and (⋆⋆) by the explicit expressions we get:

(⋆) K3 = (A6 − B6 cotϕ)(ak − a6) K4 = (A6 − B6 cotϕ)b6

• a6 = ak, b6 = 0 =⇒ K2 = 0

• A6 = B6 cotϕ =⇒ M1,Mi,Mj,M6 are collinear

(⋆⋆) K1 + K3 = (1 − A6 + B6 cotϕ)a6 K2 + K4 = (1 − A6 + B6 cotϕ)b6

• a6 = 0 and b6 = 0 =⇒ K2 = 0

• A6 = 1 + B6 cotϕ =⇒ M2,Mi,Mj,M6 are collinear �
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[6] A further example

S1 and S2 imply a further example for a pla-

nar SGP with cylindrical singularity surface.

For the computation see Nawratil [2008,A].

• M1,M2,M3,M4 are collinear,

• m1,m2,m3,m4 are collinear,

• M5M6 ‖ M1M2 ‖ p,

• and m5 = m6.

SGP is in a singular position iff m5 = m6

lies in the base or L1,L2,L3,L4 are coplanar

=⇒ singularity surface splits into two planes

M4

M3 M2
M1

M6 M5

m4
m3

m2

m1

m6 m5
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[7] Remark

Theorem Röschel and Mick [1998]

Planar SGPs are architecturally singular iff {Mi,mi} for (i = 1, . . . , 6) are four-
fold conjugate pairs of points with respect to a 3-dimensional linear manifold of
correlations or one of the two sets {Mi} and {mi} is situated on a line.

Therefore the given main theorem can be reformulated as follows:

Main Theorem
Planar SGPs with no four points on a line and a cylindrical singularity surface must
consist of four-fold conjugate pairs of anchor points with respect to a 3-dimensional
linear manifold of correlations.

It would be nice to have a geometric proof for the main theorem similar to the one

presented by Röschel and Mick [1998].
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[7] Conclusion

• We proved that there do not exist non-architecturally
singular planar SGPs and no four anchor points col-
linear which possess a cylindrical singularity surface.

• We gave the shortest possible analytical proof for
the Theorem of Karger.

• Moreover, we presented two examples of planar ma-
nipulators with cylindrical singularity surface.

• A complete list of planar SGPs with a cylindrical
singularity surface is in preparation.

Nawratil, G., All Planar Parallel Manipulators with Cylindrical

Singularity Surface, in preparation.
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